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Abstract

Composite structural components may be subjected
to a variety of defects resulting in a sharp reduction in
their load carrying capacity or even catastrophic
failure. Thus, it is extremely important to have the
means to monitor the degradation suffered by critical
components of a structure for safe operation during its
service life. A nondestructive method based on
ultrasonics has recently been developed for the
guantitative evaluation of composite structural
components during service. The experimental part of
the technique uses a two-transducer, pitch-catch type
arrangement 0 generate a variety of elastic waves
within the specimen immersed in water. The recorded
reflection data are then analyzed by means of a
theoretical model to back out the relevant properties.
In this paper the method is applied to determine the
stiffness constants of unidirectional graphite/epoxy
materials. The measurements are shown to be efficient
and sufficiently accurate so that it can be used for early
detection of material degradation in composite
structural elements during service.

Nomenclat ure

v, V,V, v, wave speeds

0 incident angle

¢ fiber orientation

b, critical angle

o; Cauchy’s stress tensor
G elastic constants

P density

u, U, displacement

a,,a,... as defined in eq. (4)

¢ slowness on the x,-x, plane
k, wave numbers

$i slowness aong x,
bo, B,y parameters defined in eq. (7)
arrival time of wave mode k!
laminate thickness
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1. Introduction

All aircraft and aerospace structural components
and their mechanical subcomponents are subjected to
service conditions that lead to a deterioration of their
performance and integrity with time. This is primarily
due to the fact that structural materials suffer
degradation as they age' resulting in changes in their
properties and reducing their load carrying capacity.
In absence of timely diagnosis of the degree of
deterioration and appropriate intervention, the structure
in question may suffer catastrophic failure. Factors
that cause materials degradation include extensive
cyclic loading (mechanical and thermal); exposure to
extreme temperatures, excessive humidity, chemical
attack, foreign object impact, rapidly applied thermal
loading etc.

Composite materials are being used increasingly in
many structures and their subcomponents.  Fiber
reinforced composites, e.g., graphite/epoxy are the
most widely used materials in aircraft structures at the
present time. These materials provide a very desirable
combination of toughness, specific strength, modulus
and damage tolerance. However, composites are
very sensitive to their manufacturing processes, service
conditions and the natural environment, either one or
all of which may introduce defects resulting in a
serious degradation of the material. Further, as these
materials age, they will be subject to a variety of
degradations and the need for their evaluation and
repair/rejection will become more and more critical.

A major factor in the expanded use of composites
at low operating costs is adequate. nondestructive
evauation (NDE) technology. Development of sound
scienc-e — based techniques to detect hidden, subsurface
damage and material degradation prior to structura
failure is of critica importance for the design and
deployment of aircraft and aerospace structures of the
future. A number of NDE techniques are available for
the inspection of structural components. Some of




the. . . eg.,, X -Ray and Gamma Ray radiography are
of relatively low sensitivity and are not suitable for the
characterization of material degradation. A more
sensitive  radiographic  technique,  the neutron
radiography, is expensive, nonportable and is affected
by the presence of hydrogen compounds (e.g., trapped
moisture and sealing materials) in the damaged area
Electromagnetic methods (e.g., eddy current probes)
work reasonably well for metals but are unsuitable for
nonmetallic composites. The most cost effective and
generally applicable NDE methods are based on
ultrasonics. The conventional pulse — echo and
through — transmission methods are simple to
implement, but they provide only limited information
in the interior of the structure.

Several recently developed ultrasonic techniques
appear to have the potential for improving the
state -- of- the — art in NDE technology significantl y
through additional research. One of these is the “leaky
I.amb wave (LLW)” technique in which the specimen
is immersed in water and tested by two broadband
ultrasonic transducers in a pitch — catch arrangement,
In this method a variety of waves are generated within
the. specimen and each of these waves carries specific
information on the characteristics of the material.
Careful analysis of the recorded waveforms can, in
principle, unravel this information.?*

In this paper we apply the LLW technique to
determine the stiffness constants of unidirectional
graphite epoxy materials. A systematic procedure
proposed by Karim,Mal and Bar-Cohen’by inverting
the LLW dispersion data has been found to be an
effective method to characterize the elastic constants of
graphite epoxy composites. We give a brief
deseript ion of this method, and through a carefully
conducted parameter study, show that only the matrix
dominated stiffness constants e¢,,, ¢,y and ¢5, can be
determined accurately by this method, The fiber
dominated constants, ¢,,and ¢, can not be determined
accurately by this procedure due to the fact that the
Lamb wave velocity is insensitive to ¢;; and ¢, in the
range in which the dispersion data are reliable.

In this paper we describe a new technique which
can beusedto determine all five stiffness constants by
analyzing the times of flight of the recorded reflected
acoustic waves in a pulsed LLW experiment. A
generalized ray theory described in Maler al®. is used
to identify the modality and ray path of each arrival;
the time of flight of each ray is then related to the

elastic constants of the composite. The accuracy of the
inversion procedure is discussed.

11. The Ultrasonic_Experiment

As indicated in the preceding section, the
ultrasonic experiment is based on an oblique
insonification of the specimen immersed in water. The
acoustic wave is transmitted from a broadband
traducer and the reflected signal is recorded by a
second transducer in a pitch-catch arrangement as
shown in Fig. 1.
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Fig. 1. The experimental setup.

A number of flat, broadband transducers with
center frequencies in the range of 0.5 - 10 MHz are
used and the signals, transmitted either in tone-burst or
short pulse form are used to study the material
characteristics. The tone-burst signals are generated by
a function generator to establish a steady-state
condition. At a specific angle of incidence the




reflected signal is recorded as a function of frequency,
amplified, averaged and digitized with the aid of a box-
car gated integrator. The amplitude spectrum of the
recorded reflected signal is obtained by changing the
frequency of the continuous wave signal. If the angle
of incident, 8, of the acoustic waves is greater than
certain critical value, multi-modal dispersive guided
waves are induced in the specimen at a finite number
of speci fic frequencies of excitat ion. The guided waves
propagate in a direction parallel to the surface-s of the
specimen and lesk energy into the surrounding fluid.
The leaky wave-s combine with the specularly reflected
waves to form minima or “nullsin the amplitude
spectra of the reflected signal at the modal frequencies
of the guided waves. The phase velocity, V, of the
guided waves is related to the angle of incidence, 8,
through Snell’s law:

V - a,/sin 0

where q is the acoustic wave speed in the fluid. Thus,
for a given angle. of incidence, the minima or nulls in
the reflection amplitude spectrum are associated with
the excitation of leaky guided waves in the specimen.

The dispersion curves for the specimen can be
determined from the amplitude spectra of the reflected
waves recordedas functions of the incident angle. The
material constants and the thickness of the specimen are
related to the dispersion curves and can be determined
by fitting the experimental curves with those obtained
from theory.

In the second method proposed here, pulsed signals
are transmitted in either a pulse-who or pitch-catch
arrangement.” The reflected signals in the time domain
are recorded and if there is clear separation between
the individual pulses, their measured times-of-flight are
used to determine the material constants through
anaysis.

1. Characterization of Material constants from
Leaky Lamb Wave Experiment

As indicated in the introduction, this technique has
been described in an earlier paper.’ The basic idea
behind the technique is to obtain the experimental
dispersion curves of leaky guided waves in the
specimen from the ultrasonic test. These dispersion
curves can also be obtained from theoretical models
using nomina values of the five stiffness constants of
the specimen.  The stiffness constants are then

determined consistent with the "best fit* between the
theoretical and measured curves. Fig. 2 is a
comparison of between the measured and calculated
dispersion curves for waves propagating at 0°,45° and
90° to the fibers in o« unidirectional graphite/epoxy
laminate of 1 mm thickness. The materia constants
determined from inversion and used in the calculation
are

¢, = 160.73, ¢ = 6.44, cn= 13.92,
Cn = 692, Cys = 7.07

where the units are in GPa.

It can be seen that 3 very good fit between the
measured and calculated dispersion curves has been
achieved. However, the relation between (he calculated
wave sped and the unknown stiffness constants is
highly nonlinear and the solution to the inversion
problem is nonunique. In addition, each stiffness
constant has a different influence on the. dispersion
curves, and this can affect the accuracy of its estimated
value. Data errors also play an important role in the
inversion algorithm.  These issues have not been
carefully studied so far.

We have carned out a detailed and systematic
parameter study of the influence of the five stiffness
constants on the dispersion curves. Typica results of
the study are presented in Figs. 3 arrd 4, for symmetric
and antisymmetric Lamb waves propagating at 45" to
the fibers; results for other propagation directions are
similar. It can be seen that c.., o, ¢ have a strong
influence on the dispersion curves. In addition, the
first symmetric mode at the higher velocity range is
strongly affected by cl). The constant ¢,, does not
seem to have significant influence on any of the
branches. Thus it appears thatthe four constants ¢,
€21, 03, aNd g Can he determined accurately from the
dispersion curves. However, at the high velocity range
the incident angle is small( = 10’), the set Up is
difficult and time consuming, and the errors in locating
the minima in the dispersion curves are large. Thus,
the procedure cannot be used to determine the
constants, ¢, and ¢, accurately. In the next section we
descnibe an alternative technique that is capable of
giving accurate estimates of all five constants and, at
the same time, is simpler to implement both in the
laboratory and in field environments.
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Fig. 2. Comparison between measured and calculated dispersion curves for a1 mm thick graphite/epoxy laminate
for waves propagating at0°, 45° and 90° to the fibers.
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1V. Characterization of the material constants from
travel times of the reflected rays

Ray theory

Consider a unidirectional composite plate with
thickness H and density p immersed in a fluid as shown
in Fig. 1. Assume that the material is homogeneous
and transversely isotropic with symmetry axis along x,
and characterized by five dtiffness constants, ¢, €i2»
€33, €y, @Nd ¢ss. The Cauchy’s equation of motion for
the material is
O,- pri,- 0 1

where u, is the displacement vector and o;; is the stress

tensor. Assume plane wave solutions of (1) in the
form
U,- U, e™m’ b ) - o 2

where k|, k, and k, represent the wavenumbers aong
the x,, x, and x, directions, respectively, and w is the.
circular frequency. From (1), (2) and the constitutive
relations for the material we obtain the following
eigenvalue problem for calculation of the wave speed
in a given direction:

SHERIHIC R N A o8¢ v,
6,8, aliea,E+0liC® -1 (o,0)E,0 || Uy - D a
a8, { (0,~at ¢ ﬂ,(:‘%(:'ﬂ(" U,

where

a, - sz/P» a, - C“/P, a, - (Cn + c55)/p

a, ~ (cy - €)2p, a5 - CsslP 4
£ - b, & - blo, { - kjo

In the ultrasonic experiment, ¢, and &. are related
to the incident angle 8 and fiber orientation ¢ (Fig. 1)
in the form

sin® cos ¢

g, -

By - i sind 5)

0 %
where «, is the acoustic wave speed in water ( = 1.485
mm/us). Then § is given by the condition of nontrivia
solutions of (3). It can be shown that there are three
values of {, giving rise to three rays in a given
direction:

G-yb 28 k-1.2 3 ®)

where

b, - - (Br2a) - Y(BRa) - YRa

b, = - (B2a) + V(BP2a)? - Y2a
2
b, - l__a_‘_'_’ﬂ M
4

a -ag, B - (a8 +a - i - (4 + a)

(@87 - (e, - 1)

-~
1]

The ray diagram for a plane wave transmitted into
a unidirectional composite plate is shown in Fig. Sa.
Here R° indicates the first ‘reflected wave from the top
surface of the plate, the rays labeled 1, 2, 3 are
associated with’ the three transmitted waves inside the
plate in a decreasing order of their speeds, the rays
labeled 11, 12, .. .. and 33 are associated with the
waves reflected from the bottom of the plate, and T,
T,, T, indicate the waves transmitted into the fluid
through the bottom of the plate. From Snell’s law, the
velocities V,, V, and the angles 4,, 8,in the diagram are
related through
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Fig. 5. Ray diagrams of the reflected waves in a
unidirectional composite laminate.




Two possible ray paths leading to the same point
on the receiver are sketched in Fig. 5b. If we denote
the difference in the arrival times between rays aong
paths DO and O BO by 1, then 1,, can be expressed as

ty =1, +1,-1° )
where
H -
f, - — , - .
V,cos0, Vv, cos 0,

(b H(and, «1an6,)sin6

LT

From (9)-(1 1), ¢, can be expressed as

1y - H + H_ . ”(m.(?‘. :_@fﬁi}fﬁ
V,cos0, V,cos 6, a, (11)
_ Heos®, . Hcos 6, CHC - Z)
v, v, s ’

It should be noted that equation (11) is valid for
homogenous waves only, i.e, when {,,{, are real. In
general, there are three possible bulk wave speeds in a
composite material, and the recorded time history
should contain a reflected pulse from the top surface
followed by nine reflected rays from the bottom of the
plate and their multiple reflections. However, for a
fixed orientation ¢ to the fibers, a certain homogeneous
wave will become inhomogeneous or evanescent if the
incident angle. 6 is larger than the critical incident angle
tic. Fig. 6 shows the general feature of this
phenomenon, where the wave is propagating along the
fiber (¢ =- O") with different incident angles in the
range 0" to 9“. It can be seen that for the pulse-echo (6
= 0" case only the longitudinal waves exist so that the
reflected pulses are “ 11", ‘111 1" etc. As the incident
angle @ increases, the mode converted reflected pulses
become more significant. When 6 = 8°, all of the
pulses can be identified clearly. When the incident
angle § > 6. (= 8.4°) the pulses with velocity V,
disappear, and the most prominent pulse is '22'.

Since the wave speed in a composite materia is a
function of the orientation ¢, it is possible to have
critical values of ¢ for a fixed value of (?. Thus some
of the homogeneous waves may become evanescent
when the propagation angle ¢ is larger or smaller than
a certain critical angle ¢.. This is illustrate in Fig. 7,
where the reflected pulses near the critical angle for 6
=20 are presented. It can be seen that the reflected
field has a rapid change near the critical angle and
some Of the pulses disappear when ¢ is smaller than
the critical angle.

The Experimental Procedure

With the theory described above, we now describe
the experiments and the associated formulas that are
needed to determine the five stiffness constants with
access from one side of the specimen.

® ) Pulse-echo experiment

In this case, §, = & = O, so that from (4)<7)

and the corresponding eigenvectors for {8 and
are (O, 0, 1), (0O, 1, O) and (1, O, O). Since only the
longitudinal wave can be transmitted into the fluid from
the composite, only the rays associated with {, exist.
Hence the first pulse must be 11, and its arrival time is
t,,. From (11) and (12),

Cyy - PIC - 4pHYL (13)

Thus the pulse-who experiment provides the
constant ¢... A simulated result is shown in Fig. 8,
where t;, =16.83 us. Then ¢ is found from (13) to

be 13.92 us,in agreement with the value used in the
theoretical calculation.

b) Oblique insonification with ¢ = 90° and incident
angle 6 > 0°.

In this case,
£, -0 & -sin 0/a,
4

(14)
b, - la, b,- lag b, =1fa,
and
-2
2. - g4 Va, GooE 1/a, 15

G- - &4 1,

1t should be noted that the eigenvector associated
with ¢, is (1, O, O), indicating that the particle motion
is paralel to the fibers, and this transverse wave can
not be transmitted into the fluid. Hence, there is no
pulse associated with the corresponding ray path, and
the arrived pulses should be in the sequence * 11’,
‘13", and “33". In this experiment, the direction ¢ is
kept fixed and the incident angle is increased from 0O°
until the pulses “11= and ' 13" can be identified clearly
and t,, and t,, can be measured. The constants ¢.. and
¢,y Can be determined from the formulas,
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A simulated result for 8 =20" is shown in Fig. 9,
where t;,, = 12.28 us and t,; = 21.91 us. Then ¢
and c,, can be calculated from (16) as 13.92 GPa and
6.92 GPa, respectively.
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Fig. 9. Reflected signal from a composite laminate for
6 = 20°and ¢ = 90°.

c) Obligue insonification with ¢ less than the critical
angle ¢..

After ¢.. and ¢, have been determined, the
constant ¢,, can be found as follows.  With fixed
incident angle 8, adjust ¢ such that the pulses “22" and
23" can beidentified clearly. Then from measured




1,2, €55 Can be determined from the formula,

2
_ Pay ) b, sin’0sin’e sin’0sin$ )
s sin zﬁcos’¢ 7 [(——“ 2H W ui J

(7)
A simulated result for & = 20° and ¢ = 30° is shown
in Fig. 10, from which ty, = 22.42 us and t;, = 14.94
ps. Hence ¢gs can be determined from (17) as 7.08
Gpa.
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Fig. 10. Reflected signal from a composite laminate for
6 =20° and ¢ = 30"

d) Oblique insonification with ¢ = 0°

The remaining two unknowns ¢,, and ¢,, can be
determined from this procedure. The time of fight ¢,
and t,,can be identified by changing 6 from 0° to an
angle less than the first critica angle 6.. Then{, and
{, can be calculated from (6) and ¢,, and ¢, can be
determined from the equations,
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The simulated results obtained for 0 = 8° is shown in

Fig. 11, with ty; =17.95 us, # = 25.43 us. Then ¢,

and ¢, are caculated from (18) to be 161.8 GPa and

6.46 GPa, respectively.
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Fig. 11. Reflected signal from a composite laminate for
§ = 8and ¢ = 0.

Since experiment d) is difficult to carry out due to
the small incident angle 8, an alternate method is
proposal to determine the remaining constant ¢,; and
¢, Our calculations have shown that the reflected
field changes significantly near the critical angle as can
be seen from Fig. 7. Furthermore, the material
constants have a strong influence on the reflected
signals near the critica angle. To see this, the
reflected signals from a 25 mm composite laminate
with the original material constants and with the
reduced material constants are compared in FigS. 12
and 13. Fig. 12 shows that the arrival times of the
puses*1 1", “ 12" and “ 13" aestrongly influenced by
the values of cl,. The same is true. for ¢,,8s shown in
Fig. 13.

Fig. 14 shows the calculated arrival times of the
pulses"11°, “ 12", and “13* with the origina matenal
constants and with c,, reduced by 20% . Clearly, the
arrival times of these pulses are strongly affected by ¢,
near critical angle. ~ We use this critical angle
phenomenon to determine the constants ¢, and ¢,
Recall that the equation for the bulk wave speedV
associated with the constants ¢;; and ¢,-can be written
as

l(a, -ay) + (a,- Vz)z/"zz}az - al

~ ag - VO + (ay - V(- a, + a,n))

+ aja, - agninUnin;

where n, =cos ¢, n, = sin ¢. The constants a,, a,,
a, can be derived from the known constants ¢, ¢sy,
¢s5,» AN the remaining unknowns a; and a;’ can be
related to cl, and ¢,; through eq. (4). In the criticd
eases ¢=¢. and V =q./sinf. Hence if we can
determine two critical angles from the experiment then
the unknowns a.anda,” can be calculated from a
system of linear equations. Inthis case, the two
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critical angles are ¢.= 57.67" for = 15°, and ¢, =
68.10° for 6 = 20°, so0 that ¢;, and €12 can be calculated
as 161.12 and 6.14 GPa., respectively.
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Fig. 12. Influence of the stiffness constant ¢,, on the
reflected signal.
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Fig.13. Influence of the stiffness constant ¢, on the
reflected signal.
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Fig.14. Influence of the dtiffness constant c,, on the
arnivaltime of the reflected waves.

Error_Analysis

An error analysis is carried out in each step of the
experiments to determine the accuracy of the proposed
technique. as follows:

a) Pulse-echo experiment
3¢y, = =(cyyf21,)81,,
If 6 = +0.02 us, then dcy, = + 0.0082 GPa

b) Oblique insonification with ¢ =90 and incident
angle § > O
2y, - €3

&3+

Where 6&: = COSB 50/00, 6{3 = (6’13 - 6’33 /2)/H
1£86 = 40.1°and & = 0.02 ps, then dcx = 4 0.012
GPa.

8cyy = Bcy, #

(£,88,+8,80y

c) Oblique insonification with ¢ less than the critical
angle ¢..

e (C3 + EDIBEJE,
T ({480, + E8E)) + (Bey, - deg )3+ ED V]

1f 0 = 4 0.1°and & = 0.02 pus, then bcgs = 2 0.11
GPa. From the shove analysis, it can be seen that the
constants determined in steps (a), (b) and (c) are very
accurate and small errors in the data have small effects
on the constants ¢, andc,.

dcgg = {-2(cy, -

d) Oblique insonification with ¢ = 0°

Since the equations for the determination of the
constants ¢, and ¢,» are very complicated, numerics|
estimates of the errors analysis were carried out and
are presented in Fig. 15. It can be seen that the errors
in both cases are smaller than 10% if &f,, and &¢,, are
less than 0.1 usec. The errors in ¢;, remain very small
for &r), and o7,; up to 0.5 usec. However, the error in
¢; becomes very large when 6t becomes larger.
Hence, it is necessary to control the accuracy of the
arrival time under O. lusto accurately evauate c,a.

e) Critical angle experiment:
Asin d) it is difficult to obtain analytical estimates

of the errors in an explicit form in this case. So we
computed the errors by changing measured ¢ and 8 by
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and 1,,.

Errorsin ¢,, and ¢,» due to small errorsin ?,,,

small amounts near the critical angles. The results are
given in table 1. we can see that the errors in ¢, and
¢,y induced by measurement errors are small. Hence,
this procedure can be an accurate method for practica
application.

Table 1. Errors in ¢,,andc). due to errors in o, and 6.

errors in calculated

¢, 6 Cn Ci:
-0.1,-0.1 163.11 5. 23
0.0, 0.0 161.12 6.14
0.1, 0.1 159.17 6.95

V. Concluding Remarks

The proposed method appears to be efficient and
accurate in characterizing all 5 stiffness constants of a
unidirectional fiber-reinforced composite laminate. The
error anaysis shows that the determined constants are
insensitive to small errors in the data. Extension of
work will provide a nondestructive procedure that can
determine the degree of materials degradation in
unidirectional as Well as multilayered composite
systems.
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