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Abstract

A new approach to structural failure detection and localization is introduced based on
acoustic reflections. It is shown that the cross-sectional areas of structural elements can be
computed directly in terms of the reflection coeflicients of an optimal finite impulse response
Wiener filter realized in lattice form. This leads to an elegant method to detect and localize
structural failures using recursive on-line estimation rncthods. There are many advantages
of this approach relative to standard failure detection schemes. Specifically, the acoustic
reflection approach: 1) dots not require training; 2) does not require prior knowledge of a
structural model; 3) can detect and localize multiple failures; 4) can indicate the extent of
damage at each location. A simulation example is given which successfully demonstrates
each of these qualities.

For the present paper, thc acoustic reflection method is established by working out the
theory completely for a bar with nonuniform cross-sectional areain axial vibration. Some
ideas for extending the theory to more elaborate and realistic structural configurations arc
briefly outlined.

1 Introduction

A new approach to structural failure detection and localization is introduced based on acoustic
reflections. The basic ideais to “ping” the structure and construct a map of the reflected energy.
This acts as a signature which can be monitored to detect future changes in the structure. More
importantly, it is shown that the location of the failure and extent of damage can be estimated
by using the wave propagation and reflection properties of the structure which are inevitably
changed in the location of the failure.

Itisa main result of the paper that key reflectivity properties for detection and localization
of changes in a structural element obeying second-order wave propagation dynamics (i .c., a
bar in axia vibration or a shaft in torsional vibration) are characterized systematically and
elegantly in terms of the reflection coefficients of an optimal finite impulse response (FIR)
Wiener filter implemented in lattice form. This is important since many practical on-line
methods are available for estimating the optimal Wiener FIR filter. For example, recursive
implementations are known using the 1.MS algorithm [1 7], or faster methods using adaptive
lattice forms [23] and/or recursive least squares adaptation [19] [22]. Such implementations also
do not restrict the input excitation, i.e., instead of an impulsive “pinging” of the structure, the
required information can be obtained in a more gentle fashion try using low-level broad-band
input excitation correlated over long periods of time.
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The reflectivity method provides the capability to detect and localize a failure without the
tedious task of training a optimal or suboptimal detector/classifier. The importance of this
property can be appreciated by noting that it is usually impossible to train on actual faults
since they must be implemented physically to elicit the proper signatures, Alternatively, fault
signatures can be obtained by computer simulation or by analytical methods. However, this
latter approach requires an accurate model of the system parametrized in physically meaningful
coordinates. It is questionable whether such a model exists in most applications of interest,
or if the fidelity would be sufliciently high to permit accurate detection/localization. The
reflectivity method dispenses with the need to train using fault signatures, or the need for
an accurate physical model. The reflectivity approach can also detect and localize multiple
simultaneous faults, and can provide relative information about the extent of damage at each
location.

Pulse reflectivity methods have been used successfully in detecting breaks in electrical trans-
mission lines [16], in detecting faults in optical fibers [15], in determining physical properties
of materials using ultrasound [14], and in determining cross-sectional areas of the vocal tract
using acoustic tube models []]. However, to the authors' knowledge such approaches have not
yet been applied to FDI in structures. The present paper is focused to help fill this gap. In this
paper, the theory of acoustic reflections is worked out completely for a bar with nonuniform
cross-sectional area, Extension to fourth-order systems (such as a beam in bending vibration)
and to complex interconnected structures is an area for future research, but some reasonable
approaches will be briefly outlined.

The paper is organized as follows. In Section 2, the optimal FIR Wiener filter is derived,
and its lattice realization in terms of reflection coeflicients is discussed. In Section 3, the wave
propagation properties of a bar are derived in terms of reflection properties and cross sectional
areas, and a similar lattice type of recursion is derived. In Section 4, the lattice recursions
for both the optimal Wiener filter and structural element are equated. This leads to the main
result of the paper which shows that the cross-sectional areas of the stuctural element can be
computed directly in terms of reflection coefficients. Hence, changes in the structure can be
detected and localized completely in terms of the optimal Wiener filter, which in turn can be
estimated recursively on-line. A simulation example is given in Section 5 to demonstrate the
advantages and usage of the approach, further research directions are outlined in Section 6,
and conclusions are postponed until Section 7. Additional supporting material and analysis
can be found in the appendices.

2 Lattice Realization of an Optimal FIR Filter

Consider the following inverse filtering problem. Let a discrete, FIR fnverse transfer function
of a system be defined as

@ = T8 s La(k)z“" @
U(2)

It is clear that the inverse transfer function can be completely specified with the knowledge of
the parameters o(1),a(2),....a(M). If only input/output data of the system is available, the
unknown parameters may be identified using a least squares estimation procedure to obtain
an optima] transfer function for the given data. This represents the optimal FIR Wiener filter
[1 7]. This optimal transfer function maybe implemented in a variety of ways. One widely used
realization in adaptive filtering is the lattice filter realization. The lattice filter is implemented
in a series of M stages for an M* order FIR filter. The first stage accepts the input to the
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Figure 1. Inverse Filtering Problem

filter and the M*» stage produces the output of the filter. Pictorialy, it is shown as Figure 2.
Note that the first stage receives two inputs, both of which are the filter input. Two quantities,
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Figure 2: Stages of a lattice Filter

f(n)and g(n) are recursively updated after each stage. After stage M, f(n) becomes the filter

Output, (n).
The lattice filter is described by the following set of well known order-recursive equations

[2]

Jo(n)"go(n)= un) @)
fm(") = fm-rl(n) + tngma(n - J) m =1,2,..., M (©)]
gn(n) = pofouy (M) gmaa(n- 1) m =1,2,. ... M @)

p(n) -~ fu(n) 5

The p,,,’s in the update are called reflection cocflicients of the filter. Theve ane several ways to
3



. calculate the reflection coeflicients given the @ parameters. Some of the ways are explained in
[2].
Let @3, (2) be the inverse transfer function of the system corresponding to (1).1tcan be
shown (Appendiz A) that Q},(z) may be recursively calculated using the matrix recursion,

Q:‘(Z) o 1 = Hm Qj;z--](z)
Q;.(z>]" [; ] Q;,-.l(z)] ©

Where
Qi(z)=1 Qp(2)=-2"

3 A Recursive Solution to the Bar Equation

A solution will now be examined for the axia wave equation in a bar. We assume that the
bar is lossless and admits perfect reflection at one end. It will be shown that a bar can be
thought of as being composed of several stages just. as in a lattice filter. As aresult, a recursive
solution for the inverse transfer function of the bar can be. derived which is very much like the
one derived for the lattice filter. In addition, the reflection coefficients of the recursive solution
now take on a physical significance that is very useful for structural failure detection and
localization.

Yetu(z,t) be the axia displacement of a bar element, where x is the distance variable in
the axial direction and t is the time variable. ¥or an axial bar element in which plane waves
before deformation remain plane, u(x,t) satisfies the wave equation given by

< '@zu(ir-, t) = pA szait%w’jﬁ) @)

x

In this equation, ¥ is the elastic modulus, A is the cross sectional area, and p is the mass
density. This equation has the traveling wave solution

uz, 1) = (1= ) - w (14 ) ®

where c is the wave speed given by ¢ = \/% . Equation (8) can be interpreted as the summation
of two waveforms traveling in opposite directions. in particular, the waveform traveling to the
right is denoted as u* (1 — £) and the one traveling to the left, is denoted by u'(1+ £).

The entire! bar is now represented as a series of axially connected bars called sections
of cqu al length, 61. Section M represents the far left hand section and section 1 is the far
right hand section. Between each section is a boundary. Y¥rom structural theory, both the
displacement and the axial force must be continuous at each boundary. The axia force is
related tothe displacement wave by p(z,1) = I')Aﬁ‘é:—ﬂ. Letwt, (1) and u;,,, (t) be the
forward and backward displacement waves measured directly atboundary m + land timei. By
using the boundary conditions and the properties of a losslcss bar, it is shown in Appendiz B
that «},,(¢) and u;,,(2) can be related to the displacement waves measured at boundary m,
u} (1) and u;, (1), as follows

_ 1
u;x-}l (t -*:H)’ = ]’“'i“")m‘[‘ll,—“(t) ’ 1],,,11:](1)] (9)

and
1

l ‘*’ 1’ m

u;ln+ l(t - 6t) =7 [U:’(t) = U Uy, (i)] (lo)
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where

n z_xEm_HAm“ —Fn A, S Smt1 -- Sp (11)
" EmprAmir ¥ EnAn T Sy t+ Sa

In this equation, & is the time required for a wave to travel through one section of the bar,

given by ét=24; E, . is the elastic modulus of section m 4 1; A,.4; is the cross sectional area

of section m+1; and S, is definedas S,, 2 E, . A,,.
Let 2 be defined as
2 = CJw(?&t) Hwi’ﬁ

Then, by taklng the z transform of (9) and (10) where U,,,,(z) represents the z transform of
U1 (1) and Una1 (2) represents the z transform of u,,, (1)

U'-’t'“ o _ﬁzi____ 1 ~Tim U;rt (12)
Um-_'H 1 + /™ “‘Umz‘l z_l U;.

As a result of perfect reflection at the right end of the bar, 7, takes a value of 1. Therefore,
for section 1, (12) may be written as

Ui | 2t 1 U0 B ] -

Iurthermore, by repeatedly applying (1 2), the following relation is obtained for any section

m+4 1,
yi +1 1 ym+1 1 -1 ] - 1
m m ™ . .
[ r';-'] ] (Z ) I_I 1 + 1/ "zwlﬂrn z-l T "'Zhl"l 2“] —'z‘l {UO l]() }
(14)
Now define
])" (2) A 1 ~Nm 1 - 1
[ Dy, (2) ] B [ L R PORNE St I IS (15)
and
m ]
](m é AP ]6
k=0 1 4 U] ( )
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Fquation (14) is now written as
l].'; m 'I);‘ﬂ -
[ U:';:j } = (z%) 1K, [ e } {U¢ ~ U} 17)

- - . .' -
Normalizing equation (17) by K, and defining N}y, £ “24* and N, & %22 equation (17)
can be written as

[ Nv;-#-l ] = (23) [ ﬁ'} J {U$ - U5} (18)

m+1

Let H3;(2) be theinverse transfer function of the bar,

4 s} N!-&‘I-H(z)
1) = U56) - Us () (%)
It is defined as the ratio of the displacement wave at the far left of the bar over the displa.cement
wave at the far right of the bar. H owever, to represent the boundary conditions at the far left of
the bar in the same way as the boundary conditions at each junction in the bar, an imaginary
section M + 1 canbe visualized that has a matching impedance to section M. As a. result of
the matched impedance, there is no negative traveling wave in section M+- 1. Then, the input
tnay be applied in section M + 1 and the boundary condition at junction M can be stated in
terms of a reflection coeflicient. In this scheme, an extra 23 delay is also artificialy created.
It is assumed, though, that the input is added atthe far left of the bar, so the added delay
may be removed.
By using the definition of H3; (2), the inverse transfer function bet wcen any section m and
the front end can be described as

N2y (2)
H}(2) & S imil 20
'n(z) Ug» . Uo- (Z) ( )
Similarly, we may define
No(2)
~(2) 2 m+1 21
1= 50 ) 2
by using the backward moving displacement wave. Substituting (20) and (2 | ) into (18) yields,
H3(2) | _ ( aymar | PA(2)
[ H(2) ] = (2*) D; (2) (22)
The fin a form inverse transfer function is then,
+ NI-“I-H 3\M41
i (2) = "~ = (23)M11 D} (2) (23)
Uo b UO
where Dj,(2) is solved using (1 5). Then, by removing the extra 2% delay,
Ui 1\M +
Ve vF = (22 )" Kp D3y (2) (24)

The 2 term represents a delay and the K, is a gain factor.
Note that 12,,(z) in equation (15), may be put in recursive form by taking,

Draa2) | I =t | [ D)
[ I);,:(z) } - [ "77173-}13»1 z~: ] [ ]):"(Z) (25)

where
Di(2)=.1 Dy(z)=- 2!
This recursion form is the same as that derived for a FIR filter with a lattice realization (6).
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4 ldentifying Damage Extent and Location

A recursive solution for an inverse transfer function was shown in equation (6) through the
use of alattice filter. By way of a completely separate physical argument., a recursive solution
for the inverse transfer function for a bar element was shown in equation (25). By comparing
these equations, it is clear that the two solutions are equivalent. This provides a physical
justification for modeling the inverse transfer function of a barasaFIR filter. Furthermore,
the reflection coeflicients generated take on a physical meaning as defined in equation (11).
As aresult of the above equivalence, a procedure may now be developed to estimate the
cross sectional areas of a bar. First, by using input/output data from a bar, the optimal, FIR
inverse transfer function is identified. ‘I'he bar is now represented as a series of M sections and
the reflection coeflicient, 5,,, for each section is calculated as in a lattice filter. It should be
noted that the total number of bar sections, M, is constrained by the sampling period of the
output data. collection. Recall the equivalence of the recursive solutions of the FIR. filter and
the bar element was shown when
2 = Cij - cin{J (26)

where T is the sampling period. Since the sampling period is defined when taking data,

~
NS

8l = %f = (27)

SRR
> |

and the total number of sections is constrained to M = 6% where L is the total length of the

bar. The reflection coeflicients are now used to recursively calculate the cross sectional areas

of the bar. From equation (11);
L - nm

S, ]—I~’,r" Smi1 (28)
Since the E’s are assumed equal and constant,
— 1- Tim
AN, = ~ A (29)

Note that the actual cross sectional area at boundary xy4, the far left side of the bar, is needed
to start the recursion. I, however, this area is not known, it may be taken as 1. In this
case, allareas estimated will be normalized and damage will appear as a change in estimated
normalized areas. As a result, failure can still be identified and localized, but the exact amount
cannot be determined. Since 7, is taken to be 1, the area at boundary Zo, the far right side of
the bar, cannot be estimated. Therefore, this procedure estimates cross sectional areas at all
boundary points except for the endpoints.

It is clear from equation (29) that the reflection coefficient at the far left side of the bar,
M, is never used in the estimation of the cross sectional areas. Also, it is noted that all
reflection coeflicients, 7,,,, are dependent only on structural characteristics on either side of a
single boundary (11 ). As a result, the estimation procedure is independent of the boundary
condition on the far left side of the bar. This eliminates the need for knowledge of material
properties of adjoining structural sections. Note, however, that although it is never used, 7as
is estimated. This immediately gives us information about the structural properties of the
adjoining section at the far left of the bar.

Ideally, the cross sectional areas of the bar are continuously calculated. When some damage
dots occur, cross sectional areas change and the extent and location of the damage is immedi-
ately known. Note that if damage occurs between two boundary locations, both the estimated
cross sectional areas at the boundary before and after the damage location will change. This
wil isolate the damage location between two boundary points.
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5 Simulation Example

The acoustic reflection method is now illustrated through the use of a simulation example.
Consider a uniform 3 meter bar made of structural steel with cross sectional area of .00129 m?
(2 in?). The setup is shown in Figure 4. On the far |eft side of the bar is a stack of piezoelectric

piezoelectric

displacement actuator Structyral Steel optical position sensor
section 6 section 1 ]
I T [ | [
Sm | 5m I 5m VY 5m | 5m | 5m
| ] | | |
I" 3 m ¢ VI
input output

Figure 4. Simulated Experimental Setup for Acoustic Reflection Method

actuators that are capable of commanding displacement. On the far right of the bar is a laser
displacement sensor. Structural steel has an elastic modulus, ¥, of 2el 1 N/m? and a density,
p, of 7870 kg/m3. We take the sampling rate of the sensor to be 5041.127 Hz. This sampling
rate determines the sectiona length (27) as .5 meters. Since the total length of the bar is 3
meters, We have a total of 6 sections.

Any input can be applied by the displacement actuator in this method. For illustration
purposes, assume a .001 meter impulse is applied. The impulse response of the uniform bar
(undamaged) is shown in Figure 5. Note that the horizontal axis is marked in normalized time,
Each time unit represents the time required for a wave to travel through two sections of the
bar. In this case, this time is .198 ms. As can be seen, the first output appears at time unit 3.
This pure delay is the time required for the impulse to travel through all 6 sections of the bar.

The optimal FIR. filter is identified using a least squares procedure described in Appendix
B.From this optimal FIR. filter, reflection coefficients and cross sectional areas are estimated.
We assume that wc know the cross sectional area of the far left of the bar exactly as .00129 m?.
If this area. were not known, it could bc takenas1 and normalized areas could be calculated.
The estimated bar is also shown in Figure 5. The crosshatched bars represent the simulated
areas of each section. The white bars represent the estimated areas using only input/output
data. Note that no damage appears and all cross sectional areas are estimated to be equal.
The bar is now simulated to be damaged at section 3 such that the cross sectional area in that
section has been reduced by 50 %. The new impulse response and the estimated damage is
shown in Figure 6. Note that the estimated damage of section 3 is exactly 1/2 the origina
area of the section. To show that the method works for small values of damage as well as large
values, the bar is simulated such that section 3 is 95 % of its origina area. Again, using only
input/output data, the cross sectional areas are estimated. The results are shown in Figure 7.

Finally, the method is shown on multiple failures. The bar is simulated such that section
2is 60 % of its original area, section 3 is 70% of its original area, and section 5 is 50 % of
its original area. The impulse response and the estimated damage is shown in Figure 8. The
method works well for several failures at once.

8




x10-3  Impulse Response 1.5 103 Bar Area

3 T —Y
fé\ 2(( T .
et T 1
o 1_
. U g os
<]
a -1t
-2 0 J— —la-- -
-0 50 6 5 4 3 2 1

Normalized Time () Bar Sections

Figure 5. Estimation of Cross-sectional Area of Uniform Bar (1.29¢-3m?) with Acoustic
Reflection Method
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Figure 6: Detection, Localization, and Estimation of Change in Cross-sectional Areas- 50 %
Change in Section 3

We have simulated the acoustic reflection method on an ideal bar to demonstrate the
approach. However, in actual experimentation, there arc several issues that must be considered.
First, noise corrupts all measurements. As aresult, estimated areas will be incorrect to some
degree and noll-existent damage may appear. This is particularly troublesome when trying to
identify small amounts of damage. Therefore, some sort of threshold will be needed. Secondly,
the I'IR model order may cause potential difficulty. The model order is fixed in this method
by the sampling rate. However, if this model order is not high enough to accurately model
the bar, estimated areas may beincorrect. This problem may be overt.omc by increasing the
sampling rate. Finally, the accuracy of the system identification techniques must be considered.
System identification techniques use data that is inevitably corrupted by measurement noise
and round-off error. As a result, it is important to use enough data such that these effects can
be miniinized when filter parameters arc identified.

@ Simulated Damage

E] Estimated Damage
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Iigure 8: Detection, Localization, and Estimation of Change in Cross-sectional Areas- 40 %
Change in Section 2, 30 % Change in Section 3, 50 % Change in Section 5

6 Further Work

As derived herein, the acoustic reflection method can be applied to fault detection in second
order systems such as a string in transverse vibration, a bar in axial vibration, or a shaft in
torsional vibration. An important future extension would be the application to fourth order
systems such as a beam in bending vibration. It is known that such systems have traveling wave
representations [18][1 I]. However, in fourth order systems the medium is dispersive and the
wave changes shape as it travels. This would generally require a more complicated analysis,
e.g., the use of pole-zero lattices (e.g., [20] [21]) or heavily overparametrized all-pole lattice
representations [23]. Alternatively, the dispersive qualities of the structure could be minimized
by restricting the excitation to wave packets over restricted narrowbands of frequency, or by
using colocated actuator/sensor instrumentation with time-windowing to retain only the early
portion of the pulse response (i.e., the near-field return).

The extension to a complete structure with interconnected elements is also desired. Much of
the groundwork for this extension has aready been laid due to recent efforts directed at control-
ling structures based on traveling wave representations [10][11][1 2][13]. Here, each structural
element is considered to be a waveguide, and the energy reflection properties at the junctions
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(boundaries) are represented by scattering matrices. The scattering matrix concept generalizes
the notion of a reflection coeflicient used to characterize a one-dimensional boundary. Repre-
senting each structural member as a lattice filter, it is conceivable that an “3-1 lattice model”
of the structure can be built by interconnecting lattice filters with the same geometry as the
true structure, using the appropriate scattering matrix interconnections at the boundaries. A
long term goal would be to estimate cross-sectional areas at each point of the 3-dimensional
lattice model using actuators and sensors distributed about the structure.

The analysis in this paper utilized a displacement wave representation of the dynamics.
An important alternative would be to consider “force-velocity” representations. This gives
a perfect analogy to “voltage-current” representations of transmission lines, and “pressure-
volume velocity” representations of acoustic waveguides. Powerful network analysis methods
could then be applied, and “impedance” concepts could be developed. It appears that such an
approach would lend more insight into the treatment of boundary conditions, and would be
most useful for extending the theory to interconnected structures.

While extending the method as outlined above requires additional research effort, asimple
brute! force. method which would work for any structure or configuration would be to treat
the detection problem as a pattern recognition problem, and usc the estimated cross-sectional
areas (derived from the reflection coefficients) as “feature vectors’. To the authors best
knowledge, such physically motivated features have not yet been used for detection/localization
in structures. It seems that the cross-sectional area estimates would make very good feature
vectors since they enjoy a one-to-one correspondence to fault locations in second-order systems
under ideal conditions, and hence would at least correlate strongly with the location of faults
for more complex interconnected fourth order systems.

L 4

7 Conclusions

A method for structural failure detection and localization has been introduced based on acous-
tic reflections. The theory has been worked out completely for a bar with nonuniform cross-
sectional area. An important theoretical result is that the cross-sectional areas of the bar can
be calculated directly in terms of the reflection coeflicients of the optimal FIR, Wiener filter
realized in lattice form. This reduces the problem of detecting and localizing failures to one
of estimating the optimal FIR Wiener filter for the inverse plant. Fort unatel y, many conve-
nient recursive algorithms exist for estimating the optimal FIR Weiner filter and any of such
methods can be used with the present approach.

A simulation study was conducted to validate the overall acoustic reflection approach. A
uniform bar was chosen as the structural clement for the study. The cross-sectional areas of
the bar were perturbed to various extents in multiple locations to simulate structural failures
and damage of various extent. As expected from the theory, the acoustic reflection algorithm
correctly detected and located multiple failures inthe bar, and estimated the extent of damage at
cach location. Furthermore, as cxpected from the theory, it accomplished this without training,
and without prior knowledge of a structural model.

The results of this study arc very encouraging, and indicate various directions for future
efforts. ‘Jhe most obvious are extension to fourth-order systems, and extensions to intercon-
nected systems. While such extensions arc not straightforward, some guidelines and possible
approaches were discussed in the paper.
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APPENDIX A

Least Squares Estimation and the Lattice Realization

J.et an inverse transfer function be defined as

M
Q@ = 1+ a(k)z™* (30)
k=1
It is clear that the inverse transfer function is an FIR filter with parameters a(1 ),a(2),. . ., a(M).

‘I"'here arc M unknown «a's needed to characterize the transfer function. The unknown param-
eters are identified using a least sguares estimation procedure. Denote the error between the
measured p(n) and that estimated from our model as e(n). Then

M

cn) = p(n) — Za(k)u(u -k);,  «a(0)=1 (31)
=0
The sum of the squares of the errors from time, O, to the current time, n, is written
n n M
E(m)= ) (1) = Y {p(t) ~ )_a(k)u(t-k)}’ (32
1=0 t=0 k=0

wheretisa discrete variable. F(n) is now minimized with respect to the filter parameters.
This results in a set of M linear equations of the form

M

Za(k)rw(k D)= rpu(l) - ru(l); 1=1,2,.., M (33)

k=1

where the 7y, is the autocorrelation of u(t) given by

n

rau(m)= 3 u(tu(t —m) (34

t=0

and rp,(m) is the cross correlation of p(t) and u(t) given by

Tpu(m) = E p(Du(t - m) (35)
t=0
Note that u(t)= O for ¢ <0. AlSO ryu(m)=ry(—m). As a result, (33) may be written as

[ ruu(0) Tuu(1) rou(2) . . . T(M - 1) a(1) [ Tou (1) — Tuu(1)
Tuu(]) ruu(0) Tue(1) . . . Tw(M --2) a(2) 7pu(2) — Tuu(2)

ruu(M 1) ruu(]t.l " 2) ruu(M ) P W (1) a(}u) {Tpu(M) - Tuu(M)
(36)

Equation (36) can be rewritten as

Ro =+ (37)
where the definitions of the matrix K, and the vectors & and # are obvious from equation (36).
Note that R isin Toeplitz form. The equation of the form (37) can besolvedin a variety of
ways to obtain the & parameters of the inverse traunsfer function. The most straightforward
way conceptualy is to invert the B matrix to get

a= R (38)
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Recall, that the lattice filter is described by the following set of well known order-recursive

equations described earlier, but repeated here

fo(n) = goln) = u(n)
Im(n) = foaa(W)+ pugme(n — Dm=1,2,..., M
Im(n) = Hmfuoi(0) 4 gmaa(n-1)m= 12 ... M
p(n) = Jfu(n)
The lattice filter is equivalent to the FIR filter. As aresult,
M

p(n) = fu(n) = > a(k)u(n -- k) a(0) = 1

k=0

Indeed after any stage m of the. lattice, the f,,(n) may be represented as
Jm(@) =Y an(k)u(n - k)  «(0)=1
k=0
where a, (k)’s are unique for each 0 < m < M. Define

An(z) = 1 + Zam(k)z";‘nZ]
k=1
Then the z transform of (44) is
F,.(2) = A (2)U(2)

or

7 (2)
An(2) = —U(;)—

(39)
(40)

(41)
(42)

(43)

(44)

(45)

(46)

(47)

Note A,,(2) represents the transfer function from the input to the output, f,, (n),after stage
m. The other output g(n) may also be expressed as a sum. By working through equations

(39) - (42), it seen that
gm(n)= Zam(m - k)u(n —k)
k=0

(48)

where it is noted that the « ‘s needed for g(n) in (48) are the same as those needed for f(n)

in (44), butinreverse order. Define

m
B, (2)= z am(m — k)27t
k=0

Note

Bin,(2) = 27" A,.(27)
Then the z transform of (48) is

G2 = B,.(2)U(2)

and Gol2)
12
1". ) =T e
Bu2) = 2505
Now take thez transform of equations (39)- (42)

Fe(z) =Go(2) = U(z)
I’m(z) = ]'1111-)(2)"* Ilmzvl(;m-1(2) m = 1,2,..., M
Gu(2) = ttmdn-1(2) 4 27'Gp1(2)m = 1,2,.. ., M

P(z) = Fu(2)
15

(49)

(50)
(51)
(52)
(53)
(54)

(55)
(56)



By dividing each equation by U(2),

Ao(z) = Bo()=1 (57)
An(2) = AN 1D 4pmz ' By () m=1,2,..., M (58)
Bn(2) = ppm Apor(2) + 27'B,3(2) m = 1,2,..., M (59)

where Ay (2) becomes the FIR. transfer function. ‘hese equations an now be put into order
recursive matrix form as

An) | | 1 p

Bo(2) | | pm 1

in order 1,0 directly compare the recursive matrix equation 60) tc the bar equations, (60) is
now put into a slightly different form. Define

(60)

A,,,_,)(Z)
271 Bn_1(2)

Qn(z) = -2-11)7.(2) (61)
and
m(2) = A,.(2) (62)
By using these definitions in (58) and (59) and writing the new equations in matrix form,
an(z) — 1 —Hm Q:.- (2)
[ Qn(2) ] = [ T ] [ Qrs(2) } (63)
where from (57)
Qi()=1 Q5(z)=-2""

A very elegant and efficient way of obtaining the reflection coeflicients, y,,,, directly from
(37) is to solve the Levinson-Durbin algorithm. In this algorithm, the a’s are calculated
recursively and the reflection coefficients are calculated as an intermediate step in the recursion.
This method may be very useful in adaptively updating the reflection coeflicients on-line.
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APPENDIX B

Boundary Conditions and the Bar Equation

Letu(z,t) be the axial displacement of a bar element, where zis the distance variable in the
axial direction andt is the time variable. For an axia bar element in which plane waves before
deformation remain planc, u(z,1) satisfies the wave equation given by

6211(:5 t) 2u(z, 1)
= pA
EIE

In this equation, E is the elastic. modulus, A isthe cross sectional area, and pisthe mass
density. In more familiar wave equation form, (64) can be rewritten as

Puet) |1 Fule,t)

LA

(64)

Ox? 2 o (65)
where ¢ is the wave speed, given by ¢ = \/%f.'l‘his equation has the solution given earlier
ulw,t) = w1 - 2) - v (4 5) (66)
The axial force in the bar is related to the axial displacement by
Pz, 1) = EA a“(‘; 3 (67)
Given the solution for the axial displacement, the axial force may be written as
p(z,1) = ——wa—{‘ ut(t ~ -—) sz —u~ (1 4 -—) (68)

From structural theory, both the displacement and the axial force must be continuous at each
boundary. Consider the boundary at x,, between sections m and m+ 1, The continuous
displacement condition is written as

Uyyq l(zma i) =Um (mms t) (69)

or
Ty - T T - m
u;x(t - .__c,._) - um(t + T) = U:‘+](i - _(‘-) - um+] (t + 'a_-ﬁ) (70)

Since the bar is assumed lossless, it is noted that the left traveling wave has the same amplitude
at junction z,, and time ? as the same left traveling wave at junction z,,4; a a time ét later.
The same is true for tho right traveling wave at a time 6t earlier. Since each bar section is of

equal length, 61 = \7— Therefore,

m Il‘m -
"'*l(i + - ) = u"l'ﬂ((t 1 6t) 1 - )= um-}l(’rm-ﬂ»t + 6t)

T x 141

whaa(t = 22) = wh (- 81) - 22
¥rom these equations, it is seen that as long as the proper time is observed, u,,,; can aways
be measured at boundary Zm+1- Therefore, the distance subscript z can be dropped and the
displacement continuity condition can be written in short form as

= u:a“(zmﬂat ~ 6t)

u;"n(i) - ‘U;'(t) = u:l-}l (t - 6t) - u:n'l 1 (t + 6t) (71)
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‘Similar to the continuous displacement condition, the continuous axial force condition is written
as

pm-{l(mm,t) B pm(znn t) (72)
This condition can be rewritten using ( 68) as

.1’_’1!}11;1_"1“ ur g (14 2 _,,M * (- “;" ,.If’;:lﬂ = (14 1"_* 4 Zm I'm im +(t_Eﬂ)
(73)
By again using the lossless property of the bar,
Egs Ami 1ty (04 60 4 Engr Apn g 1 (0 = 82) = EnAnup, (1) 4 B, A} (1) (74)
In order to simplify the notation, let
S = EgAp,
then (74) may be written as
Smp1ty (B + 80 4 Syt (1 81) = Smup, (1) + Snwl (1) (75)
With the use of (75) and (71)

S om 1 Sm
- s — 76
St : (79

Uy (1 + 1) ’“( ur (1)~

is obtained. Similarly, with the use of (75) and (71)
S S

up (1 61) = —u MO R 2 u,, (1)(1 - ) (77)
m+41 m+l
Now define Enn+!Am+1 CBA, Sm_-f_ 5, -
IJm-}lAm-H + F Am S",.H + S
Then (76) may be written as
- 1 - ,
um-H(t -i 6t) = 1 _* ”m unl(t) - 7]mu-‘m(t)] (79)
and (77) may be written as
: 1
wha s (0= 61) = 35T (0) - i (1) (80)

18




