
1 4.

A Prototype Ground-Remote Telerobot Control System

Abstract

Paul G. Backes, John Beahan, Mark K. Long, Robert D. Steele,

Bruce Bon, and Wayne Zimmerman

Mail Stop 198-219

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, California 91109

(818) 354-3850

A local-remote telerobot control system is described which is being developed for time-delayed ground-

remote control of space telerobotic systems. [The system includes a local site operator iderjace
for interactive command building and sequencing for supervised auto~oiny ;Itd a remote site: the

Modular Telerobot Task Execution System (MOTES), to provide the remote site task execution
capability. The local site system also provides skreo graphics overl?y on video with interactive

update of the remote environment model. The operator selects objects in the environment to interact

with and skill types io specify the tasks to be perjormed, such as grasping a module or opening a
door. The information needed by a skill to operate on a specijlc object is stored in a knowledge base

or input by the operator. The remote site system supports supervised autonomy, shared control,

and teleoperation for a redundant. manipulator. The system is capable of nominal task execution..-.
as well as monitoring and reflex motion.

spacecraft is used to interpret
control modules which execute

1 Introduction

commands
based upon

A command interpreter similar to one used’ on robotic
received from the local site.
command parametrization.

Execution utilizes multiple

Ground control of Space Station Freedom manipulators can provide an important augmentation to
the planned baseline on-board teleoperation and autonomous control capability. Selected mainte-

nance, assembly, and inspection tasks can be performed using ground-remote control telerobotics to

relieve the astronauts of some maintenance duties so that they can focus on highly skilled activities.
Also, through utilization of ground control, tasks can be performed using telerobotics when there

are no astronauts on board the Space Station.

For Space Station telerobotics applications, the remote robot system could be controlled by an
operator on the Space Station or from Earth [1]. Round-trip time delay between an Earth based

control station and a Space Station based robot control system is expected to be on the order of

8 seconds[2]. Supervised autonomy could be provided for ground control to compensate for the

round-trip communication time delay. For Space Station based control, teleoperation and shared

control could be provided in addition to supervised

1

windoys, or they may also be hosted on the SGI, The

autonomy since the

local site software is

round trip time delay

written in C, utilizing

1. 4.
.

,

is small. Additionally, the flight systems will be both limited in computation power and fixed in

capability for extended periods of time between system upgrades. Space based control systems must

therefore support multiple modes of control while operating in a limited computational environment.

This paper describes a local-remote telerobot control system, including a ground operator
control station and a remote site task execution system, which has been developed for Space

Station Freedom applications. The local site operator interface provides supervised autonomy

capability to overcome the effects of time delay on task execution. The local site system has been

installed at Johnson Space Center and is used for local-remote telerobotics validation experiments

and demonstrations for the SSF program with JSC in Houston acting as the local ground site

and the JPL Supervisory Telerobotics (S’PELER) laboratory in Pasadena acting as the remote

site. A space based local site operator interface is not described. The remote site system supports

teleoperation, shared control, and supervised autonomy.

h supervised autonomy, commands are generated through human interaction, but sent for

autonomous execution at the remote site. These commands are individually autonomous because

they are executed independently of operator cent rol, utilizing remote site feedback loops to perform
control and monitor sensors for success and failure stopping conditions. A command can be sent

immediately or iteratively saved, simulated, and modified before sending it for execution on the
real robot. Early works in supervisory cent rol include [3] and [4]. A more complete description
of supervisory control can be found in [5]. Alternative approaches to compensating for time delay

include teleoperation with predictive displays [6] and real-time generation of low level commands
in a graphical predictive display environment [7].

The paper is organized as follows. The local site system is described in Section 2. The
remote site system is described in Section 3. Results using the system are shown in Section 4 and

conclusions are given in Section 5.

I

2 Local Site

The operator interface of the local site operator control station has two primary parts: perception

and manipulation. Perception provides an interactive means for modeling the remote site scene.
Manipulation provides interactive task description, simulation, editing, and execution. Central to

the operator interface is the knowledge base which holds information on the state of the local and

remote site systems and manipulation and perception data. The methodology of the local-remote

system is to build and simulate manipulation and sensing commands on the ground using a model of

the robot and its environm”ent, stored in the knowledge base, which has been updated and validated
with feedback sensory data. Simulations detect errors such as kinematic and geometric constraint

violations. Successfully simulated commands may be sent to the remote site for execution. The

interface between the local and remote sites is data driven interpretive commands for nominal task
execution and for reflex actions to monitor events.

The control station is hosted on a Silicon Graphics IRIS 310 VGX Power Series workstation,

equipped with a 6 axis “spaceball” input device, and with LCD shuttered glasses for 3-D stereo
viewing. An additional X terminal screen can be used if desired, to host the Graphical User Interface

windows, or they may also be hosted on the SGI. The local site software is written in C, utilizing

2

0’ .r .
.

X Windows, Motif, the IRIS Inventor graphics product, and a small library of X resource manager

extensions called the Widget Creation Library, developed at JPL.

2.1 Interactive Perception

The interactive perception module is designed to use a combination of operator input and machine

vision to refine and calibrate the model of the task environment that resides in the knowledge

base, This capability is referred to as Operator Coached Machine Vision [8]. Interactive percep-

tion utilizes computer power for precision measurement, and human perception for recognition,

scene segmentation, and approximate location designation where reliable and efficient computer

algorithms are unavailable.

To aid human perception, the system provides views from multiple video cameras including a

stereo view for depth perception. 3-D graphics is overlayed onto both the stereo video views and
the monocular video views in either wireframe, transparent, or solid, Also, by displaying only the

graphical model, the scene can be viewed from arbitrary viewpoints. Currently, video is captured a
frame at a time, but extension to realtime video capture is straightforward, requiring just a plug-in

hardware card.

The three primary functions of perception are object localization, object model editing, and
camera localization.

In object localization, the operator uses the spaceball to translate and rotate a graphics-overlay
representing a geometric object model until reasonable registration has been achieved with video
images of the object from multiple viewpoints. Using the operator’s input as a starting location,

machine vision would further refine the measurement, using least-squares fits on detected features

such as vertices. The machine vision functions are presently under development. I

In camera localization, the operator uses the spaceball to adjust the graphics overlay on a

video image to best register the overlay against some visible objects whose positions are accurately
calibrated with respect to each other. This gives a refined estimate of the location of the camera
with respect to the robot, which is usually required because typical levels of kinematic inaccuracy,

especiaNy orientation errors, give unacceptably large measurement errors when object positions
are estimated based on visual data. This estimate could be further refined using machine vision

. . and statistical techniques to achieve sub-pixel camera location calibration, Camera calibration is

required for any further use of video data to measure object positions. Currently, an approximate

camera localization is done by the operator for each physical camera position used for viewing the
task. These locations and their associated camera models are stored for reuse during subsequent

tasks. Alternatively, a machine vision refinement could be made of the camera calibration in various

locations, and these could be interpolated at runtime. Currently, machine vision camera calibration
is avaNable only off-line.

For object model editing, the operator uses the spaceball to move a 3-D cursor in order to
designate the 3-D positions of vertices, and connect them graphically with edges. This could be

used to designate rough models of obstacles in the workspace, such as a “safe volume” around

an astronaut working cooperatively with the telerobot. Also, in the event that new workspace

objects were encountered for which there were no pre-built object models in the knowledge base,

3

,’ .< .

a combination of operator designation and refinement through machine vision could be used to

interactively model a new object. If the object were to be manipulated, many other parameters

would also need to be measured and generated for the new object and entered into the knowledge

base, including approach and grasp frames, mass properties, and insertion/removal force control

parameters such ti force-sensing frames, compliance frames, and force control parameters, to ensure

successful execution of a parts mating operation, for example. Currently, object model creation
and editing is available only off-line.

2.2 Interactive Task Description

The interactive -task description and execution part of the graphical user interface is called the

User Macro Interface (U MI) and is an evolution of an earlier operator interface [9]. The goal of the
interactive task description part of the local site interface is to make task description, verification,
and execution as simple as possible to the operator. This is achieved by providing the operator with

a library of skills which the remote manipulators can, perform. Skills are generic motion types, e.g,

Guarded-Motion, Move-To-Touch, Hinge, Slide; Screw, Insert, Level, and Push (similar to macros
of an earlier system [9]). When parameterized, a skill becomes a command which can be sent to

the remote site for execution of a specific task. The parameterization for a specific skill will depend

upon the tool-object pair it is used for. For example, in the command “Insert. ORU.Into-Stowbin”

the insert skill is used, but the parameterization is specific to the tool-object pair ORU-Stowbin.

Parameterization includes both execution data such as insertion force and impedance parameters

and termination conditions such as time, force, or distance. The skill parameterization for a tool-

object pair can be prespecified in the interface from design data or input by the operator, and is
stored in the knowledge base. After the parameterization for the tool-object pair is entered in the
knowledge base, it is automatically available when the tool-object pair and skill are selected. The
approach therefore allows the operator to input data into the knowledge base to be used later to

simplify future task description and verification. All skills or only selected skills can be Available to

the operator for a given tool-object pair. To simplify task execution, specific skills can be assigned

to specific tool-object pairs. Then when creating a future task, the operator only has to choose

from the reduced, appropriate, list of skills. It may eventually be possible for the operator to
use the graphical environment to select tool-object pairs and then the appropriate skill could be

automatically selected if enough context information is available.

Commands and sequences of commands can be interactively built and saved as a new named
.. command, e.g. “Insert-OR U_ IntoXltowbin”, and then later recalled for simulation (to ensure that

the possibly changed locations of the ORU and stowbin in the knowledge base do not cause errors)

and execution at the remote site, Each command in a command sequence includes parameters
for various monitors and parameters to specify which monitor conditions are acceptable command

termination conditions. If the remote site system terminates a command on an acceptable monitor
event, then the next command of the sequence is executed. Otherwise, a reflex action is automati-

cally executed by the remote site system.

The remote site has a fixed software system with task execution behavior dependent on the

parameterization from the local site. Multiple control sources can execute concurrently with the
resultant motion of the concurrent behaviors providing the task execution. The local site therefore

specifies the parameterization for each of the remote site behaviors so that their collective behavior

4

‘will perform the desired task. The local site also parameterizes reflex actions at the remote site
which are executed when monitor events are detected at the remote site. Examples of individual
remote site behaviors and monitors include force control, trajectory generation, joint limit and

singularity avoidance, force threshold monitoring, joint limit monitoring, and task space tracking

monitoring.

2.3 Present Local Site System Implementation

The various concepts considered above affected the design of the local site system which has been
implemented. Not all the advanced capabilities have been completed, but an operational system is

now in place. Figure 1 shows the local site operator interface Graphical User Interface including

the User Macro Interface and Operator Coached Machine Vision. The stereo graphics overlay on

stereo video capability of the interface, where objects and destinations can be selected and the
task simulation is visualized, is shown in Figure 2. Graphics-only mode is shown in Figure 3.

The operator controlled cursor is shown near the bottom of the figure. The docking probe is

automatically highlighted (default selection) since it is the object closest to the cursor. This Section
will describe the present system capabilities by discussing what is seen in Figure 1.

The Remote Status indicates the status of execution of the remote site, showing the currently

active command, and how many execution progress reports have been received. This status is not

predictive, but is set based only on the contents of reports received, and so will typically. be time
delayed by the local-remote time lag. Immediately below the status pane is a display menu bar

containing several important parameters. Protect Sequences allows the operator to protect the
stored commands from being modified inadvertently. Simulation Required forces pre-simulation

of commands before transmission, as a safety feature. Current simulation capability is limited
to kinematic reach, singularity, and joint stop violations; collision prediction based on knowledge

base solid models is planned. For sequences which have been thoroughly tested in the’ controlled

environment of a laboratory, simulation is superfluous, and is sometimes omitted to save time,

Execution Mode (Exec. Mode) indicates whether a command sequence is executing in simulation

or on the real robot. Arm indicates which arm is being commanded. Selected Object indicates

which object is being manipulated, Grasped Object displays the contents of the gripper, or Empty.

CATEGORIES are categories of command sequences. SEQUENCES are the list of available
commands and sequences in the selected category which the operator can choose to execute. The

-.. LOCAL COMMANI) QUEUE displays the individual skill commands in the selected (highlighted)
sequence which has been loaded. In this list, an arrow (->)at the left margin points to the next
command to be sent to the remote site, and the annotation “(Sent)” appears after commands which
have already been transmitted, but have not completed execution. When a successful or failure

result occurs for each command, the annotation “(Sent)” is changed to reflect success or failure.

This window pane is also the sequence editor, where adding, deleting and reordering of skills in the

sequence can be done using items in the Cut/Paste/Clear menu. The skills can also be individually

selected for editing their parameters, as has the example Guarded Move, which has opened the
editing panel in the lower right. A pulldown menu of generic skills is available via selection of

AddNewCommand.

Since a guarded move skill based command has been selected, the guarded move panel is

5

‘m JPL Operator Control Station
-1

REMOTE QUEUE
Remote Status: Executing ‘Move_to_abon~atfonn” on Left arm; 2 rvports received.

1 “ Move_to_above~latfoms: Left arm, Real m

Z Move_to_near_flxtunx Left arm, Real mod(

Prutect Sequences: simulation Requim?d: Exec Mode: Awrx Seled..od objoc~ Grasped Objec& RemotQ Sk

..* off .*. -“ off “** Real Left 0ocking_M4srw l)ocldng~nrbe JPL MOTES

CATEGORIES SEQUENCES LOCAL COMMAND SEQUENCE

Edit fJ-WtYear Save SaveAs AddNewOmnnwmd Refresh

ORU_cfsamjeout ~ 1 Move_to_above~latform: Left arm, Real mode (Sent)

~ approa~robe Z Move-to_near-RMur’e: Left am, Real mode (Sent)
lr&ksnze

recovery insert-level-lock

uurily WT=P--P

b

a Eca==iii~] 1,Perception Gmptsics Errors Debug Quit
1

MESSAGES

Storing all MOTES reports to /usr/people/beahan_opsAest/dock!n@uml_reports-l 89.log
Simulating communication with Gateway
Protect mode disabled: sequence may now be modified!

Command “Move_to-above~ latform” sent to MOT f-------------------'------------------------------"---------------" ---"
Command “MoveJo_near-fodure- sent to MOTES !

I
,
#
,

Guarded Motion

MacrmName: MOW3 to flxturw-dockc-approach-- 1] m-]

ET,

Coordinate Frame:
Motion Menu:

Object RelaUve

RelaUve to: Docldng-fixturv
1 IIImpoti Selec@d Object

PosfOn&t Of fsct: 0.000 x 0.000 y -10.000z 0.000 m 0.000 ry 0.000 n
1,

Redundant l%: (same)
1 ‘

fT Thresholds: 00.000 N GO.000 N-m 40.000 PA

~=m— ... —

.1 .4

Figure 2: Graphics overlay on video

I

lrigurc 3: Graphics-only nlode displa~

7

Figure 4: Docking probe grasped and removed

automatically displayed. A guarded move skill has a destination, which can be (1) an absolute
location, (2) relative to the current end-effecter location, or (3) relative to an object in the knowledge

base, as shown here. The name of the desired object can either be typed in, or selected using the

3-D cursor in stereo graphics overlay, and then imported into the skill. To approach near the
object, rather than contacting its surface, offsets from the object are then specified as translations

in cm and rotations in degrees, in object-based coordinates. Each object’s local coordinate frame

is displayable as an operator aid. When satisfactory, the edited sequence can be saved to either the
same file or a new file, using the Save and SaveAs menu items. Commands can be sent individually

or all at once, allowing the operator to decide whether to allow the remote site to automatically
sequence through a reliable series of operations, or to proceed carefully with the operator verifying

results of each command and initiating each new command.

Various local site operations, including control of video capture, object localization, and chang-

ing graphics views, are available for use in two ways: through menu items to the right of the

Send/Simulate buttons, or through keyboard “hotkeys” (single-key stroke-activated functions). This
allows rapid operation of the interface by experts, while supporting novices with pulldown menus

annotated with the hotkey assignments. For example, the Errors menu is devoted to sending com-
mands to the remote site after an error has occurred, acknoivledging that the local site has been

notified of the error and that future commands sent to the remote site have taken it into account.

Figures 4 and 5 show a docking task which has been commanded with the local site at JSC in

Houston and the remote task execution in the STELER lab at JPL in Pasadena.

8

. .

3 Remote

.

Figure 5: Docking probe at approach to docking mechanism

Site System

Various approaches to programming and control of telerobotic systems have been pro~osed; each

providing a solution for a class of robotic systems. These approaches include both environments for

programming new applications and languages for general purpose systems. Robotic programming

environments include RCCL [10], KAIJ [11], and RIPE [12]. These solutions provide a layered set

of subroutines for robot applications programming. This is a valuable approach both for research

and for specific applications programming since the full capabilities of the robot are available to
the programmer. The drawback is that new programs must be written and debugged for each

application. The Chimera II operating system [13] has also been proposed as an environment for
telerobotic systems. Various robot language based systems have been proposed, e.g., VAL-11 [14],

AML/X [15], and RAIL [16]. Robot languages can abstract the implementation details away from
the programmer to ease development time, but can also restrict access to robot capabilities.

The remote site robot control system described in this paper, the Modular Telerobot Task

Execution System (MOTES), utilizes a command interpreter. The command interpreter is a limited

robot language which provides command ing of concurrent control from different control modules.
The permutations of control module behaviors are then available to the local site. This method

allows a fixed flight software system to provide a wide range of robot control behavior. Also, the

command interpreter approach has been proven successful on unmanned robotic spacecraft such as

Galileo [17]. The telerobot application is different from the spacecraft application but the system
requirements are similar. Various aspects of the MOTES systcm have functional equivalents to

spacecraft control systems. Utilizing the command interpreter approach, hIOTES has been designed

9

I Local Site System
I

A
— —

Remote a

i
WI

8
g

Executive

Interpreter

Monitor

Sensor M

i q
z Control M

z ~ ‘ Fusion M
m

Task to
Joint Map M

Deviee M
Drivers

. .

Figure 6: MOTES functional diagram

such that each module is data driven. A command to a module is a parameter set describing the
desired behavior for that module. The architecture for trajectory generation and control is fixed
but designed to provide a general control capability. Future versions of the command interpreter

may incorporate additional language features.
I

The MOTES remote site telerobotics task system supports supervised autonomy, shared con-
trol, and teleoperation of space robots. MOTES is implemented in the JPL Supervisory Telerobotics

(STELER) laboratory initially for control of a 7 DOF redundant arm but with planned extensions
for dual-arm cooperative control. Capability is maximized by providing simultaneous control based

upon various real and virtual sensors. The permutations of the behaviors of the various control
modules provides the wide range of capabilities of the system. The desired behavior of each mod-

ule is specified by commands from the local site which are issued by the remote site command
,- interpreter.

3.1 Motes Architecture

The MOTES system architecture is shown in Figure 6. The functionality of MOTES is similar
to the Prim level of the NASREM architecture [18]. This level of a telerobot system generates
dynamic motion commands from a static description of the desired behavior. MOTES provides

all task level control and task to actuator space mapping. This includes some functionality of the
NASREM Servo level. The MOTES module types described below were selected because they

represent diflerent functionalities within the control system. There may be multiple modules of the
same type, for example force, teleoperation, and collision avoidance control modules.

10

The Shared Memory Module provides access to all command parameters and system sta-

tus information. The Executive Module handles communication with the local site system. It
places new commands into the Task Command Queue and returns status and data. The Execu-

tive is similar to the NASREM Prim level Job Assignment Module. The Interpreter Module
controls the transition between execution states by checking the status of the various modules and

specifying the appropriate commands and parameters to the various modules via shared memory.

The Interpreter is similar to the NASREM Prim level Planning Module, although MOTES limits
the planning done at the remote site to only that which cannot be done at the local site, e.g., reflex

action. The Monitor Modules provide monitoring of the status of execution for both intended
termination conditions and unintended error conditions, The Sensor Modules provide sensor

data processing. Together the Monitor and Sensor modules provide similar functionality to the

NASREM Prim level Sensory Processing Module. The Sensor modules can represent both real and

virtual sensors. ‘The Control Modules provide the control associated with the various re-al and
virtual motion sources. Each Control module generates a task space motion command. The Fu-
sion Module merges the motion commands of the various Control modules into task space motion

commands for the manipulators and other physical devices. The Control and Fusion modules pro-
vide the NASREM Prim level Execution Module functionality. The Task to Joint Map Module

maps the task space command of the Fusion Module to the actuator space of the physical devices.
The Device Drivers Modules communicate with the physical devices to send the actuator space

commands and receive status data. It is assumed that the physical devices have their own low level

control to implement the actuator space commands. This actuator space control would fall within

the NASREM Servo level. The M in the various boxes of Figure 6 indicates monitoring within the

associated modules.

3.2 Motes Modules

Each module interfaces to the rest of the system through shared memory with spedified input

and output parameters and functionality. This allows each module to be developed, tested and
evolved independently. The modules operate asynchronously with respect to each other with the

Interpreter responsible for synchronizing the various modules via modification of command and
state parameters in shared memory. Modules on a given board may run as fast as possible or be

interrupt driven, e.g, clock driven to allow fixed rate computations.

The Shared Memory is divided into the various sections described below. The Task Command
-- Queue is the queue of commands sent from the local site. The Active Command Block contains

the current command parameters resulting from local site commands or reflex action. The Re-

flex Command Queues are command queues for reflex actions to perform upon specific monitor
events. The Reflex Table is a table which maps a monitor event to a reflex action. The System

State Parameters are the system state as generated by system execution. Shared memory com-
munication is achieved using procedures for reading and writing unique data records to and from
shared memory. Two queuing mechanisms are used in the shared memory communication: first-

in-first-out (FIFO) for commands and last-in-first-out (LIFO) for asynchronous communication

between modules. The implementation of the shared memory communication is based upon the

Producer/Buffer/Consumer paradigm [19]. This separation of producer and consumer allow each
task to operate at their respective speed asynchronously with respect to each other.

11

●
✎✏

A command in the Task Command or Reflex Command Queues has two parts, the issue
time and the functional command, a format similar to that used in the Galileo spacecraft Virtual

Machine Language [17, 20]. The issue time can be absolute time, time relative to the end of the

previous command, or immediate. Absolute time is useful when coordinating multiple manipulators.
Absolute or relative time will usually be used in the first command of a new task so that the previous

task is allowed to complete. The subsequent commands of the task will have immediate time. The

functional command has two parts, the command identifier header which specifies the command

number, the destination command queue (Task Command Queue or Reflex Command Queues),

and which module the command is for, and the parameters of the command. Each command is

specific to an individual module.

The Executive Module handles communication with the local site system. It places new com-
mands into the “Tzwk Command Queue or Reflex Command Queues and returns status and data.

The Executive communicates with the Interpreter as necessary via shared memory. Normal task

commands received from the local site are placed in a Command Queue so no specific communica-
tion with the Interpreter is necessary. If a command is received which needs immediate attention,

e.g., an Interrupt command, then the Executive sets a monitor flag in shared memory which the

Interpreter acts upon. The Executive also periodically sends system execution status back to the

local site.

The Interpreter controls the transition between commands by changing the Active Command

Block parameters as specified by a monitor event. This may occur for various reasons including
the successful and unsuccessful completion of a command. The Interpreter acts as a command

interpreter when issuing commands from the Task Command or Reflex Command Queues, a func-

tionality similar to the Virtual Machine Language command interpreter [17, 20] of the Galileo
spacecraft. The Interpreter wjll Ls.sue the next command from the Task Command or Reflex Com-

mand Queues as specified by the issue time of the next command. If the issue time is not immediate,
then the Interpreter will wait for a termination condition or the arrival of an Interrupt, command.

If the issue time is immediate, then the next command is immediately issued. The status of exe-
cution is specified by monitor flags set by the various monitor modules. If a monitor flag indicates

a monitor event, then the Interpreter compares the flag state with the termination conditions’ as

specified in the current command parameters. If the event is an acceptable termination condition,

e.g., trajectory completed, then the next command of the queue is issued, if one exists. If there are

no commands to be issued, then the Interpreter issues the command sequence in the Default Reflex

Command Queue, which is one of the Reflex Command Queues, and will continue until a new

command from the local site is received or a monitor event occurs. If the monitor event is not an-’
acceptable termination condition, e.g., force threshold exceeded, then the Interpreter finds which

Reflex Command Queue to use as specified by the entry in the Reflex Table which is associated
with the event. The Interpreter then executes the commands of the specified Reflex Command

Queue, clears the Task Command Queue, and indicates to the Executive to report to the local site
that the reflex action is occurring.

The Monitor Modules monitor the behavior of the system and set flags to indicate to the In-

terpreter when a monitor event has occurred. A monitor event is defined as a condition detected by
a monitor module. Different monitor modules test for different conditions with testing parameters

specified in the Active Command Block. Some examples of events sensed by the monitor modules
are force-torque limits, joint position and velocity limits, and task space tracking error. Monitor-

ing occurs both in individual monitor modules and in the other modules. The M in the boxes of

12

Figure 6 represents the monitoring contained in the other modules. The reason is that monitoring

occurs at the level where the information is generated and the context can be known. The Monitor
Module is for monitoring of states which have scope beyond the individual modules.

The Sensor Modules generate either real or virtual sensor data. Real sensor data is information

that is directly related to an actual sensor while virtual sensor data is indirectly related to sensed
information. Real sensors may include resolvers, potentiometers, force-torque sensors, proximity

sensors, hand controllers, and vision systems. Virtual sensors may include distances to joint limits

or distances to collision between objects based upon geometric models.

The Control Modules perform control for each real or virtual sensor as well as generate set-

points. The resulting command from each control module is placed in shared memory for the

Fusion Module to read. Each Control module has input parameters in the Active Command Block

which specify the desired behavior for the module. The Control modules perform control in task
space for specific sensor data types. The number of DOF’S of the task space is dependent on the

number of DOFS of the manipulator and its configuration. For a seven DOF arm the task space

may be seven dimensional, the seventh DOF being used for the control of the arm angle [21]. The

position trajectory generator is the control module which computes the desired task space position
trajectory, including Cartesian frame and arm angle mot ion [22]. For the case of the force-torque

sensor control module, the motion commands due to force-torque control in the six Cartesian DOFS
are computed and an additional motion command for the arm angle may be generated based upon

forces felt at the elbow. A collision avoidance module may be used where an artificial potential

field is computed to repel the robot from self collisions.

The Fusion Module combines the commands from the various control modules as specified in
the task parameters. For sensor based motion, the appropriate impedance model in each degree
of freedom of the task space is used. The sensing and control for multiple modules of MOTES is

described in [23].
I

The Task to Joint Map Module maps the task space command of the Fusion Module to the
actuator space of the physiczd devices. The task space to joint space mapping for the extended

task space is done using a composite Jacobian approach [24] using the method described in [21].

The Device Drivers Module communicates commands and status with the system hardware as

well as perform computations which are hardware specific. Currently there are device drivers for

the Robotics Research 7 DOF manipulator, LORD force-torque sensor, TRI servoed gripper, and
. the local site hand controller. Device drivers are under development for a six DOF PUMA 560

manipulator and its force-torque sensor and gripper.

3.3 Command Types

There are various types of commands that the Executive can receive from the local site system. As

described above, the commands have two parts: issue time and functional command. The command

identifier header within the functional command indicates the command type, which may include
Module, Interrupt, Reflex Table, Execution Mode, Initialize, and Emergency Stop. Additional

command types, e.g., Cancel, may be added in the future. The commands are described below.

13

Module commands are placed in the command queue specified by the destination queue pa-

rameter in the command identifier header, e.g., the Task Command Queue or one of the Reflex

Command Queues. Each module, e.g., joint limit monitor mbdule or force-torque control module,

receives data in an individual command. Each module command describes a module behavior or
monitor condition. A sequence of Module commands is used to generate a collective command

behavior. Each Module command has the previous command number as a parameter. If it does

not agree with the actual previous command number, then the appropriate monitor event is set.

The Interrupt command causes the Executive to clear the Task Command Queue and set a

monitor event specified in the command parameters. The Interpreter will then read the monitor

event and act on it as specified by the reflex table. The event might just tell the Interpreter to read

the next command of the Task Command Queue (which was placed behind the Interrupt command

by the Executive as specified by the local site). The Interrupt command might also catise the

Interpreter to begin issuing commands from one of the Reflex Command Queues.

The Reflex Table command updates the reflex table. The Execution Mode command selects

simulation or control mode where simulation mode executes tasks but does not drive the real robot

while control mode does drive the real robot. The Initialize command provides initialization and

the Emergency Stop command sends a hard stop command to the device driver of the manipulator.

3.4 Remote Site System Implementation

The MOTES system has been implemented in the JPL Supervisory Telerobotics (STELER) labo-

ratory and controls a 7 DOF redundant manipulator. MOTES is written in the Ada programming
language and runs in a VME environment on 68020 processors. The present configuration utilizes

six processor boards. The hardware diagram of the local-remote system is shown in Figure 7.
Initial development of MOTES Ada code is done on a Sun-4/260 and compiled with’ a Sun na-

tive compiler. A single process simulator version of MOTES runs on the Sun-4/260. A Verdix

VADSworks Ada cross compiler is used to produce the target code. The target code runs on top
of the VADSworks operating system (0/S) in the Heurikon 68020 environment. The hardware at
the remote site includes a Robotics Research model K 1207 7 DOF manipulator and its low level
controller, a 6 DOF LORD wrist force-torque sensor, a TRI servoed gripper, and the MOTES VME

chassis and associated cards. The local site hardware includes a 6 DOF JPL/Salisbury Model C
hand controller [25] and its motor controller and VME chassis for control, the Sun-4/260 for Ada

development, and a Silicon Graphics computer for the operator interface to control the system and
stereo video and graphics. Communication between the Robotics Research arm controller and the

MOTES VME chassis is through a pair of 13it-3 memory interface cards. The direct servo control
of the arm joint angles is provided by the manufacture supplied controller. The hand controller
VME chassis and LORD force-torque sensor both communicate with the MOTES VME chassis via

parallel interface. Communication with the TRI servoed gripper is via serial interface.

The software design of MOTES was approached usi’ng the concepts of layered virtual machines

and object oriented design within a consistent real-time methodology [19]. The system was designed
to utilize features of the Ada language and rely on the underlying real-time operating system to

support those features. This was important so that the system could be easily ported to new
environments such as the planned port to Lynx 0/S. Modularity was achieved by developing

14

● ✘).,.
.’

ILOCAL REMOTE

. .

J
Hand Controller 1<1 MOTES

VME VME

t t>
Robot Con&oller

t

& I

- Im
Figure 7: Local-remote hardware diagram

various modules which could be easily configured onto different Ada tasks running on different

boards, e.g., math, shared memory, trajectory generators, force control, teleoPeration~ imPedance

equation, forward kinematics, and inverse kinematics. Examples of Ada tasks are the Executive,

the Interpreter, the Monitor, robot device driver, hand controller device driver, and force-torque
sensor device driver. The tasks run asynchronously from each other with some tasks clock driven

and others running continuously. Communication between Ada tasks utilizes global shared memory

exclusively except for an Ada rendezvous from the Monitor task to the Interpreter task to signal

the arrival of a new command. Board memory between tasks and task memory between modules

are language supported features but are not used since they would reduce reconfigurability of the
system. Module memory is used when appropriate. The global shared memory communication

is implemented via Ada generic units. The read and write utilities provided by the generic units

provide protection of the data, e.g., complete record transfers.

In the current implementation, all parameters for one subtask are sent together in one command

block. The command type is given as a parameter so that the Executive and Interpreter know
how to process the command parameters. Thus data for all modules are placed together in one

command and are then parsed out by the Interpreter. The destination queue parameter specifies
which command queue to place the command in, e.g., Reflex Command Queues or Task Command

Queue.

4 Experimental Results

MOTES is now operational providing multi-sensor based teleoperation, shared control, and su-

pervised autonomous control capabilities. The local site can specify a wide range of tasks to be

15

17igure8: Move-To-Touch and Push task secluence

executed. Results of a Move-To-Touch and Push task sequence will be described here to demon-

strate the operation of the system. The robot initially has its gripper above a grapple lug as shown
in Figure 8. The Move-To-Touch and Push commands are sent together to MOTES as a task se-
quence. The Move-To-Touch command parameterizes the impedance control with a fofce setpoint

to cause the robot to move to contact the grapple lug[23]. The command also has parameterization

for the force monitor to indicate an event when the gravity compensated contact force magnitude

exceeds 8 Newtons. The parametrization also says that force threshold exceeded is an acceptable

termination condition, so when the event occurs, the Interpreter automatically transitions to the

next command which is a Push. The Push command has a force setpoint of -15 Newtons. Figure 9

shows the results of the command. The arm has correctly cent acted and then transit ioned to the

Push command. The interpreter modified the active command parameters to transition to the
Push command.

5 Conclusions

An integrated local-remote telerobot control system has been described which provides many of the
technologies to enable an integrated system for ground and space based control of Space Station

robots. The system provides supervised autonomy for ground based control of space robots, to

compensate for the expected time delays, and supervised autonomy, shared control, and teleoper-

ation for space based control of Space Station robots. The local site provides task planning and

the ability to model the remote environment so that task verification can be done before sending

o

-2

-4

-6

-8

-10

-12

-14

-16

-18

-------- -------

9

.’
,,’

0.
,’#

8’
#’

I

1’
;,.-..-. . , , , m ,

8

7

2

1

0

0 2 4 6 8 10

Time (s)

Figure 9: Move-To-Touch and Push task sequence results: solid is force along Z

motion along Z axis

commands to the remote site for execution. The remote site provides a unified

tonomous control, shared control, and teleoperation including task sequencing and

axis; dashed is

system for a.u-

monitoring for

safe execution. The system represents an approach to expanding Space Station telerobot systems
beyond the baseline teleoperation capabilities into shared and supervised autonomous control. This

enhanced capability is important for telerobot control with time delay as will be the case for Earth
based control of Space Station robots.

Acknowledgements
I

The research described in this paper was carried out by the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the National Aeronautics and Space Administration.

References

[1]

[2]

[3]

[4]

[5]

[6]

Paul G. Backes. Ground-remote control for space station telerobotics with time delay. In Proceedings
AAS Guidance and Control Conference, Keystone, CO, February 8-121992. AAS paper No. 92-052.

R. Aster, J .M. de Pit ahaya, and G. Deshpande. Analysis of end-to-end information system latency for
space station freedom. Jet Propulsion Laboratory, Internal Document D-8650, May 1991.

W. R. Ferrell and T. B. Sheridan. Supervisory control of remote manipulation. IEEE S~ectrum, pages

81-88, October 1967.

Thurston L. Brooks HI. and Thomas B. Sheridan. Superman: A system for supervisory manipulation
and the study of human/computer interactions. Technical Report hfITSG 79-20, Massachusetts Institute

of Technology, July 1979.

Thomas Sheridan. Telerobotics, Automation, and Human Supervisory Control. M.I.T. Press, 1992.

A .K. Bejczy and W .S. Kim. Predictive displays and shared compliance control for time-delayed tele-
manipulation. In Proceedings of the IEEE Iniernaiional Workshop on Intelligent Robots and Systems,
Ibaraki, Japan, July 1990.

17

.
,

.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Janez Funda, Thomas S. Lindsay, and Richard P. Paul. Teleprogramming: Toward delay-invariant
remote manipulation. Presence, 1(1):29–44, Winter 1992.

B. Bon, B. Wilcox, T. Litwin, and D. Gennery. Operator-coached machine vision for space telerobotics.
In SPIE Symposium on Advances in Intelligent Systems, Conference on Cooperative Intelligent Robots
in Space, Boston, Massachusetts, November 1990.

Paul G. Backes and Kam S. Tso. Umi: An interactive supervisory and shared control system for
telerobotics. In Proceedings IEEE International Conference on Robotics and Automation, pages 1096-
1101, Cincinnati, Ohio, May 1990.

J. Lloyd, M. Parker, and R. McClain. Extending the reel programming environment to multiple robots
and processors. In Proceedings IEEE International Conference on Robotics and Automation, pages
465-474, Philadelphia, PA, April 1988.

P. Backes, S. Hayati, V. Hayward, and K. Tso. The kali multi-arm robot programming and control
environment. In Proceedings NASA Conference on Space T’elerobotics, Pasadena, California, January
31- February 21989. JPL Publication 89-7.

David J. Miller and R. Charleene Lennox. An object-oriented environment for robot system archi-
tectures. In Proceedings IEEE lniernational Conference on Robotics and Automation, pages 352-361,
1990.

David B. Stewart, Richard A. Volpe, and Pradeep K. Khosla. Integration of real-time software modules
for reconfigurable sensor-based control systems. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), July 7-101992.

UNIMATION Inc. User’s guide to val ii, programming manual. Technical Report 398AGI, Shelter Rock
Lane, Danbury, CT. 06810, .

L.R. Nackman, M.A. Lavin, R.H. Taylor, W.C. Dietrich, and D.D. Grossman. Aml/x: A programming
Janguage for design and manufacturing. In Proceedings Joint Computer Conference, pages 145-159,
November 2-61986.

John E. Agapakis, Joel M. Katz, and Donald I,. Pieper. Programming & control of multiple robotic
devices in coordinated motion. In “Proceedings IEEE International Conference on Robotics and Automa-
tion, pages 362-367, 1990. i

Galileo Project. Galileo program description document - command and data subsystem, phase 9.1.
Technical Report 625-355-06000, D-535 Rev. G, Jet Propulsion Laboratory, May 1989.

R. Lumia. Space robotics: Automata in unstructured environments, In Proceedings IEEE International
Conference on Robotics and Automation, pages 1467-1471, 1989.

Kjell Nielsen and Ken Shurnate. Designing Large Rea/-Time Systems With Ada. McGraw-Hill Book
Company, 1988.

Galileo Project. Galileo flight operations plan - galileo command dictionary. Technical Report PD
625-505, D-234, Jet Propulsion Laboratory, September 1989.

Mark K. Long. Task directed inverse kinematics for redundant manipulators. Journal ojlnielligent and
Robotic Systems, 6:241-261,1992.

Richard A. Volpe. Task space velocity blending for real-time trajectory generation. In Proceedings IEEE
International Conference on Robotics and Automation, Atlanta, Georgia, May 1993.

Paul G. Backes and Mark K. Long. hlerging concurrent behaviors on a redundant manipulator. In
Proceedings IEEE International Conference on Robotics and Automation, Atlanta, Georgia, May 1993.

S.Y. Oh, D. Orin, and M. Bach. An inverse kinematic solution for cinematically redundant robot
manipulators. Journal of Robotic Systems, 1(3):235-249, 1984.

D. McAffee and T. Ohm. Teleoperator subsystem/telerobot demonstrator: Force reflecting hand con-
troller equipment manual. Technical Report D-51 72 (internal document), Jet Propulsion Laboratory,
January 1988.

18

