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Abstract

Inthe ASA'S Program Office TechBase thrust* on Automated Nodal Analysis, JPL
has chosen to address a problem of major applicational significance to the US Anny, 1.¢.,
Critical Relocatable Target (C RTY) identification and geolocation. This data fusion prob-
lemn coalesces two issues fundaimental to the development of Reconnaissance, SilIV[illilNC(
and Tac l.i('alAsscssnn-m(RS'J‘A)TN]H10105 y:enabling real ctime capability for in-situ pro-
cessing of tacticalintelligence data, and developing a paradigimatic framework amenable
for impletmentation on compu tati onal platforms ranging from surveillance satellites to
niggedized workst at ions. Enabling conceptual and computational forinahsims are devel-
oped, that synergistically exploit limited 8¢ nsor sightings of enemy fa cilities 1 equipment
and associated logistics supply train, t errainfeatures, Order of the Battle (OB) knowledye,
and weather impact o11 a preort known mobility characteristjcg of a force entity, t o predict
presence envelopes for CRT's

* 1 his work is supported by the US Ariny A SA'S Program Oflice Techibase Program on ”Concurrent
Processing Applications for Joint Tact ical Fusion Problemns”, Conty qet NAST-91 8 Task Ovder RE-232.
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I INTRODUCTION

The primary objective of this data fusion task is to develop an Automated Nodal Analysis (ANA) sys-
tem, enabling conceptual and computational analyses in the arca of Intelligence Preparation of the Battleficld
(11)11), Themainfocus is theinvestigation of severalanalytical problemsrelated to (i) force structure charac-
terization, (ii) stochasticmodeling for tactical intelhigence data analysis; and, (i) predicting and validatiug
presence envelopes of High Valtie / High Priority, fixed and mobilerelocatable targets (HVTs/HP7Ts). As
highlighted in Figure 1, within the IPB Inference Ladder, omnsysteny is designed to correlate nodes to units
and units to situations. Specf jcally, we focus on HV/I's/HPTs t hat cannot be geolocat ed by t he direct ex-
ploitation of any single, automated intelligence data colle ctionasset, such as hmagery Intelligence (IMINT),
or Signals Intelligence (SIGINT), or be determined froman initial set of enerny force elements sightings.
T'his problein is extremely challenging due to typical SkeW jegsin the density of intelligence collection assets,
aud/or hostile weather /fol iage/terrain conditions in the t heater of interest Rapidly changing battlefield con-
ditions, camouflage countermeasures, and innovative t actical strategy by the eneruy connander, cary only
further exacerbate CR'T acquisition. Only in the siiplest case, one has w deal with situations where known,
but camouflaged CRTs are sought, explicitly. More often, one faces inadequate knowledge about CRT classes
(e.g., TELS, MELS) and CRT numbers actually presentin the theater of interest. Their presence must then
beinferred from himited sightings of enemny equipments/units and associated facilities. Our methodology
entails synergistic exploitation of ground-based, airhorne and spaceborne IMINT/SIGINT assets, for infering
the presence of, detecting and discriminating CRTs  To t his effect our approach int roduces radically new
paradigms in smart intelligence data analysis. Provision of sucly a capability, potentially, alows for major
recdhictions in collection management overhead and intelligence asset tasking cycles,

There are three primary technical problemns in developing accurate CRT geolocation prediction strate -
gies:

o Machine 14(q) 17[s[ 712(112011$  given the spatial, statistical and doctrinal interrelationships amony differen
military equiptent entities, determine mathematical represent ations that can capture the underlying
relat ional invariances.  From a compu tational perspective, 1t as essential that these intelligence data
representations be immune to SPAUOLCL yuGral uneertaitios injected by intelligence collection assets, as
woll as capture the temporal dynaimices of foree structure evolution

o Force Structure  Characte 112(111011 (FSC) o1 Warped Subtcmp late Identafication: given an arbitrary
set of collected sightings (of force structure elements) charactenized by t heir locations and signat ures
of associated equipment, compute an ordering of all plausible candidate doctrinal templates/1'Olls,
alongwith t he elemental correlations to t he warped “source”, sucl i that the collected data maximally
satisfy const raints and condit ions imposed by predefined models of military deployment..

0 Force Location Prediction (', }): having identified, with at©asonable degree of confidence, a plausible
schetne of mnilitary maneuver for the detected untt ot force structure, predict likely locations of force
structure elements not sighted, 1.e., not included 1 the input source subtemplate. Forth ermore, deter-
mine nearby feasible areas of movement{or all elements of the foree structure  Estimate the geolocation
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manifold of constituent CRTs in conjunction with the situational semantics, including terrain, foliage
and variations in enemy strategy.

The output of an automated situation assessimnent. systemn that addresses the above specific probleins,
would be identified HVTs/HPTs and their predicted geolocation manifold. CRT presence can then either be
revalidated by tasking dedic a10q IMINT/SIGINT intelligence assets, or directly provided 10 aninterdiction
tasking system. Alternately, it couldbe fed to tactical mobility analysis and intelligence tracking systems, for
continued 1 onitoring. Prior to this JPL eflort, t here was nomethodology that could sat isfact orily address all
the above problemns, or carry out even simmpler computations in hard real time. Hetice, inresponse to evolving
U. S Army needs driven by the emerging “new wor Id order”, we have formalized a powerful new t actical
intelligence modeling and analysis paradigim, that combines advances in several mathematical disciplines to
assess and deal wit hPOUl convent1on: g and novel « 2€ tical « hreats posed by b road €1as ses of potential enemnes.

11. METHODOLOGY OVERVIEW

Nodal Analysis is not a new problemn for the army. It has been st udied for over three decades [1,2,3],
and has been a key thrust in a number of D ARPA programns (e.g¢  ADRIES [4]), BTls (¢.g , TACNE p 1ES)
and other DOD efforts [6). The bulk of these programs ha ve their methodological basis in disciplines such
as artificial intelligence [ e.g. ) rule-based systems ], Graph-The ory, Neural Networks, Statist ical Decision
Theory, Simulated Annealing, Fuzzy logic, andDynainicPrograimming.

Nodal analysis is primarily a spatio-temporal pattern matching problem. Hence, hardcoded Al pules
cannot resolve the combinatorial explosion of plausible alternatives from incomplete data. A compact dy
namical representation of tactical sit uationalstates is essential 10 ANA. But typical Al dat a structures,
such as frames, or semantic nets caunot. (with the exception of scripts) adequately account for OB variables
such as terrain, rank attnit joy and tactical criticality thresholds. Also, formal A1 (that includes inductive,
deductive, evidential and nonmonotonic reasoning) lacks methodological tools to address ¢ he ¢ volution of
tactical situation patterns driven by hidden logic, under partially avail able information.

In asimilar vein, representation of doctrinal knowledge with neuromorphic structures is potentially prob-
lemat ic. First ly, doctrinal templates are represented on different spatial scales (€8, ranging from less than
1 square mile to over 1000 square miles), and caunot viewed as st andardized grid-based nmage pat terns
Secondly, neural networks can encode the impact sit uat jonal parameters (e.g., terrain, weat her contexts)
only a priori, i.e., terrain features become part of the encoded template. Past experience with TACNET (5],
that suffered from similar linitations, has shown that this severely constraius system deployment 1t different
theaters of interest Furthermore, neural networks cannot currently learn, i reasonable time, invariances
embedded inlarge spatial databases ot high-dimensional teimplates. The key linitation of neur ai net works s
however their inability to deal with high degrees of information incompletencss. For accurately recogmzing a
source doctrinal template, neural networks, implemented as associ ative/hete ro-assoc jative memories, requite
as input a large fraction of the pattern (typically over 80 percent). Such a requirement caunot be sat isfied
inmilitary reality. In general, only 20 to 40 percent of the force structure elements may be sighted and
avail able for inputto the force structure characterization systemn. Previous experience indicat ex that in such
cases the problem of smartly assigning defaults @ ¢ “force element sightings as initial conditions” ) is harder
thau the primary force structure template characterization problem.
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1 'he overall system architecture is sunmarized in Figure 2. A hybrid computational approach has been
adopt ed, f hat combines elements from various mat hemat ical disciplines such as graph/liypergraph t hieory,

neural net works and geonetrie probability theory.
111, EXTRACTING D OCTRINAL TEMPLATE INVARIANTS

A key component of the ANA systenis the selection Of app ropriate machine represenitations that
can e jcode the invarian ces characterizing various schemes of mancuver for different force st ructures. In
parti cular, representations are sought that can uniguely and cor npactly capture the invariances embedded
ineach force structure template. In the sequel, we treat each scheme of maneuver (e, g., at tack, defense,
pursuit, withdrawal, etc.) corresponding toa rorce structure (e. g., Motorized Rifle Division [MRD]) as a
unique doctrinal template. The strategy we have chosen for encoding doctrinaltemnplates ent ails transforming
the template to a domain, in which the underlying morphological and topological relationships between the
different force elements can casily be extracted.

3.1.  Computing Morphological Invariants

We begin by recalling a nwinber of basic definitions. Additional details can be fourid in staudard texts
on discrete mathematics [6].

Isomorphysan. Given a pair of templates 77 and 7%, an isomorphisin 1s a one-to-one mapping ¢ frot
t he elements of 7y onto the vertices of 7%, such t hat ¢ preserves adjace ney and non- adjacency of the force

e ements

Row Characteristic Matiar . An N 4 (N - 1) matrix Rosuch that the element 14, 18 the number of vertices
which are a distance 1 away from vertex v;.

Column Characteristic Matriz: An N 4 (N - 1) matrix C such that the element ¢, is the munber of
vertices from which vertex v; is at a distance .

Char acteristicMatrir: An N+ (N - 1) matrix X such that the element o, 15 the string concatenation of
corresponding cie e uts Fimand ¢y,

Char acteristic Veetor: Au N vector x suclt that the element @ represents a row of the Characteristic
Matrix X.

Furt hiermore, our methodology exploits two well known theorems in ext remal graph t hieory:
Theorcm i 1f G is an N- vertex reahization of a dist ance matrix, 1), then G is unique

Theorem 2: 1 two force structure elements v; and vy are partitioned into separate classes by a degree
sequence, they will also be partitioned into separate classes by the characteristic vector
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Template encoding into an algebraic representat ion appropriat ¢ for auntomat ed nodal analysis can then be
carried out inthe following manner:

(1] Chocse anadjacen cy envelop radiusg, to convert doctrinal and warped templates into directed graphs.,
Label all edges by the Buclidean distance between their terminal vertices (force structure element s).

[2) For every doctrinal template of interest, *7" in the doctrinal database,

use Floyd s/ Djikstra’s All-Pairs Shortest Path Algorithim [6] to compute the distance matrix *13,
corresponding to t he graph-theoretic shottest pat h hetween every pair of vert ices;

determine the adjacency mat. rnx,'A;

Using dist ance and adjacency mat rices, comnpute the row and coluinn characteristic matrices, *R
and*C of the graph;

Compose the corresponding rows of ‘Roand * C; to determine the characteristic atrix * X

[3] Similarly compute "R, °C and ° X for iuput “warped” subtemplate ©7.

In addition to compactly capturing the spatialmanifestations of military hierarchy, that are independent
of thetheatre of deployment, the Row- Columin (RC) characteristic natrix represent at ionis at ¢ ractive for
analyzing the temporal evolution of force structures, such as attrition nnpact and regroupings. It can be
used for telescoping into substructures within a force structures, at various levels of resolution  Also, from
an iimplementation standpoint, the matrix forin of representing spatial orgamzation s highly advantageous
for subsequent development of parallel algorithins.

3.2.  Computing Topological Invariants

In order to resolve spatial uncertainties, our methodology exploits results from stochastic integral geom-
etry [7) aud geometric probability theory [8]. Topolog ical (geometric) measures are constructed to rapidly
identify and capt ure invariances underlying force element orgamizat ion within a force structin e, i partic -
wlar t he flexibility in spatial placement (doctrinally allowed, min-max spatial elasticity between two force
clements). In particular, we seck a measure for each force structure template, t hat is invariant to spatial
placeiment of elements during warping transformations. Let ¢ denote the set of all possible warping trans-
formations. For the FSC problem, it is suflicient to limit ourselves to measures which can be expressed by
multiple iutegrals of the forin

m(V) = / f(v) dv (32.1)
Jv
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where V denotes the set of force elements in a force structure. In other words, we seck to determine the
function f(v) under the condition that m(V) should be mmvariant with respect to (. Also, upto a constant
factor, this incasure is the only one which is invariant under the group of motions in a plane. In principle, we
derive deterministic, analytical transformations on cach foree element, that map error-elliptic probabilities
(LEP) defined on R? (the two dimensional Fuclidean space) onto measures defined on .

Such a representational uniqueness facilitates the rapid decimation of the search space. 1t is imple-
mented by iustantiating a filter constructed using measure-theoretic arguiments. The transfornation under
consideration has its theoretical bases in the Palin Distribution Theory [8] for point processes in BEuclidean
spaces, as well as in a new treatment of the problem of probabilistic description of “t ypical cleinents” gen-
erated by geometrical processes. The latter can be reduced to calculation of intensities of pomd processes.
Recall that a point process in a product space E x1is a collection Of random realizations in that sp ace,
represented as { (€5, fi LWie e B, fic 1“}.

The Palin distribution, Il of a translation (75, ) invariant, finite intensity, point process in h™ is defined
to be the conditional distribution of the process. The importance of the Palm distribution is rooted in the
fact that itprovides a complete probabilistic description of a geometrical process

The Palm distribution can be expressed interms of a Lebesgue factorization of the form
Ep N* . AlLvXl (3.2.2)
wliere A and 1l completely and uniquely determine the source distribution 2 of the translat ion invariant

pointprocess. Also, EpN*denotesthe first momentmeasure of the point process and Ly is a probability
measure.

Thus, we need to determine A and 11 which can uniquely encode the force structire template, This isachieved
by solving an appropriat e set of equations involvityr Palin Distributjons of stochastic point processes in 1"

Qualitatively, a Pahin distribution can be envisioned as describing the packing process of non-intersecting
flexible “balls”, which otherwise do mnot interact. The “template transformation algorithm” then denotes a
procedure whereby one attempts to place a ball in the abstract space under consideration, such that placing
of a new ball does not effect other balls. The process is graphically depicted in Figare 3.

1

In order to determine A and 1, we have implemenited the following algorit hi (measu re-theoretic filter):
[1] A: using force element Min-Max EEPs, marginal density functions are computed by projecting the un-
certainty distributions associated with an ERP along the straightline connecting pairs of force structure

clements.

[2] The equation Il = @ P is solved, where Il denot es t he 75, - divaliiilt:ngl ) rt[Iw'[its the distribution
of know npoint process. The above equation entails solving an inverse problem.

A nmber of analytical simplifications are invoked to enable the computation of A aud Ilinreal-time

3.3.  Probhabilistic Corrclation Algorithm
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We conclude this section by providing a summary of the correlation algorithim we developed to obtain a
refined ranking of plausible template matches. These matchies are obtained using the subgraph isomorphism
algorithm described in Section 1V.

Convert template into clusters of subgraphs using he adjacency matrix:
I3 £ A

As shown in figure 4(a) and 4(b) use geometric transformations from projective geometry to elimi-
nate azimuthal information characterizing the EEP. Note that EEP azimuth is merely an artifact of
Level 1 (i.e., object assessient) seusors, and not a part of the doctrinal template. Azimuthal orien-
tation of the EEP is eliminated by renormalizing marginal distributions of uncertainty, projecting
themn aloug the straight line counceting the centroid of force element EFPs.

[1.2] Asshown in figure b, compute the BEP for pairs of adjacent force structure elements in doctrinal
templates.

[2] For all pairs of force elements within the adjacency envelop determine A and
[3] Repeat Step [2] for all sighted force structure elements
[4] Compute ent -opy of deviation of "realization” from doctrine. Sum up the deviation entropy.

(5] Perform thresholding to deterniine ordered anking

1v FORCE STRUCTURE CHARACTERIZATION ALGORITHM

Conceptually, the subgraph isomorphism algorithm for force structure characterization consists of two
phases: (1) an initial partitioning of force elements in the “sighted” aggregation of force elements and
every doctrinal template of interest, based on the degrees of vertices; and (1) iterative heuristic algorithins,
which attempt to consider the neighborhood of each respective force element, to characterize a vertex by its
relationship with ever increasing numbers of more distantly connected vertice

The overall rank-refinement algorithmn is swinmarized in Figure 6. This iterative graph-partitioning
/ rauk-refinement algorithm exploits verter color, 1.e., force element label, and doctrinal constramts, c.g.,
distortions i exemplars are limited by hard constraints (such as bounded spatial elasticity on the internode
distances), to expouentially deciinate (a) the number of plansible to-be-searched candidate templates of
interest; and (b) the size of unresolved (uncorrelated) “source” template.

4.1  Coarse decimation of scarch space :

We first attempt to reject templates that significantly lack force elenments types, in terms of hose present.
m - he warped iuput template We proceed as follow
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Figure 4(a). Elliptical Error Probability EEP,

Figure 4(b). Collapsing Azimuth Information, (Projective geometry
technique to desire density distributionfunction for
interelemental distance
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Figure 5.  “corridor” of Spatial Stochasticity for force elements with pairwise
infraction, (Find measure for sets of geometric objects (manifold)
with the property of being invariant undergroup of transformations)
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Figure 6. Pseudocode for subgraph isomorphism algorithm
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The doctrinal template database is viewed as a hypergraph,
H o= (V1 Ty Ty 0 T3)

where a hyperedge, 77 denotes the set of force structure elements i the doctrinal template 1. Furtherniore,

cach T; is itself a hypergraph comprising of a forest of graphs, 77 = (Vi ti; tiv; -+ 5 ), where Vj;
denotes set of force elements v 75, and 5 represent the set of force elements in a connected component. of
T;.

The transversal of a hypergrapl is defined to be a set 77 C b, such that

T 01,74 0 for dl i

The minimum transversal is definedby set 770750 The transversal nuwnber, 7(11) = M7}, is de fined
to be t he minimum number of nodesin a transversal of 1. In our model, assume the warped input template,
1, torepresent the minimum transversal of 11,

Using a graph-thearetic algorithm proposed by Gulati, Iyengar and Barhen (9], we compute the first
mininn transversal - over all templates in the database and then convolve it with the input. Denoting the
t ransversal of a hypergraph by Tr(.), the following steps are nnpleinented.

Transversal Computation Algorithin

[1]: Determine Min R = { Hy, Hy,  Hy), where Hy, Ho, Hy denote hypergraphs obtained by
partitioning ¢ he force structuresinto a forest of graphs

[2): Successively determine the following families:

N, = wn ) vielding Te {If, ) = ( {0} \ac€Hy)

7
"

Ry U {H) yielding Iy Ry = Min (e Ry VI { Hy )
N;{ p Ng U {llj} .\'i(‘l(lillg It Ng = Mmn (Tr N;ﬂ \Y ’lvl‘{ ]13}), etc.

The above steps show how 1t R,y is obtained from Ir R, 1 f Min R has & members, then the above
algonthm constructs It R = Tr Ry in & steps. This algorithim can be very efficiently expressed
terms of Boolean operations using a t ransformation suggested by Maghout Note also thattemplates with
a transversal number less than r(7I) are inmediat ely rejected as probable sources of warped input. 1.

We now address  theissne of point spread conflict computation for rank refinement. Our approach for rapid
elimination of doctrinal templates from further consideration, is based on a severe viola tion of adjacency
and force element type constraints. 1t involves enumerating the nunmber of type conflicts over an expanding
adjacency oyvelope Specifically, we proceed as follows:
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(1) Compute geodesic for cach doctrinal template;
[2] Choose initial adjacency envelope radius in terms of the input template geodesic, scaled by a factor S;

[3] Connect nodes over the adjacency envelope, to forin a directed graph for the source and doctrinal

+

template

[1 Compute the packing density, i.c., average number of force elements in each connected component. of
the graph:

-:,m:_‘...::__m_bm:cfZ::wao:__n_x:.r:_mﬁ_z:w:? mqi.—:,et.,::m_w&m?:n%n:ﬁ.._c_:,.~.~:::m~l£‘..
recompute envelope radius by increasing S;

(6] For all force structure elements in the input template, *7°, determine the cardinality of matching adja-
ceney sets with respect to all remainiug plansible “doctrinal source” templates:

- Incrementally expand adjacency envelop to span the template graph;
[6] Rank-order templates by increasing number of matching conflicts with the input template;

[7] Eliminate all templates from the next computational phase with over 20% conflicts matching conflicts.

We now proceed with the details of the subgraph 1somorphism algorithin for force structure characterization.

4.2. Subgraph Isomorphism
This algorithn, a refinement over [10] involves two passes: an initia parti loning and a recursive scheme

for correlating the unresolved force structures.

dass 1:

Use the rows of each matrix, 'X to partition the force structures into equivalence  asses; two nodes in
X and/or *X are assigned to the same equivalence class iff:

they have identical correspouding rows:

- every element of a row in "X is not greater than the corresponding element in *X, and the two
nodes have identical types;

(2] Determine class counts for all equivalence classes. Analyze to further par ition nodes into distinet
classes if they belong to different node-type
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[3] Isomorphic map immediately results for identically labeled nodes belouging to the same class, but
different. graph, with a class count of unity;

(1] Further refine class partitions to resolve the isomorphic mappiug for additional nodes:

- Expand the adjacency envelop radius to ascertain which nodes in the two teniplates have identically
labeled sets of neighboring nodes, provided the distance constraints are satisfied;

- club such nodes in the same clas

- For the purpose of subsequent ranking, record the nuiber of ucighbor to neighbor type-violations.

[5] Partition the warped input subtemplate into resolved and unresolved force strie are elements:
[6] Reorganize the classes:
reorder the class numbers and class counts to account only for nnresolved foree structure elements;
deactivate edges emanating from/to resolved nodes in the adjacency matrix
(7] Execute a backtracking algorithm on the reduced graph:
(7.1] Set curremt level counter to 0. Set chosen vertex at current level to null.
[7.2] If current level counter equals the number of nnresolved force structures, exit;
[7.3] Set chosen vertex to some unresolved vertex in the source template; mark vertex resolved;

[7.4] Choose an unresolved vertex of sinilar type and identical class in the doctrinal template currently
under consideration;

[7.5] Correlate using distance and adjacency constraints:

- If correlation established then goto [7.6] else, if wnresobved vertices -emain, hen goto [7.4]; else,
output vertex as resolved;

[7.6] increment level counter

[7.7] if set of unresolved vertices empty, exit: clse go to [7.3]
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The output from Pass 2, includes the identifier of the force structure that maximally correlates with the
source temnplate presented as input to the system, as well as the “resolved” explicit correlat ions between the
force elements in the  two templates.

V. FORCE LOCATION PREDICTION ALGORITHMS

Our next objective is to predictlikely locations of force structure elements not included in the sighting
(i.e., m the warped iuput subtemplate) from t he nearest correlated “source” templat e, and determine nearby
feasible areas of movementsfor al elements oft he force structures. The methodology entails the identification
of globally consistent, sitnple local teinplate distortion strategies const rained by a window of focal attention
(e.g., a “Control Measure” ). Specifically, geolocation prediction involves the following key steps:

[i] adaptive generation of focal attention window, consistent with template semantics;

[ii] abstraction of a virtual transformation within the focal attention window, using atechnique that
combines algebraic projective geometry with a neural net work model;

[i11] sensitivity analysis for predictionrefinement ;

[iv] iuterval integration algorithins for critical node geolocation and incorporation of operational con-
straints, e.g., terrain, elevation, weather nnpact.

In the sequel of this section , we first discuss our computational strategy for predicting “dropped” force
structure elements, i.e., elements nominally present in the identified template, but not included in the
sightings reports. Then, we address the issues of uncertainty propagation and int egration Of operat ional
constraints

5.1,  Global Distortions

Simple, homogencous transformation matrices are well know noin the literature for computing the impact
of Euchdei i trau sformatio us, e g, rotation, translation, scaling, and combi nation s thereof, in two and
three dimensions. Using the correlated warped and doctrinal force structures, we can readily detennine
the parameters of the di st orti on transforination matrix. Furt hermore, i stan ce constraimt s and the nod al
uncertainty envelopes in the doctrinal template can be used to generate “presence” envelopes for t hedropped
force structures. Global force structure warping is maiuly relevant to st rategic bat t leficld analysis.

52,  Local Distortions

”

A key assutption made here is that a warped template satisfies soue “continuity” conditions in terins of
lacal deformations. 1 1 1w unwarping problem can then be stated as follows. Given the coordinates of sighted
force elements, and the coordinates of the corresponding doct rinal elements, determine the elements of an

afline virtual transformation A, such that

A . (241 = Qr (5?1\‘




where Qg and Q. denote the 3 x M matrices of homogeneous planar coordinates of M doctrinal and
corresponding sighted force elements respectively.  The affine transformation, A is assumed to be of the
form,

A A A

A Awy Apy (5.2.2)
8} 0 1
Inother words,
Tem Al] All‘ Alli Td
Ye,m = Au Aw Au Yd,mn mo= 1, M (5.2.3)
1 0 0 1 1

Siuce different arcas or the template are assumed to be inpacted diflerently, a window of attent 101 1 1s needed
to limit the scan space. A miniimum of three points is required to predict a missing force elemnent within the
window of attention. Initially know n pairs, gq aud g, are used to learn t he transformation matrix, A, where

A= Qo Qi (Qu QD! (5.2.4)
wecan write
A =Q.-B (5.2.5)
with . ,
B = Q Qe (5.2.6)

Our current implementation, exploits artificia neural networks, to learn the virt ual transformation A. The
“learned” transforiation matrix is then applied to predict coordinates of dropped elements.

Specifically, t he neural net work requires as inputs the warped subtemplate, t he “nearest” doet rinal
tetnplate, and, force structure correlations output by the isomorphisin algorithm. 1t provides as output
the parameters of the distortion t ransformationmati ix. The remainder of dropped elemnents can then be
predicted using the relationship

Q= A Qu (h.27)

5.3.  Uncertainty Propagation

It s clear from the equation A = Q.- B that any perturbation in the values of Q. 1.e., §Q. will be
propagated via the matrix B to the values of the transformation matrix A. Therefore we can write

§A - 6Q. D3 (5.3.1)

The sensitivity of eaclyielement of the computed t ransformationmatrix A wit hrespect to the jn-th sighted
force element coordinates |, Te y, ¥e.n, can easily be calculated via,

94 94,

/ ) : B, 5.3.2
(‘)-I'(‘]’,‘ (‘).l/(,m " ( )
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Assuming equal probabilities for each sighted force element (equal importance weight ing), the overall uncer-
tainty in the caleulated values of the transformation mat rix, A with respect to the uncertainty of the sighted
values is given by

Lo\~

AA” o 7\-{— | ”m,j AJ',.,III ' (533)
l ™~

AAyy = Y L [ B Aye,om | (5.3.4)

The uncertainty in the predicted points can then be computed using te uncertainty values AAy;, and the
doctrinal force elements coordinates

AT,. ) E AA]J' © X (535)

"

Ay,

=Y AAy - ay (5.3.6)

When we use ac ditional unce ertainties, which often stemn from doctrinal coordinate elasticity, much more
complex formmul as arisc..

5.4. Operational Constraints and Predicted Manifold Refinement

We now focus on refining the prediction manifold by integrating operational constraints. It addresses the
issne of overlapping and possibly conflicting distor tion-faclors, generated by the diflerent processing windows,
Our approach is derived from ideas based on Marzuello’s “Interval Integration Algorithm” proposed for
nultisensor fuston using erarchial distributed sensor networks [1 1] and unproved by Prasad et al [12,13].
In sununary, the met hodology eutails transforming an uncertain real-valued constraint, to a uniform interval
{a,b]. The eve*-la=,1)illg intervals are then combined, and propagated 1o obtam a best estimate of the true
value, along the hierarchy of counstraints. Inapplying this method, the const rait (e g, terrain feature,
weather pattern, etc. .} is assumed to be distributed uniformly ove r t heinterval

Letthe foree element geolocation manifold, G M, be subjectto S abstract constraints (doctrinal, weather,
terrain, etc. ) , (' constraints of critical interest, and L be the nnmber of force elements in the window of
att ention that were used in predicting the initial manifold, suchithat L. = {8y, Su, , S, }. Let t hie abstract
interval estimate of Sj, for 1 < j <, bedenoted by I; = [a;, b;] with endpoints a; and b;. The
constraint satisfaction meth od 1s basc:d on an algebr aof Heaviside functions Letinterva 8, Iy, Iy, -+, I, have
the characteristic functions X1, xu, | Xu respectively. The characteristic function, \j of the j-th constraint

Sjis define d as:
0, V o < a
1\ s (7] ’{J’ V >
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ie,x; 0 R - {01}, and

Xila) [#] = xjal#] (1= xjufe})
The problem is the integration of the intersection region I; to obtain “reliable” and “fairly accurate” estimate
of the geolocation manifold. Further, we require

WA= sup{if(a)l |« € W}

Lol flEdenotes the small est real mumber o such that f(o) < a Vo r.Also, e define the concepts o f
supportand overlap of f as:

Supp { 5} = {=| f(a)# 0O}
O(x) =) _x;la]

J=1
where the latter refers to the nunber of overlapping intervals which satisfy the constraint at any geolocation
{coordinates expressed by the tuple G(1,m), where Lm refer to the latitude and longitude, respectively)
denoting the area of interest.,

The maximum number of intersecting intervals, or region of maximal co n st rat satisfiability in which
any geocoordinate sat isfies G(I, m) € fi i's then giveu by the intege -t ||y; O|]. The lat ter expression, in
effect compute s the ||x; Ol|-cliqu €. Recall that an n- clique den otes a group of interva s having a connmon
intersection

Also, the following results hold,
I; N ]j - X,-(J') x_,'(:r)

"
xor, fa} = 1~ II (17 xi [«]
iz
Nowever, the maximally overlapping interval (as per the above defini ton ) I, contams points which do not
belong to intervals Supp{S(z)} where,

Supp  {$($)} = U;‘.:I L

where 7, = oy, ] with i <aig 1 V1<i<k- 1. Au evaluation o+ the ;s is perforied to att ach
a weighitto ea ch of them and then choose those Lis with maxinmm weight to be the interval contaiuing the
correct physical value. We thien again embed these Lis of maximuim weight in the smallest possible interval
and t akeitt o bethe out put estimat.e. This, for the operational const raints int egration problemn, Lis denot
a weighting function, such that each i corresponds to the likelihood of containing the correct geolocation
Also, let xp, () be the charateristic function of 1,. Then we cau define t he “popularity” function of t he j*

constraiut as
"
Pr= 370
=
k=1

Nkooagl el
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where {lxi x;l] denotes the nmber of intersecting intervals.

To increase the geolocation accuracy, we introduce a measure, denoted w(ly;), i terms of as the sum of
popularities of all overlapping intervals involved in the formation of 7., 1.e.
N
_ o Cine ).
w(le) = > I vixs 1

1=1

The popularity function yields the (n - f)th-or-more clique. Let = max {ri |1 < i <k}, m = wmin {7 |
riz 7}, and M =max {i |1z o). Then the “narrowest” geolocation, L.e. integrated output estimate
18

Ipe = [u,,,, ﬂM]
Thus, if there are n constraints, and f non-intersec ing constraints, the 1 — f over apping intervals are given

by
Sy = 1= T 0 Mg 01 X512

ji=1
where x(, - s ) 1S the characteristic function of theinterval [ - f,00). Note that
Xin- 1) GOl x5la] = agle]

So, if andouly if, Ijhasn - f - 1 intersecting intervals, the estimated interval coutaiming SuppS(a) is given
by
I, = Min{z | S(w) = 1y, Max{z|S(x) =1}
[
and I, yields the geolocation manifold for each dropped element. For a detailed anal ysis t he readens referred
to [12,13] and references therein.

. Conclusions
The automated nodal analysis system presented 1 this report i s particularly attractive for tactical

intelligence analysis. Its enabling comput ational features cau be simmarized as follows:

o 12101 ndentof doctrine source. our methodology s wiformly applicable to Traqi, Russian, N Korean,
Brazilian or Chinese doctrinal templates;

o Robustuess tn the presence of mated mformation avarlability: it has bheen tested with warped subtem-
plates containing as little as 20 percent of the force structure elemnents preseut in a template;

o Clapability spectrum - T'le system can handle distortions of arbitrary type and magunitude;

o The methodology is coordinate independent: templates can be on different spatial scales;
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[

The system is terrain independent: terrain is not used in the force structure characterization process, it
1s only used for geolocation prediction;

0 Scalability: the methodology can easily be extended to include situational parameters such as tactical
criticality factors, spatial constraints (e. g., terrain)anddoctrinalconstraints (e g., explicit hierarchies);

o Computational efficac y: our benchinark tests have yielded a respouse tune to within a minute on a SUN /4
equivalent (40 MIPS) processor, for up to 100 force structure templates with 10-100 force structure
elements per template.

Insurmnary, for the ASA'S Program Olflice TechBase thrust on Automated Nodal Aualysis, JPL has choseu
to address a problem of major applicational significance to the US Army, i.e., Critical Relocatable Target
(CRTY) ident tfication and geolocation. This problem coalesces two issues fundamental to tilt' development
of Reconnaissance, Surveillance and Tact ical Assessment (I/ S'I'A) technology: enabling real- titne capability
for iu-situ processing of tactical intelligence data, and developing a paradigmatic framnework amenable for
imuplementation on computational platforms ranging from surveillance satellites to ruggedized works tations.
Enabling conceptual and computational formalisins are developed, that synergistically exploit limited sensor
sightings of associated facilit ies/equi pment and logistics supply train, terraiu features, Order of the Bat tle
(OB) knowledge, and weather ilnpact on a pr1err known mobilit y characteristics of a force entity, to predict
presence envelopes for CRTs,
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