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Abstract

A synthesis approach tothe generation of a quan-
lized sequence based on an oversampled input sequence
is presenied. The generation algorithm is chosen o
minimize a melric that measures the amount of error
power that resides in the bandwidth occupied by the
desired signal. 7'he first-order A3 modulator is a spe-
cial case of the synthesis approach whentheinpul is
constant. 7he synthesis approach has superior in-band
noise performance over the first-order AY modulator
for finile oversampling ratios, and superior in-band
noise performance over conventional A converters
of arbitrary order when the oversampling ratio is less
than 2.862.

1 Introduction

Single-bit data converters are attractive becausc of
their guarantecd linearity and their simple analog cir-
cuitry. Recent research in the field of Direct Digital
Synthesis SI)I)S) has shown the need for lligh-linearity,
high-speed digital-to-analog converters( DACs) that
do not necessarily have high resolutiof 1]. in addi-
tion, such systems often generate signa:s that span
large bandwidths relative to state-of-the-art digital
clock rates. Therefore, the usc of AY modulators [2]
is often ruled out due to the low oversampling ratios
that can be accommodated. The work presented here
treats quantizers with an arbitrary number of bits, so
the single-bit converter is a specia case. In addition,
this work takes into account potentially low oversam-
pling ratios.

The present effort departs from the standard ana-
lytic approach to the design of oversampled data con-
verters. in most of the literature, an architecture
is first proposed and subsequently analyzed. More
recent aternatives to conventional AY. architectures
[3,4], while eflective, often lack cxplicit theoretical mo-
tivation, and onc naturally wonders if a given archi-
tecture is optimal in any sense. The ncw approach
presented here is best described as synthetic: a per-
formance metric based on spectral error characteristics
is proposed and a generation algorithm is then chosen
to minimize the performance metric.

2 A Performance Metric and the Syn-

thesis Algorithm

It is desired to generate a quantized sequence, yinl
based on an input scqucncc,“‘[" ~The values of ¥ "]
arc to be chosen from an arbitrary quantized set. in
the binary case, y["ﬁnis either -t ¢ or —¢, where ¢ is
a constant. The output error sequences defined as
e[n] = y[n -- 2[n]. Our goal is to select the output
scquence tiat minjmizes the error power in the fre-
quency region |wl < 7/, where R is the oversam-
pling ratio. T'he approach presented here sequentially
chooses the values of y[n]that minimize the following
time-dependent performance metric:
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is the windowed z-transform of the output error sc-
quence.  The metric in Egn. 1 measures thein-
band noise power of the windowed error sequence
by integrating the windowed error spectrum over the
frequency region of interest. Theinetric is time-
dependent because the windowed z-transforim in Ign.
2 is time-depen dent. The integer constant M repre-
senls the memory of the system and limits the num-
ber of previous error samples that directly cffect the
metric. Theaspect of finite memory (M < 0o) facili-
tates system redlization and is largely ignored in A3
modulators duc to the ubiquity of siinple integrators.
While this finite memory approach was considered by
Spang and Schulthciss [51], their development was ana-
lytic and required that the number of quantizer levels
increased with the amount of memory, M.

The following theorem presents the optimum gen-
cration algorithm for the mnetric in kqgn.1
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Theorem 1. The optimum generation algorithin for
the performan ce metric in kgn. 1 is:
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and Q(x) represents the legal quantized value closest
to x.

Proof: At time instant n, a decision has to be made
to make y[n] equal to one of its legal quantized values.
The vaue that minimizes the time-dclxmdent metric
in Kgn. 1will'be chosen. Equation 2 can be written
as the sum of aterm independent of the choice at time
instant n and a term dependent on the choice at time
instant n:
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Taking the magnitude squared of the above equation
and integrating to generate the metric in ¥qgn.l
yiclds:
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where &, is independent of the choice of y[natl time
instant n and the coeflicients ax are defined in Eqgn.
4. Complete the sqguare for the portion of &, that is
dependent on y[n]. To minimize &, by our choice of
y[n], it is only necessary to minimize the portion of
&, dependent on y[n]. Therefore, it is equivalent to
minimize
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Therefore, lgn. 3 is the optimum solution. When
the argument in Eqn. 3 is zero, y[n] can be chosen
arbitrarily without affecting the minimization of the
metric.

The synthesis approachsystem diagram is shown in
Figure 1. It is important to note that the generation
algorithm is dependent only on the present value of the
mput signal, « [n]. This makes sense since we select the
y‘[[l sequence term by term, suggesting that the future
ofz[n] is unknown. The output sequence in Xgn. 3
is the quantization of the input signa plus a lincar
time-invariant filtered version of previous output er-
rors. This bears a strong rescmblence to the output
of arbitrary AY modulators [2]. In fact, the following
corollary shows that the first-order AX modulator is
aspecial case of this synthesis approach.

Corollary 1. The first-order AY. modulator is a spe-
cial case of th ¢ synthesis approach where the oversam-
pling ratio, R,the memory, M, and their ratio, it/M,

tend to infinity. ‘J 'his corresponds to the case of a
nearly-constan tinput signal.

Proof: As the ratio It/M tends o infinity, each of
the coefficients defined in Fqn.4 tend to unity since
O <k < M, andthe output can be written as:

M
y[n] = Q(;r[n] — E e[n - k) (8)
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In the standard A literature, it is more common to
express the output error sequence, ¢ [n], in terins of the
error introduced by the data conversion. Let ¢[n] be
the quantization error introduced by the quantization
operation, @,inlign. 3. ‘Jhen:

M
ol = 2ln] =3 efn - k] 4 <l
k=1
= a[n] + ¢[n] 9)
Thercfore as M tends to infinity:
Ec[n -k]= ¢[n]. (lo)
k=0

It follows that under the asyinptotic conditions de-
scribed above, C['Il]:([n]—cfl— 1 which leads to the
standard first-orcler A result.:

i) = 2ln) o ) [ 1) )

As a check, the transfer functionthat the conversion
error, ¢[n], seesis (1 — 2 '), which has a spectral null
at DC. |

3 In-band Noise Power

The in-band noise power is defined to bethe
amount of error power in the frequency region w| <
n/R. ‘Jo calculate the in-band noise power, it is
assumed that the conversion error, ¢[n], made by
the quantizer is a zero-rncal, white, random variable
uniformly distributed over one quantization interval.
While this assumption is formally not exactly correct,
in practice it can be a good first order approximation,
and it provides a tractable method of evaluating dif-
ferent architectures.

As in the AY literature, the diflerence equation re-
lating the output error, ¢[n], to the conversion error,
¢[n], defines the noisc transfer filter, N(z), that the
conversion error passes throughto create the output
error. Based on Iign. 9, this difference equation is
easily shown to be:

M-1
(n]= Z sinc(%)c[n - K]. (12)
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Taking X-transforms wc obtain:
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= N(2)¢(2), (13)




where

M-1
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and ¢.(z)pnd ¢.(z) are the Z-transforms of the output,
error andthe conversion error, respectively.

The transfer function A(z) can be viewed as a
rectangularly-windowed FIR approximation to thellR
transfer function whose frequency responscis ¢ for
lw| < T/it and zero elsewhere. The approximation im-
proves at frequencies away from=#/R asthe memory,
114, increascs. Therefore, over the frequency range,
|w| < w/k,the magnitude of the noise transfer fil-
ter response, |N(e’)|, approaches %asthe memory

increases. 14 follows that the in-band noise power is:
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where ¢ is the variance of the conversion error.

The écpendcncc of the in-band noise power on the
inverse third power of theoversampling ratio is the
same here as it is for first-order AY modulators [2].
1 Towever, an important difference is that the above
relationship is valid for arbitrary oversamplingratios
using this synthesis approach., while the AY result is
vaid only for large oversampling ratios. I'he next the-
orem elaborates on this result.

Theorem 2. The synthesis algorithm provides supe-
rior in- ban d noise performance over the first-order AY
modulator for non-constant input signals.

Proof: When the input signal is constant, the over-
sampling ratio is infinite, and Fqn. 18 shows that the
in-band noise power is zero for the synthesis agorithm.
nom the proof of Corollary 1, the spectral null at DC
in the noise transfer function for the first-order AY
modulator shows that the in-band noise power is also
zero.

Using the result of Iiqn.11 and Corollary 1, the
noise transfer function for, the first-order A% modu-
lator is N(e?*) = (1—¢e7?%). Thercfore the in-band
noise power for the first-order AY. modulator is:
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The ratio of the in-band noise powers is a function of
R and is found by dividing ¥gn.16 by the result of
Eqgn. 15:
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The ratio is greater thanone if and only if sin(7/12) <
2(1- 5z). Using the product series expansion for

the sin(0) function, the inequality
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is true because, after the obvious cancellation, (1 --
77) < (1 — 33z) and |1 — 37| < 1 arc truc for 12 >1
and k> 2. .

It is natural to wonder how well the synthesisap-
proach compares t0 to conventional A3l mmodulators of
arbitrary order. in-bancl noise power calculations for
an 1.'* order AY. modulator can be made for arbitrary
IR by replacing the |1 - ¢77¢|? integrand in Iqn. 16
by |1 — =% [*". "I'he solution to this integral is cas-
ily ound. W ule high-order A». modulators will have
lower in-band noise perforinance than the synthesis
approach for large oversampling ratiosthey will per-
form more poorly for lower oversampling ratios. It is
of interest o sce what the critical oversampling ratio
isin order for the L** order AY. modulator to have the
same in-band noise performance as the synthesis ap-
proach. This can be viewed as the minimuim oversain-
pling ratio at which the synthesis approach is outper-
formed. These values values have been computed as a
function of theorder, ., and arc presented in Figure 2.
At oversampling ratios below approximatcly 2.862, no
AY:modulator of any order outperforms thesynthe-
sis approach. Therclore, this simple analysis suggests
the synthesis algorithm can outperform A3 iodula-
tors of arbitrary order in high-bandwidth applications
requiring a highly linear data converter.

4 Simulations

Figure 3 shows the theorctical in-band noisc per-
formance of the synthesis approach and the first-order
AY modulator for oversampling ratios between 1 and
10. These low oversampling ratios arc of interest based
011 the results at the end of the last section. Thein-
band power is scaled by the variance of the conver-
sion error, ¢?. As proven in Theorem 2, the synthesis
approach theoretically performs better thanthe first-
order A3 modulator.

Simulations were performed for oversampling ratios
equal to 2,4 and 8. The input signal for cach 128 K-
point simulation was a stationary Gaussian process
with zero-rncan, unit variance and frequency support
constrained to the region |w|< /R by atenth-order
clliptic filler with 0.3 dB passband ripple and 70 dB
stopband attenuation. The same filter was used on
the output error scquences before evaluating theex-
perimental in-band noise power. Single-bit converters
with output values d4¢=:+42.5 were used in al sire-
ulations. The converter output magnitude, cle| was
chosen so that the unit-variance Gaussian wou ld over-
load, or saturate, the converter infrequently.




The circles (0) and asterisks X)_ in ¥igure 3 arc the

cxperimental outcomes for the A modulator and the
synthesis approach with memory of M = 100, respec-
tively. While the experimental results indicate that for
thesc oversampling ratios the synthesis approach out-
performs the first-order A3 modulator as predicted by
theory, the margin by which it dots so and the actual
values of the in-band noise power depart, from what is
expected. T hese variations reexplained by the fact
that for each simulation the spectrum of the convcr-
sion error process, ¢[n] was slightly colored. While
conversion error variance was very close to the pre-
dicted values of o? = ¢?/3, the conversion error spec-
trum was dightly high-pass for the the AY modulator
and resulted in lower in-band noise power.  Conversely,
the conversion error spectrum was slightly low-pass for
the synthesis approach resulting ina greater in-baud
noise power. Thethcoretical expressions derived in
Section 3 assumed white conversion noise, which is
valid to a first-order approximation judging from the
experimental outcomes in Figure 3 and separate sim-
ulations that studied the conversion error specifically.

The simulations also verified predictions about the
nature of the noise fransfé function for the synthesis
approach. Spectra of the output error were obtained
and found tohave constant response over the pass-
hand frequencies. The relationship between in-band
noise power and memory was investigated and results
arc presented in Figure 4 for oversampling ratios of 4
and 8. It was shown in Scction 3 that the magnitude
of the noise transfer function in the passband tended
to %, where I¢ is the oversampling ratio, as the mein-
ory, M became large. Figure 4 suggests that this will
be true when the ratio of the memory to the over-
sampling ratio cxcecds unity, or when M > R. This
has important implications for the complexity of syn-
thesis approach systems. The number of delays and
multipliers required in a system that approaches the
asymptotic performance described in Section 3 may
be small when the oversampling ratio is not large.

5 Conclusions

The synthesis approach is the optimal solution to
an oversampled data conversion problem based on the
minimization of a metric that measures the amount
of noise power residing in a particular frequency re-
gion. While the synthesis approach was theoretically
and cxperimentally shown to have better in-band noise
performance than tbc frrst-order A modulator, the
synthesis approach has greater complexity. T'he added
complexily may be worthwhile, however, in systems
with low oversampling ratios. In addition, experimen-
talresults have shown that in such systems the neces-
sary complexity toachieve asymptotic performance is
not large.

The limiting aspect of the analytical model pre-
sented here was the behavior of the conversion error.
This was the primary reason for discrepen cy between
the theoretical predictions for in-band noise power and
cxperimental observations. Future work needs to ad-
dress more complicated models for the conversion ecr-
ror spectra as a function of the input signal. T'his work

iS necessary in order to further evaluate the utility of
the synthesis approach.
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Figure 1. The Synthesis Approach System Diagram
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