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Abstract

Correciness is paramount for safety-critical soft-
ware control systems. Critical software failures in
medical radiation treatment, communications, and
defense arc familiar to the public.  The significant
quantity of software malfunctions regularly reported
to the software enginecriug communily, the law s
concerning liability, and a rccent NRC Acronautics
and Space ¥ngincering Board report  additionally
motivate the useofcrror-reducing and defect detection
software developiment techniques.

The benefits of formal methods in requireinents-
driven software development ((forward enginecring”)
is well documnented. One advantage of rigorously engi-
neering, software 1s that formal notations arc precise,
verifiable, and facilitate autornated processing. This
paper desceribes the application of formal methods to
reverse engiucering, where forinal specifications arc
devcloped for a portion of the shuttle on-orbit digital
autopilot (1D AP). Three object ives of the project were
to: demonstrate the usc of formal methods on a
shu ttle application, facilitate the incorporation and
validation of uew requirements for the system, and
verify the safety-critical properties to be exhibited by
the software.

1 Introduction

Correctuess is paramount, for safety-critical soft-
ware control systemns.  Critical software failures in
medical radiation treatment []], communications [2],
and defense [3] arc famihar to the public.  The
significant quantity of software malfunctions regularl
reported to the software enginecring community [4 i:
the laws concerning liability [5], and arecent NRC
Aeronautics and Space Fngineering Board report [6?
additionally motivatethe usc of error-rcclucitlg anc
defect detection software development techniques.
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The benefits of formal methods in requirements-
driven software development (' (forward enginecring”)
is well documented [7,8, 9, 10, 11, 12]. One advantage
to using rigorous approaclies software engineerin
i s that formal notations arc precise, verifiable, anﬁ
fecilitate automated processing [13].

We claim that maintenance of critical existing
('(legacy”) code also benefits from formal methods.
Yor example, forinal specifications can be reverse
engineered from existing code. The resulting forinal
specifications arc then the basis for change requests
and the foundation for subsequent verification and
validation. Considering re-implemnen tation’s high cost
and) even worse, the failure of critical software,
reverse engineering of codeinto formal specifications
provides an alternative or a supplement to traditional
approaches Tor maintaining safety-c.ritical systeins.

‘I'his paper describes @ project that applies formal
miethods to a portion of the shuttle on-orbit digital
autopilot (1D AP). Threc objectives of the project were
to: demonstrate the use of formal inethods on a
shuttle application, facilitate the incorporation and
valid ation of new requiremnents for the systemn, and
verify the safety-critic,d propertics to be exhibited by
the software.

In addition to developing formal specifications of a
critical module, a graphical depiction of the subsystemn
was constructed using thie Object Modeling Technigue
(OM'T) [14] to provide an object-oriented view of the
systemn as it relates to the functional and dynamic
views. Lessons learned from this project are described,
including discussions of the benefits of constructing
and the ability to generate proofs with the formal
specifications.

The remainder of the paper 1 S organized as
follows. Section 2 gives a brief introduction to forinal
mcthods and object-orienited development techniques.
Scction 3 gives an overview of the entire project,
including a discussion} of the object-oriented analysis
and the development 0f the OMT diagramms. A
sutmmary Of lessons learned from this project arc
discussed inSection 4. Finally, concluding remarks
and future investigations arc givenin Section b.



2 1 background Material

This scction briefly defines and motivates the usc of
formalmethods. Also, the benefits of object-oricllted
analysis anddesign arc presenied.

2.1 Yormal Methods

Formal methods in software development provide
many benefits in the forward engincering aspect
of software development [7, 8, 9, 10, 11i] For
any specification, there can be any number of
implementations that satisfy the specification [15].

Due to the criticality and the volumne of much of the
software being developed by many agencics involvedin
fight systems, there arc several projects incorporating
formalinethods into the software development process
[16}. In addition, there have been recent  investigations
inlo reverse engineering that focus on the usc of
rigorous mathematical methods for extracting formal
specifications from existing code [17, 18, 19, W)

A formalmethod consists of a formal specification
language and formally defined inferencerules [7].
The specification language is used to describe the
intended systein behavior and the inference rules
provide a sound mecthod for reasoning about the
specifications. Using formal specifications for software
esign serves several general purposes.  First, it
forces the designer to be thorough in the development
and the documentation of a system design. Sccond,
the developer is able to obtain precise answers to
questions posed about the properties of the system,
andthercfore be able to rigorously test (Ly developing
theorems) the design for the satisfaction of its
requireinents. Unfortunately, sine.c the requirements
arc traditionally expressed informally, there remains
a (albeit decreased) potential for errors to remain
undetected. Third, the developer is able to reason
about the correctness of a system or a safety -
critical component of the systemn with respect to its
specification. The latter category of reasoning can
be divided into two approaches: program verification
and program synthesis. Program verification is the
process Of checking the seinautics of a programn text
against its specification. A program whose semantics
satisfies its specification is said to be correct. Programn
synthesis refers to formal techniques for systeinatically
developing a program from a specification such that
the correctness of the resulting program (with respect
to its specification) is inherent in the development
process itself [21, 22, 23, 24].

Formmal methods arc typically more diflicult to
apply than inforinal approaches and require a great
deal more discipline. Furthermore, the state of the
current, technology is suchthat verification and the
usc of formalmethods is largely donemnanually, thus
requiring a tremendous effort to perforin tedious,
but necessary tasks. In general, the introduction
of formality in software development is a diflicult
but valuable step in the construction) of reliable and
maintainable computer systemns.  The difficulty is
largely due to the quantity of detail required by
formalization as well as the tedious process by which
the formalisms must be mampulated. However, the
detection and correction of design flaws, ability to

usc automated tools for manipulation, elimination of
ambiguity, precise documentation for maintenance,
andimproved reusability arc a fcw examples of the
overwhelming value, and often necessary benefits, that
formal mecthods brings to the software devclopment
Process.

2.2 Object-Oriented Techniques

‘Jhere arc a wide variety of approaches to
requirements analysis (see [25, 26] for examnples), inany
of themn in the broad category known as object-oricnkd
requirements analysis (OOA) [27, 28, 29, 30]. An
object is a data abstraction, and it is the goal of
OOA to construct an abstract, object-based inodel
of the problemn domain. The 00A focus on objects
is in contrast to themnore traditional approach to
analysis that focuses onprocedures [31]. That is,
instead of imnodeling the problein domain as a systein of
operations that process data objects, 00A modeling
centers on a description of data objects and their
interactions.

Most 00A techuiques beginby a careful assessiment
of thenaturallanguage problemn description. A siinple
first step in developing an 00A model is to extract the
nouns from the problem description. Many of thesc
nouns Will share comninon properties and may be more
casily described as instances of types. For example,
Galileo, Voyager, and Magellan arc all
and Venus, Mars, and Mercury arc all planets. 1n
this context, spacecraft and planet can be considered
as types, where the type of an object is called its
class. Some classes, referred to as subclasses, may
be specializations Of other classes. For example, an
interplanetary spacecraft is a specialization of the type
spacecraft. As such, 00A organizes types into a
class hierarchy based on aisa (as in“anX isa Y*)
rclationship.

It may be natural to think of anobject as
being composed of other objects. For example, an
interplanetary spacecraft may consist of numerous jets,
guidance andnavigation control systemn, and a probe
to study a planet’s atmosphere. This dependence
introduces an additional dimension of relations into
the class hierarchy, that is, a part of relation. The
parlsof an object arc often called its attribules.

The nouns of the problem description can be
used to identify candidate objects (and therefore,
classes), and accordingly, the verbsinthe problem
description can provide information on interactions
between objects. Some verbs may describe a service
for a particular class of objects, such as fire in the
phrase “fire the jets’. Other verbs may describe a
possible state of an object, such as coast in the phrase
“the spacecraft begins to coast.” Therefore, verbs help
to define the services of a class of objecis, usually
referred to as the operations or methods of a class,
arid the computational processes of the systemas a
whole (the (]ynamicbchavior?.

in the early stages of software developinent,
includig object-oriented approaches, diagrams ar c
frequently used to describe requireinents and guide
developinent.  Yor example, data flow diagrams
(DFD) [25] have been widely used to visualize

spacecraft,



functional behavior of processes. Entity-relationship
F-R)iagramns [32] have been used to pictorially
cscribe a wide variety of concepts, foremost among
them is therelational data base organization.

In general, a single diagramming notation is
not suflicient to capture the complex information
needed to build software systems [33]. The
Object Modcling Technigue (OMT) [27] uscs DFDs,
hybrid 1-R diagrams, and statecharls to model
software requiremnents using object-oricutcd concepts.
Collectively, these diagrams address propertics that
should bemodeled, including flow of control, flow
of data, patterns of dependency, time sequence,
and name-space relationships. The OMT approach
i s appealing in its multiple views of software
requirements and is fairly comprehensive in its
gall)ci(, informal) treatinent of development issues.
“urthermore, OM7T is commonly used inindustry and
in acadcinic seltings.

3 Project Overview

A portion of the shuttle software was chosen for
a formal methods demonstration project involving
NASA’S Jet P'ropulsion laboratory, Johmson Space
Center, aud lLangley Rescarch Center [34]. This
mulli- NASA site project was supported as a Rescarch
and Technology Objectives and Plans (RTOP). A
related project of a sinaller scale was perforined
by the authors in conjunction with the larger
demonstration project. The Phase. Plane mnodule,
the control systein for automatic attitude control
of the shuttle, was the subsystemn selected for the
smaller project. The criteria that led to the selection
of Phase. Plane included finding a module with
difficult to understand requirements and potential for
critical change requests.  Although the Phase. Plane
module has worked correctly in thousands Of hours
of usc (both in termns of simulation and flight), its
specific propertics remains obscure (at least, tothe
requireinents analyst and software developersp 35,

Three tasks were performed in the development
of the formal specifications of the mod ule’s high-
level requirements.  First, an understanding of the
original requircments was neceded.  This involved
consulting the Functional Subsystem Soflware Re-
quirements (FSSR) docurnent [36] (also known as
l.evel C requireinents, consisting largely of “wiring
diagrains”), Guidance and Conirol Systems 7Training
Manual [37], source code, informal designnotes, and
disc ussions with shutile software personncl. Au “as-
built” formal specification capturing the functionality
depicted by the FSSR “wiring diagramms” was then
developed.

Sccond, when attempting to derive a more abstract
requireiments-level formal specification, it was diflicult
to eliminate the implementation bias present in the
as- built layer. A level of OM'I' diagramns were
develop ed to depict the information from the first
level of specifications. These diagrams facilitated the
abstraction process aud lead to the next higher level
of specifications. This iterative process consisting of
developing a level of formal specifications, followed
by constructing the corresponding OM'T' diagrains

lead to theidentification of the high level, critical
requirements of the Phase _Planemodule. Example
specifications aud OM'T diagrams are described below.

The third task involved outlining proofs between
the levels of specifications developed. That is, ecach
specification must be shown to correctly implement
the more abstract specification above it, These proofs
provide traceability fromn the implementation details
as described by the “wiring diagrams” to the high level
requirements.

3.1 J’base Plane

Phe Reaction Control System (RCS) Digital
Autopilot systemn (DAP) works to hold attitude or
to achicve au attitude mancuver through au error
correction method, involving the control of jet firings.
Pigure 1 gives a high-level view of the DAY, where
the State Estimator gives the current attitude, while
taking into consideration spacecraft dynamics such as
propellant usage aud inertia This information is then
supplied to a component that calculates the attitude
and rate errors with respect to desired values (specified
by the crew).
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Figure 1. lligh-level view of DAP, including the
Phase. Plane module[38]

‘This project focused 011 the Phase-Plane inodule,
where dphase plane inay be visualized as a graph
plotting spacecraft rate errors against attitude errors
for onc rotational axis, with a “box” drawn around
the center.  There is a scparate phase plane for
cacl | of the vehicle rotation axis (roll, pitch, and
yvaw). The “ box” Swith parabolic’ sides), whose
limits arc defined by the crew with attitude and rate
deadbands, is used to determine when, if, andin
what direction rates must be generated to null the
crrors [38]. If the shutile is within the specified
deadband limits, the rate and attitude errors arc
represented by a point plotted inside the box. If
the point travels outside the box, then jets fire to
return the point inside the box, thereby reducing
the errors aud achieving the mancuver request or
maintaining the attitude hold as requested by the
crew. Inan attitude hold situation, the error plot
actually cycles around the zero error point with jets
turningofl and 011 again cach time the limits of the
“hox” ac exceeded. This is known as “limit cycling”
or “deadbanding”. The phase planc generates positive
or negativerate coimmnands 011 au axis by axis basis,
where the jet select component deterinines which
jet(s) to fire (the topic of the RT'OP project [34]).
Iigure 2 gives a graphical representation of the phase




plane. The dashed lines outline the “box” that define
the deadbanding path. The shaded regious depict
the coast regions where the orbiter dots not need any
corrective action. The remaining regions arc known
as hystcresis regions, where external factors such as
propellant usage, inertia? iime lags between firing
commands, and sensor noise require the calculation of
corrective action to cnsure that the Orbiler remains
within the deadband limits. The requirements for
the Phas e, Plane module arc described interins of a
‘(wiring” diagram (scc Figure 3 [36]), indicating the
input andoutput values, and several tablesdescribing
the calculation for the boundaries of the phase plane
and its diflerent regions.
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Figure 2: Graphical depiction of the phase plane, with
coast and hysteresis regions [36]
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Figure 3:Wiring diagram for the Phase. Plane module
(36]

3.2 Formal Specifications

Onecaspect of formalmethods for critical software
development IS the use of a particular rigorous
notation to precisely define the function of the systen
and requirements that the system software must meet.
These formal specifications ar ¢ syntax- and type-
checked using c.ollll)iler-like parsers.  'T'his project
used the VS (Protolype Verification Systemns) forinal

specification tOOISL39, 40] under developinent by SR1
International. PVS§s written) iu Comnnon Lisp but
runs ou interpreters of other Lisp dialects. A PVS
user, however, interacts with acustomnized Finacs [41]
interface and needs no knowledge of Lisp.

Our goal was to specify Phase. Plane’s functionality
and exccution constraints at several levels of
abstraction.  Specification of a system through
incrcasingly more detailed levels of abstraction is a
well-cstal)lidled strategy used by specifiers [7, 42, 43].
Although these levels may appear amost digoint, the
proof of correct refincinent of alevel of specification
by the level below assures the specifier the model
1s correct in addition to providing requirements
traceability.

A general rule is that abstract, ul)l)cr-level
specifications should establish systemn inputs, outputs,
and basic “functionality of thc systein.  Critical
correctness requircments that the systeinmust satisfy
arc stated at this level aud become the criteria
by which the specification is judged to be correct.
Therefore, uJ)per-level specific.atio~[s tend to be black-
box models of thesystein.

Mid-level specifications introduce both data type
and functional detail that may constrain the eventual
implementation of the systemn. Thesc levels arc the
core of the specification since design decisions and
and exccution environment issues can be introduced.
Change requests for modules will most likely be
addressed inthese levels.

A 10W-1CVC1 (“as-built”) specification is a straight-
forward representation ofa particular implementation.
It is fromn this detailed specification that source
code can be automatically generated, or verification
conditious for progratniner-produced code derived.

The nature of Phase.Plane demanded a bottom-up
approach iustead of the top-down, strategy described
al,)ovc. tHoll-level Fuglish descriptions of ﬁ;ls portion
of the shuttle D AP were readily available, as was
source code that had execcuted without error in
hundreds of hours of use. This project explored the usc
of formal specifications to derive requirements that are
more detailed aud precise than an English paragraph
and less obscure than tightly optin1izc<§ source code.

A 10W-1CVCL1 forma specification wasdeveloped from
the existing source code, the Crew ‘Iraining Manual
[37], and the low level “wiring diagrains” of data
flow and forinula tables. This specification mirrored
the functionality of the existing system, but did not
offer an abstract view of the module’s functional
requiremnents.

A Ilig}l-level black-box specification was then
developed corresponding to the level zero 1 )FD
(I'igure 4). This formal specification did not
imclude implementation details. At this level it was
straightforward to state abstract properties that any
software implementing Phase-Plane must have.

Finally, a inid-level forinal specification was
outlined to capture critical aspects of functionality
and requirements at a level useful to shuttle
“requiremnents analysts” when reviewing proposed
modifications to the module. Due to time constraints,
this level is dtill under development.




The challenge at the Jliicl-level is to omit extrancous
implementation details, yet be precise enough to
capture necessary properties concerning minimization
of fuel usage, thruster firings,and movement about
the desired attitude. Includedin this challenge is the
linkage of the three specification levels by proofs that
trace abstract, critical ]>ro]>crt.ics from the top-level

specification through the
“code-level” specification.

It should be noted that since the PVS environment is
interactive, it is possible for a user to make a “claim”
and attempt a proof of the claim iimmediately. This
feature can be particularly useful whenattemnpting to
deduce requiremnents from a c.odc-level specification.
This tactic can aso beused to ‘(test” a specification
interactively. A current NASA RTOP has documented
othier advantages of formalmethodsin generaland PVS
in particular {34].

3.3 Construction of OMT Diagrams

This section describes the OMT diagrams that
have been generated thus far for the Phase.Plane
module.  Since wc started the reverse engineering
process With the source code andimplementation
specific wiring diagrain of the Phase. Plane module,
we created twolevels of data flow diagramns depicting
the flow of information into, froin, and within
the Phase.Plane. 'These diagrams assisted inthe
abstraction process to obtain an architectural view
of the phasc plane as it related to the overall D AP
system, thus leading to the construction of the object
models.  The object and the functional models
offered onelevel of abstraction, thus leading to the
development of the next layer of formal specifications
(mnid-level specifications dcscribing:lata strut.turc and
opcrations on the data structuregs IFinally, using the
functional and object diagrams in conjunction with
the description of the deadbanding states, wc created
the dynamic model for the Phase. Planemodule. The
dynamicinodel depicts the states between jet firings as
the orbiter deadbands. A highlevel of specifications
was generated based on the dynamic model.

The remainder of this scction describes the OMT
diagrams constructed during the reverse engineering
and formal specification construction process.

nid-level, and to the low
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Data flow diagrams (DFD) facilitate a high level
understanding of systems, bothintermsof forward
and reverse enginering. Static analysis of program
code provides information that accurately describes
flow of data inasysten.In general, process bubbles
denote procedures or functions of a given system.
Arrows represent data flowing from one process to
another.

The simplest functional model (DFD) is a contert
diagram or Level O diagramand is shown inFigure 4,
wliere the entire phase plane module is reduced to a
process bubble, with the external imput and output
labeled. This diagram provides the context for the
process inquestion. Note that the Level O DFD) closely
resembles the structure of the “wiring” diagramn for

Junctional Models

Phase.P1 ane given in Figure 3.

pevious Bruster commands
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Figure 4: High Level (0) DFD for
Module

Phase. Plane

T'he child diagram for Figure 4 gives the next level
DFD, which shows the diflerent processes making up
thePhase Plane module and is shownin¥igureb. in
this figure, the input variables arc used to calculate
boundaries for the phase plane. The boundaries and
the attitude and rate limnits arc supplied to the process
that caculates the thrust commmands (jet firings).
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Figu ¢ 5:Level IDFD for Phase _Plane Module

3.3.2  Objcet Models

Studving the “as-built” layer of specifications, the
different D¥Ds, and the requircinents document for
Phase-F’'lane led to the development of anobjecet
model for the Phase_Plane. AS mentioned previously,
anobject is a salf-contai]lcd module that includes both
the data and procedures that act onthat data. An
object can be considered to be an abst ract data type
(ADT). A class is a collection of objects that have
CO1I1111011 USC [44].

The object diagramn for the Phase. Plane is shown
in ¥igure 6. This diagramn is a class cutity with
attributes rale error, atlitude crror, and rotlation
azis. The operation for this class is calculate thrust
commands based outhe rate and attitude errors.
Also included in the object diagrain arc Phase Plane
class instances (rounded rectangles) for cach of the
rotational axes (roll, pitch, and yaw). Fach of the class
instances Will calculate diflerent thrust commands
for cach of thespecific rotational axes.  Notice
that there arc two subclasses for the Phase Plane
class, Coast Region andHysteresis Region. In the
coast region, the values of the attitude aud rate




errors arc withinacceptable bounds, thus there is
no need to calculate new thrust commnands. In the
hysteresis region, however, the Wale.ulaic new thrust
commands” operation is inherited from the Phase
Plane class.

- phase |
Plane

Hate Error -
Attthwde Error
Rotation Axis

Calcutate thrust
commands

A

N SS—

Hystoresis
Region

commands

(Phase Plane) (Phase Plane) (Phase Plane)
Rofl Pitch Yawl

igure 6: Object Model for Phase ]'lane Module

Next, wc performedmore abstraction steps in order
to obtain a Iligl]-level object model for the DAP,
consisting of the Staie Estimator, Phase 1I’lane., and
the Jei Select Module, corresponding to the diagram
giveninVigure 1. Figure 7 gives the object mnodel
for the DAP, where each class consists of threc
parts corrcsponding to the name of the class, list
of attributes, and1st of opcrations. The diamond
symbol denotes aggregat jon, where the class above the
diamond is said to consist of the three classes below
the diamond. If either attributes or operations are
not known (or do not exist) for a given class, thenthe
corresponding area is shaded.

3.3.3 Dynamic Models

This section gives the dynamicnodels for the phasc
plane, which describes the states in which the DAP
can be with respect to the Phase Plane component.
Also, included arc the transitions that take the D AP
from one state to another. A pictorial diagram of
the envelope depicting the pogition 0f the Orbiter
i s given in Figure 8. The plots the current
vehicle attitude and rate errors with respect to the
phase plane.  As long as the current position is
within the limits imposed by the deadbands (the
heavy lincs), the dcadband constraints arc satisfied
andno jets will be commanded to fire.  Once the
Orbiter excceds the bounds of the ‘[box”, jets will
be cotmmanded to fire inaneflfort to cancel the
errors, thereby reducing the errors and achieving the
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Figure 7: Nigh Level Object diagram for D AP
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Figure 8: Graphical depiction of the phase plane, with
deadbanding cycles [37]

requested Imancuver or maintaining the attitude hold,
whichever was requested by the crew.  Once the
Orbiter returns to the deadbaud area, the jets will
stop firin g.

Pigure 9 gives anexplanation of the different states
in which the Orbiter can be while it is dcadbanding
[37]. Figure 10 gives a statechart depiction of the
states through which the Orbiter transitions while it is
dcadbanding. The state transitions arc inthe form of
jets (terminate/begin) firing and the Orbiter drifting
(in/out) of the deadband region.

Note that Figure 8 depicts the clockwise traversal
of the states inwhich the Orbiter cycles throughthe
deadband lnnits. It is also possible for the Orbiter
to traverse the cycle in a counterclock wise fashion, in
which case, the arrows in¥igure 10 would be reversed.

Finally, a very high-level view of the states in which
the Orbiter can be is given in Figure 11. Included




1. Necr jets fire.  Siuce the rate error is
positive, the attitude error will grow in
a positlive direction.

. Jets fire to nullify thepositive rotational
rate.

3. Jets stop firing when the deadband line
is crossed, but a little negative rate
crrors is inevitable.

4. No jets fire. With a negative rate
error, the attitude error will aso drift
negatively.

Jets fire to nullify negativerate error.

6. Jets stop firing, butl residual positive
rate error causes attitude error to go
positive again and the cycle repeats.

)

(322

Figure 9: Explanation of deadbanding states [37]

inthe diagram arc the actions or conditions that
cause the Orbiter to transition from one state to the
next. The rectangle containing “Phase Plance” and the
labeled arrows pointing to the states indicate that the
st ate transitions describe the Phase _Plane module.

4 l.essons l.earned

The results from this reverse engincering project
have provided several lessons for the overall project
as well as for future reverse engineering projects.
First, in order t 0 obtain high-level requircments
for existing software, it 1S not feasible t0 obtain
the specifications (formal or informmal) in one step.
Instead, several layers of spccifications must be
developed, starting with the ‘(as-built” specification.
The “as-buill” specification  closcly mirrors the
programming strut.turc of the misting software in
order to provide traceability through the different
levels of specifications.  After creating the levels
of specifications, theorems need to be constructed
to demonstrate that critical propertics are preserved
from one level of specification to the next.

Sccond, formal specification languages and their
corresponding reasoning systeins provide a mechanism
for bringiug together disparate sources of project
inforination into onc integrated framework. In
particular, the project information inay bein a variety
of formats, fromn diflerent sources, and subjected to
varying levels of formal review. For this particular
projeet, information was obtaiued from the Funclional
Subsystem Soflware Regquirements (FSSR) document
FB(H gal so known as Level C requircinents, consisting
argely of “wiring diagrams”), Guidance and Control
Systems Training Manual[37), source code, informal
designnotes[38], and discussions with shuttle software
personnel.  Accordingly, formal specifications were
constructed based on al of the informationin order
to describe the phase plane operation. The PVS
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Figure 10: States representing the clockwise
dcadbanding of the Orbiter
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Figure 11: High-level states for Orbiter with respect
tothe Phase. Plane module

proof system provided a mechanism for checking the
completeness and consistency 0f the specifications,
while also supporting the proof construction of the
relevant theoreins.

‘Third, the benefits of ol~jcct-oriented analysis and
design can be exploited for reverse-engincering as
well as forward engineering projects.  Specifically,
object-oriented analysis and design assists in the
understanding and the siiplification of the complexity
of a large system. Furtherinore, having an object-
oricnted perspective facilitates future modifications by
providing the developer with a high-level, abstract
view of systemn components, thus avoiding the
difficulties assoc. iated with attemnpting to understand
al of the details of a large, complex system at Olice.

Finally, an iterative process consisting of the
construetion of a level of formal specifications,
followed by asect of corresponding diagrams is needed
to develop several layers of specifications for an
existing systemn.Thediagramsintroduce al.retractions
that cau beused to guide the construction of
the next level of specifications.  Furtherinore, the
compleinentary diagrams available in the OMT




approach cnable the specifier to consider different
perspeclives of the system with notations best suited
for therespective perspective. Themajor advantage
to this diagramming approach is that onc notation

does not consist 0 f many diflerent symbols in an
attempt to capture very different aspects of asystem,
which would make it to0 complex t0 usc effectively.

5 Conclusions and ¥utureInvestliga-

tions

Using formal specifications and object-oriented
analysis to describe the software that implements the
Phasc I'lane module of the DAY has demonstrated
that this rigorous technology canbe used for existing,
industrial applications. Constructing the different
levels of specifications, with increasing abstraction,
supplemented by the OMT diagrams provided a means
for integrating inforination regarding the Phase. Plane
module from disparate sources. 11 aving access 10
thisinforination will facilitate the verification that
the original (critical) requirements or properties
arc not violated by any future changes to the
software. In addition to~facilitating verification tasks,
the fornal specifications can be used as the basis
for any autol nated processing of the requiremnents,
including ciiccks for consistency and completeness.
Interaction with the requirements analyst and other
members of the original development team for the
project strongly support the conclusion that the
specification construction process, in addition to the
actual specifications arc uscful to the ova-all software
developinent and maintenance processes Of existing
(safety-critical) systems.

Future investigations will continue to refine the
Inid-level and liigh-level specifications and develop
morc theorems to relate the different levels o f
specifications. We arc also investigating the
formalization of the OMT diagramming notation,
which will provide a mcans for using autoinated
techniques for extracting forial specifications from
the OMT diagrams in order {o facilitate the
specification process.  Jurthermore, extracting the
specifications directly from the diagrains will allow
us to reason about the completeness and consistency
of the diagrammed system, thus greatly facilitating
the requirements analysis, design, and maintenance
phases of software development.
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