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6. CONCI.USIONS

Fully paralkl, analog ncorml nctwcwk bardwarc  systems could
demands required by various real-time app]ica[ions in inmgc proccssirl:,

indcc[i  rncct the processing throughput
l’he results for the map separates dnta

classification problcm  demonstrate ibis capability. For example, wi(h(lu( the consideration of the speeds of the
AT-VME adaplcr and the host computer, the VMF,NA  subsystem Llkcs 0.83 seconds to ckrssify  all 61 K pixel map
scgmcn[  (for an cffcctivc con]putational throughput of 73K pixels/s) whereas the lSAbus based neural network
Iakcs about 1.83 scccrnds to process the same map segment (for an effcctivc  computatiorlal  throughput of 33K
pixels/s). However, the host compuler and the A1”-VME adapter still ingcsl a great deal of processing time.
Though the speed of [he host computer can be easily rectified by rcplocing the host with a faster computer, the
primary bottleneck which limits the data tran.sfcr  throughput bctwecrl the host conlputcr and the NNDB still
remains at both the AT-VMI;.  adapter interface and at the in~~ut DACS They arc largely compensated for try the
inclusion of three novc] fcatorcs of the VIMII: (1) the local data U’amfci  kxhniquc,  (2) the. data buffering schcmc,
and (3) reading the outpuls (or winners’ indices) during the proccssill~:  of the input vectors, Contributing to the
overall processing spccdup of the VMKNA individually, each of these techniques is cnlploycd in order to utiliz.c the
VMEi data bus to its fullest extent by cfficicnt means of augmenting its data transfer tlwoughput,  buffering the data
transfers, and tir]]c-n~llltiI)lcxil]g  the irlput/output write/read o~wrations.

lncrcascd computational throughput could bc attained by clim]nating the data congestion problcm  via an
adoption of a VM[164 bus architcctur-c and of a burst mode data transfer bctwccil  the host computer and the VI MB.
The processing speed of the VMF.NA  would bc improved by at Icast a f:ictor  of four. }’urthcrmorc,  anolhcr spccd-
up could be achicvcd with a simple chip ICVCI redesign. The cxii[ing NN chips require three consecutive
executions to load a single syturp[ic  wcig, ht wrluc. A redesigned chill would need orlly one, hcncc a three-fold
improvement.
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training SC(’S corrfrdcncc  interval, shows that the hardware perfornis  competi(ivcly  con]parablc to NN simulation
(9 1.2%).3 The original map and the hardware output map after a completion of a hardware-in-the-loop training
arc dcpictcd in Figure 5(a) and (b), respectively.

(a) (11)

Figure  S. l’hc original map inmgc (a) and the hardwmc neural rrelurmk  output (b),

The discrepancy bctwccn  Ik software and Ihc krrdware NN results is attribu[rxi to several soulces.
Ilxpcrimcn[ally, onc obsc.rvabk source, as menlioncd  above, is the impact of the }lardwnrc  learning rate on [hc
accuracy. If the hardware learnins  rate dcvia[es  by a few pcrce[lt from its kst value. lhcn tllc accuracy would k
substantially affected. Another no[iccab]c source is the conlpulatioll  of the derivative ill llardwarc, whic]i is done
bypcl-turbing  the biases at the neuron inj)uts and taking the diffcrcncc  in their neurorl  out}]u[s.  ]f the perturbed
bias value differs fl”onl its bcs[ value a little, tile overall accuracy would  k grc.at]y affected. ‘1’his effect could
possibly bcducto  the Iimitcd syrmpti  crcsolution. Morccrvcr,  not (rely the trainingj set sizcbut also its contents
affect thcovmrll  accuracy+ l;or example., two training SCtS A and B of the same siw, i.e. 2300 pixels, but different
contents arc used to train the network. If set A has rnor-c redundatlt copies of the irl~]ut/[argct  pairs [tlan set II,
then. lhcrcsult of set A will bclcssacculate  than that of set R. Olwiously,  tliis effect is dueto  the fact that tlm
training set A is the subset of the training set B. Finally, althougtl the learnin~ utilizes all tile avaikrb]c bits of
hardware precision, the weight updates occasionally crr in either rjtap,nitude  or sign or bot}l due to noises from
several layers of wire-wrap connections of and bctwccn  the VIMB arid the NNDI1: such a stochastic crl-or can limit
the learning cfip:ibility and alter tk overall accurdcy.
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ABSTRACT

‘1’o fully cxploi( the real-time computational capabilities of neural networks (NN) - as applied to image
processing applications - a high pcrfornmncc  VMEbus hascd analog ncu~ocorllputing architecture (VMENA)  is
dcvclopcd.  I’hc inherent parallelism of an analog VLSI NN embodiment enables a fully partillcl and hcncc high
speed and tligl)-tllrc)l]gllj~ut  hardware implementation of NN architcc[urcs. 3’lw \~MIibus intcrfacc is spccifical]y
chosen [o ovcrcomc the limi[cd bandwidth of the PC hosl compulcr Industrial Slandard Architcctur-c (ISA) bus.
The NN lxxir<i is built around cascadablc VL.SI  NN chips (32~32 synapse chips and 32x32 neuron/synapse
composilc chips) for a tolal of 64 neurons an(i over 8K synapses. lJndcr software control, the systcm architecture
could 1X flexibly rczonfigrrrcd  from feedback to fccdfomard  and vice versa, :ind once scicctcd, the NN topology
(i.e. [I)c  number of ncrrrons pcr inpu[, hidden, and ou[prr( layer and the number of layers) could be carved out from
the set of neuron and synapse rcsourccs. A n  cfficicnt  harciwarc-in-tl] c-loop Casca(ic  Backpropagation (CBP)
learning algorithm is implcmcnlcd  on the hardware. I’his supcI vised lcarlling algorithm aliows the network
architecture (o dynamically CVOIVC by adding hidden neurons while nlodukr(ing,  their synaptic weights using
standirrd gra(iicnt-dcsccnt  backpropagirtion. As a dcnmnstratiml,  the NN tmrdwarc  systcm is applied to a
compulationally  inlcnsivc  map-data classification problcnl. l’rainillg  sets ranging in si~,c from 50 to 2500 pixels
arc utilized to train the network, an(i the best rcsuit for the Ilardwarc-in-the-loop learning is found to kc
comparable to the best rcsull of the soflwarc  NN simulation. Once trained, the VMliNA subsystcm  is capable of
processing al approximately 7S,000 fccdforward  passes/second, rcslllting  in over twofold computational throughput
improvement rc]alivc to Ihc lSAbus based neural network architecture.

Keywords: Vh’l[ibus, analog ncurocomputing,  neural network, supervised ]carning, irnagc classification.

1. IN”lRO1)UCTION

Neural nctwor’ks  (NN) have cmcrgcd as a Powc]fu]  tlcw methodology in information processing
applications. What distinguishes neural networks from mainstrcaln methodologies is thal [hey arc trained from
excm;}lars,  and this has ma(ic [i~cm cffcc[ivc at “learning” and Pcrf(uvning  arbilrari]y complex nonlinear functional
cs[imations,  mappings, an(i even control for a varic(y  of applicali(ms.l  J Neural networks fali under Ihc general
rubric of massively paralicl  fine-graincd systems. As such, their hi~~,hly  paral]cl architceturc  is typically composed
of numcr’ous  i(icntical an(i functionally simple computational clcmcnts (called nculons) which communicate with
Onc another via the mcciiation of variable slrcnglh pathways (synaptic clcmcnts). Although software
in~plcr~]cl~l:ttiol~s  of lhcsc NN mo(ic]s  arc usually adequate, applic:ttion.s in image processing arc computationa]ly
intensive and frcqucntiy  require real-time classification or analysis. 7?ICSC  rcquilclncnts  ncccssitatc  the mapping of
tile NN formalism to cic(iicatcd hardwar-c solutions. and ttlcrc rlow exist a broad range of NN hardware approaches
and ir]]plcri~cl~t:itic)]ls. In our approach, wc rnaximizc  the compu[ati[mal  throughput by building a fully parallel and
rcconfigurable ncuroproccssor  systcm based On Clrston]  an:llog  NN chips dcvclopcd  at J}’1 ..3”6 An cxtcnsivc SUIVCy
ofdiffcrcn(  an(i curr’cntiy  available NN ctlips and boards has been ctm~pilcd by l)uollg ct al.3

As a demonstration for our NN hardware, we sclcctc(i the map-data classification problcm. I’his
applic:ition is lnotivatcd  by Ihc need 10 cffcctivciy analyze, classify, and archive high-resolution digitized pixel
map-data renditions of actual ink-l]  ri]~tcd M:q)s as s[orcd  On CD-ROM  car[ridg,cs. A classifica~ion of these dcn.sc
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and cluttcrcd map ima:cs ill[o categorical, discernible arid uscfrrl features could significantly reduce the s(rrragc
rcquircmcn[s.  and [heir data arc in [he mos[  suitab]c  fono. wilt) which fur[hcr  attalysis caii be carried out.

in the following sections. we begin wi[h a brief backgrcrulld  on bo[b IIIC  hardware and soflware  pertinent
10 (IIC  illlplcll~clll:lliol~ of our ncuroproccssor. This is followed by a top Icwcl dcscrip~ion of the VMF,bus
Ncurocompu[ing ArchiIccturc  (VMENA).  I’hc pcrfor[n:mcc of tllc VMF.NA, along wilh its novel fcalurcs  and
technical issues, is discussed in Scc(ion 4. Finally, the rcsrrl[s of a map dal:l classification problem arc rcpcmcd in
Section 5.

2. CASCADA1]I,E  “BUI1.DINC  BLOCK” CIIII’S

Analog NN hardware systems have cmcrgcd  as an impel tant class of computing devices. A variety of
large scale analog VI,SI circuits can now be fabricated. circuits w]lich  fully exploit the conlputalional throughput
and implcmcnl  the lruc asynchronous parallelism of ]Icural nc[work archi[ccturcs. The real scalability and
cascadability  ~wcr of the synapse chips and [he rvarrorl/syrlapse  composite cl~ips in our existing library of VLSI
neural network “building block” arc fully u(ili~,cd and exploited. Furtbcrmorc,  from this scalability feature, (}1c
resolution of (he hardware synaptic weights gcncratcd  from tlartlwlarc-in-[llc-lwll  lcarrlir]~  can be incrcascd  to
augrncnt  the high resolution rcquircnlcnts of [hc software synaptic v:cigh[s.

I
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Figure  1. (a) A wide-range, variable-slope sigllloidal neuron circuit. (b) A
synnp(ic  CCII  circuit consisting of coscodcd  currcn[ mir]ors and V/l common [o
all the synapses along a row in the mat; ix (Icft), static latches DOs arc used to
program the sylurptic  weights (bottom$ight), and current strccr illp, biock, using
lalch I)s as a curfcnl  polarity regulator (lop).

‘1’hc VMIINA  is based on a hybrid of both analog-digital synapse chips and rleurorl/synapse composite
chips. ~’his hybrid design utilizes digital mcntorics  to store the syn:y)tic  weights aIIcl multiplying digital-to-analog
converters (MIJAC) to pcrforrn  the analog multiplication. Each of [hc rwxuon/syrml)sc  composite chips consists of
a 32x32 crossbar matrix of synapses with the diagonal sylmpscs  substituted by 3? nculons,  and each of the synapse
chips con[ains a 32x32 crossbar configuration of synapses. Since plcrcessing is pcrforrncd  asynchronously and in a
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fully pmllcl fashion and since lhc circui[  sctding time is of the order of one microsecond. a chip consisting of
approximately 1000 synapses is capahlc of a con]pumtional  throu~hprr[  of newly a gigs conrrccticrns per second
(GCPS).  T’hc  neuron design (Figure l(a)) incorporates a wide-rarrgc variable gain and sigmoid-lilw  transfer
characteristics. The SyIUIpSC  dcsi:,n (Figure l(b)) is based on a S[atic Random Access Mcrnory (SRAM)  with 7 bits
(6-bi[  + sign bit) of resolution and ulili?.cs two-quadront  current multipliers. F;tich  synapse. thcrcforc, appears as a
digital memory so that writing a digilal valrrc 10 an appropriate memory location constitutes a change of that
synapse’s wci Silt. l’hc functional dcscrip[ions  of lhcsc two types of chip sets arc detailed clscwhcrc.’$

Since these chips arc cascadablc, the output polls of onc chip can dircc[ly k co]lncctcd to the input perks
of another chip without the usc of my intervening glrrc logic. I“llis rncarls  that, in the synapse chips, the input
values arc cncodcd as voltages (for case of propagation) and out~mt  valrrcs  arc cncodcd as currents (for case of
summation). Conversely, in the neuron/synapse chips, lhc input values arc cncodcd as currcn Ls and output values
arc cncodcd as voltages. 13ecausc of their cascadability,  such chips provide a nlcarls to scale up a neural network
architecture to any arbitrary size. For instance, a fully feedback 64x&l T-bit  syIIapses  with 64 rrcurons  neural
network architecture can bc asscrnblcd  from two symtpsc  chips and two ncul otdsynapsc chips cascading in a plane.
In a(idition to being rrblc to tile larger neural networks from these cascadablc amrlog  NN chips, the synaptic
resolutions of such networks can also be scaled up by piggybacking, anothct synapse chip onto [hc existing synapse
chip in the z-dimcnsion,9  Moreover, as the “learning” infornlatioll is contained within the synaptic weights, the
synaptic resolution is important for both the training phase and the recall phase. 3’ypically,  NN Icarning  algorithm
requires high (-12 to 16 bits) sylmptic resolution for an effective ctmvcrgcncc. ]n general, high resolution weights
gcncratcd using an off-line software simulation can not kc ported dirccdy to a low precision analog hardware. To
cornpcnsnlc  for such undesirable discrepancies bctwccn  the softwmc  and hardware synaptic resolutions. hardwarc-
in-tllc-lm~>-lc;]n~i]~g  becomes necessarily indispensable.

A supervised hardware-in-the-loop Cascade Backpropag;ltion  (CHP) ]carning,  algorithm is implcrncnted
on the VMt3NA. The details of the CBP arc presented elscwhcrc.3’10 l’his lcar[ling, algorithm is similar to tllc
cascade correlation algorithm dcscribcd by Fahlman and lxbiercll with two variations: the rncthodology used for
the weight calculation between the inputs and the outputs, and the training tcchniquc of the ncw hidden units. The
weights bctwccn  the inputs and lhc outputs arc initially calculated usin?, pseudo-inverse procedure and down-
hradcd to the hardware while the ncw hidden ncurorrs  arc trained usirlg  the standard gradient-dcsccnt
backpropagalion.]? This algorithm inhcrils most of the irnpol tant propcr[ics  of lklc “growing” algorithms,
including frccz.ing the old weights to minirnizc the lcarr[ing corr]}wtations. I’bus, it is quite adept at learning a
variety of difficult tasks. including, as wc will demonstrate in Section S, the map scparo[cs  data classification
problcm.

3. VMII;bus  NI;UROCOMPIJ”l’lNG  AR(:lll’I’ItCrl’IJ1  <IC (VMENA)

l’his section centers around a description of t}lc VMI NA and dcscril)cs  its essential components in
details. AS dcpictcd in F’ig,urc 2 and shown in Fi8urc  3, tlic VM13NA  systctn  corlsis[s of four major inter-dcpcrrdcrlt
functional blocks: (1) An lntc1386/16 Ml Iz, host cornpotcr,  (2) a Bit3’s A“I’-VMIi  adapter board,  (3) a Neural
Network Daughter  Hoard  (NNDEJ), and (4) a VMl;hus Intcriacc Mother Board (VIMR).  The last three
components of the VMKNA systcrn  arc housed in a 12 6U slots IWocard  chassis. Comn]unication cstab]ished
bctwccn  the PC host compu[cr  and the VIM13  is via the Bit3’s AI’-VM1: ackrplcr board,  and VIMB is
communicating with [hc NNDB via their on-bo,ard  local buses.

‘1’hc PC host computer is usc(i to download configuratiotl  and corwol information, weight rnatriccs, and
input/output vectors. l’he commercially available AT-VM13 adaplcr serves as an intcrfacc bctwccn  lhc ISAbus of
the host cornputcr  and the standard VMF.bus  of the VIMB. The hctirt of ttlc VMliNA is the NNDB and VIMB,
c~ch of which is the sut>jcct of discussion in the following two subsections.
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Figure  2. The functional blwk  diagram of the VMI;bus based neurocornputing
rmchilcchture  (VMEiNA).

3.1. Neuriil Nrtwork Dilughter Board  (NNIIB)

l’hc NNDft consists of six synnpse chips and two synapse/ncrrron  composi[c  chips, for a total of eight
neural chips. Since each of [he sy]mpse  chips is composed of a 32x32 syt]ap[ic  army,  and each of the
synrrpse/ocuron  composite chips is composed of a 32x31 synaptic array wi(h 32 neurons along the diagonal, a to[al
of 8128 [=8(32 x32)-G4J synapses and 64 neurons arc available for usc ill tllc NNI~I\. To optimally utitizc all
synapses and neurons, the NND13  is hardwircd and configured a< a fccdfolward  NN architecture with 64 input
neurons, from 1 to 55 hidden neurons. and 8 output ncrrrolis. ~’hc systcrn  can bc cwily reconfigured under
software control for a fccdhack NN architecture, utilizing chips 4, 5, 6, and 7 in the NNDB.

3.2. VMItIlus  Interface Mother ]Io:lrd (VIM II)

“1’hc VIMB is onc of two major conlponcn[s  of [hc VME;NA.  It provides a user interface with a high-speed
dala transfer capability (via the data buffers) bctwccn the AT-VM[~ adapter board and the NNDB. It stores both
the configuration setup and the weight matrices for the NNDE1 as well as input vectors for real-time processing. 1[
also  collects tllc output neurons’ activations and WTA itldiccs to be read by the hosi computer.
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VMEbus Interface Mother Board (VI MB) compr iscs 64 Digi[nl-(o-Analog  Convcrlcrs  (DACS),
8 Ar~alog-[o-Digilal Converter (AIXls), 4 fast buffers, and 4 state-mcrchine controllers.

L rlNeural  N e t w o r k  D a u g h t e r  B o a r d  (NND!A)  consis ts  of  6 ‘: Pi/J 1 Corrncctor.  communicating to
syrmpsc  chips and 2 synopse/neuron composite chips, in a the host computer via AT-VME.

total of G4 sigmoidal neurons and 8128 syrmpscs. adapter and VMF;bus  backplane.
— — . — . — . — — -  . — -.. ..—. .— -

lJigure  3. Photograph of VMkiNA  consisting of the Neural Network Daughlcr
Board (NNI>II)  on the Icft and the VMf;bus  IntcI face Mother Floml (VIMH) on
the right.

in order [o allow coch of [tic eight neural chips to tx trained ond to perform a spccifrc function after
training, the VIMF1  must function not only as a digitnl lncrnor-y b[lt atso as a digital controller bctwccn tllc NNDB
and the hosl cornputcr. As can bc seen from Figures 2 and 3, the VIM}) itself consists of four functional units
namely,

1. Input Vector Buffer (1V13)  and [hc Main Coritrollcr,
?&. Weight Vector Buffer (WtsVB)  and the Weight Controller,
3. Output Vector 13uffcr (OVB)  and the Output Controtlcr,  and
4. WI’A Vector Iluffcr (WtaVB)  and the WTA Co]itrollcr.

lLTc1l  of these buffers is associated with a state-rnachilw controller wliosc primary function is to bo[h
write/read to/from its buffer and to participate in arbitration with other controllers via the Iocat Control Bus and
the AT-VM}i  Bus. Bccausc VMF; board space is at d prcmiunl, trade-offs bctwccn  minimizing the number of
dcvicc counts and maximizing [hc processing speed rcccivc special ottenlioli in the design and implcmcnla[ion of
the buffers and their associated contlollcrs.  While each of these buffers is in~plcmcntcd using a combination of
high density and high-speed (15ns access Iimc) AMD Am-L?05A-  15 F’irst-In-I’irst-  Ou[ (FIFO) 8Kx9-bit  memory
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dcviccs, each of tbesc state-nurchine conwoilcrs  is implcmcntcd  using high-speed (15ns access time) I-a([icc
22V 1OL.P- 15 lJrIJgr:lll~ll~:ll~lc  logic dcviccs (P1.D).

Using the crrmbina[ion  of five address hits (A 18-22), six address modifier biLs (AMO-5),  and control
signals (AS, WRITE3, L> SO, 1X31) of the VME%rrs,  crrch of [hc functional  units of the VIMB is dccodcd by lhc Main
Controller and is memory-nvrppcd into the address space ranginp from OXAOOOOO  to OXFFFEQO as L~bulatcd in
I’able 1.

~;‘;g”gof:=::::nl
–:_=T==-?=

PC hos[ reads the winner from the WI’A Vec[or Buffer
PC host reads 4 word: (8 bytes) from the Out ut Vector Buffer
PC host writes svn~ic wci~h( values 10 Wci~ht Vector Buffer

PC host writes ill~ut wrlucs lolnput Vector E3uffcr——. — .- —.. — . ..—

I’hc Main Contro]lcr  has two prirmrry  functions. Whctl it functions as a global arbitrator/dccodcr,  it
coordina[cs all control signals among other contrcdlcrs,  the AT-Vh’fE3  adqter board, and the NNDE3;  it arbitrates
with other controllers and decodes the address bits (A1 8-22)  to determine which of four functional units (buffer
and con(rollcr) of the VI MB, including itself, has the right to cxmtr<)l  the VMEibus. When the Main Controller has
the righl to control the VME.bus, it functions as a lccal controller for the lVB. It controls the data flow from the
host comprrler  to the lVEl and from the IVB to the DACS and carries out its nor-nlal write/read/transfer operations.

Although inputs arc 8-bit wide, they arc reconfigured into 16-bit wide word format so as to fully exploit
the total 16-bit data bus bandwidth of the VMEbus.  Thus. the Inl~ut Vectors Buffer (IVL3) is implemented using
four FIFOS,  which arc conncctcd together to form a 16K by 16-bit v:ord buffer. Bccarrsc  the input vectors stored in
the IVE3  arc in a digital format, they must be converted into analog signals before sending thcm to the NNDB.
Since the NNDB is hardwired to have 64 available input neurons, 64 digital to analog converters (DACS) arc
ncccssary. in order to niinimizc  the number of components to swe board real-estate, eight small, compact,
medium speed DAC chips are sclectcd.  F.ach of [hcsc DAC chips tonsists  of eight individual DAC channels each
with 8-bit rcsolu[ion.  ~’hcsc eight DAC chips are implcrnentcd  as f[mr individual bardis  in order to provide optimal
data transfer, using the full 16-bit dala bus band~’idth. To maxinliz,c  the proccssirlg  speed, a pipeline schcmc  is
adopted. First, the Main Controller reads from (hc IVB as word-wide inputs, and then writes them to the DACS’
buffers; it cxccutcs its read/write operations sequentially and continuously until all 64 DACS’ buffers arc filled.
After waiting for 5ps for the outputs  of the DACS to sctllc, the NNL)B  procccds  with its processing [asks. As will
be discussed later in Section 4, the long, settling time of the DACS is onc of the Iinliting factors and bottlenecks
which slows dowl]s the overall system operating speed.

MU. Yc.!ibt  Y?cctor’ Duf(c.r (W_lsVRL13nd  [k Wci ghl. Contml!ct

q’hc WtsVB unit is used as a temporary storage of the NN configuration/sy naplic weights matrices whose
clcmcnts arc rrlways available to bc down lrx~dcd to Ihc NNDEI.  I’(I  properly wrilc a weight value into a particular
synapse’s location, a scqucncc of operations needs (o be performed as illustrated ill l;igure 4. First, (IIC 5-bit row
address along with its contro]-bi[s  field arc prcscntcd  to the NNDE3. A Ctlij~ I:rmblc  (CE) control signal is
subscqucndy asserted. Secondly, the 5-bit column address alorrp, with its co[llrol-bit  field are prcscntcd to the
NNIJB;  then, the Cl; is again asserted. l’ina]ly, the 7-bit weight Vi!lue (froln -63 to +63) along with its control-bit
field arc prcscntcd to the NNDB; and the CE is again asserted. Iklch of these wri[c cycle takes about 225ns for a
total of 675ns pcr synapse or equivalently onc can address about 1.S milliol~ synapses per second. For every
synaptic weight written [o the NNDB, lhrcc write cycles arc required; these redundant cxccu[ions  slow down the
downloading process and seem to be somewhat cumbcrsornc. However, this com~wtation overhead will be vastly
irnprovcd in the next gcncraticm  of NN chip set, where row, column, and wc.ight arc prcscntcd to NNDE1

-6-



simultaneously and only one activa[cd C13 slrobe  is required. 13 ‘f’his improves [he speed in writing synaptic
weights to [hc NN chips by a factor  of three. IkcaLIsc  of the scqucnlial  cxcculion of the row address. the column

—. -—. .—— —-————_——-—-
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Figure 4. ]lls(rLICdOIl Command Formal for Lhc V’eight Vector Buffer (WtsVt3).

address, and the weight dafa, only onc 8K with 8-bi[  wide FIFO is nccdcd to store the synaptic weights for the
neural network. The flow of data from the host computer m th~ WLSVB  buffer and from WtsV!3  to NND13  is
governed by the Wrtc-machine Weight Controller.

3 9‘3 OutpuLY_cctor  .Duffer (Q_V B) w! llle.CJ.utl~ltt_C.Otlll  ol!.c[k. *... -—L—

The Output VecLOr Buffer (OVB) is implcmcntcd with 2 FIFOS  to fcrnn on 8K by 16-bi[ word buffer, and
it is used m a tcmpcrrary  nmrron  outputs storage buffer. Although Lhc NN1>B has 64 available neuron outputs, due
to NNDB board space limitation, only 8 neuron outputs are read at any given time ill the current version. Flrch of
these 8 neuron outputs is conncctcd dirccdy  LO an analog 10 digital convcrlcr (DA-I’M.  ADC-208), operating at a 20
ME17, ~~mpling  rate. I’hc Output Controller no[ only does its normal dam read/wrilc/Lransfcr operation from the
ADCS to OVB and from 0V13 to Lhe host compuLcr but also handshakes with dlC Main COWOIIM  to indicate the
beginning and the end of [hc neural  processing, where the ADC outputs  become available upon the completion of
neural  processing. When the outpuL  Controilcr  recognizes the colnplcLion  or “done” signal after some preset tin~c-
out, it reads the neuron oulpu[s fron~ the ADCS, writes thcm m the OVB, and rcpcots  for 4 times to store 8
neurons’ outputs inlo the OVB. Upon completion of iLs sLorage of the output values, the Output ConUollcr sends a
signal to the Main ConUollcr to begin another neural processing or Lo respond to other controllers’ requests.
Although an 8K FIFO with 16-bit word OVB sccrns to be small for storage of massive data, the stored outputs arc
frequently sent to the host computer during the neural proccssinr of the IICW inpul vector. l’bus, the OVB  always
has some available memory to accommoda[c the incoming neurorl outputs.

2.2.4. Winner-T’olm-All (W!TA)  Vector Buffer (WtaVE!).a~~d Ihc C’o!flrol!cr.—-

Thc principal function of this unit is [o find [he largest neuron output among a SCI of oulpuL  neurons. in
(rthcr  words, the unit performs the following function: V~MX=~maxinlunl(VO, Vi, . . . .V~o),  where N. is the number of
output neurons and Vi is lhc voltage  valLK of lhe ith outpul ncul on. While all ‘less-Lhfin-nlaxilnum’ neurons arc
considered OF’F’,  the r~~axinlull~-ollt~~llt  neuron is defined to be ON. It is [he ON neuron that is translated into a
certain fcnture or class. For examp]c, if neuron //1 is ON. it co] responds to a red colored road: whereas if neuron
#~ is ON, it corrcsPOllds to 0 blue colored river, eLc. ~“his proccs$ of finding t~lc Illaxinlum Output  llCUrOM lLIllOllg a

set of output neurons is termed as a Winner-Take-All (WTA)  opL’raLion.

As [hc WTA circuit is rcccivhlg Lhc ciglit-neuron ou(puIs,  an 8-bit magni[udc compmator  compares them
to dctcrminc the maximum output while a 3-bit dccodcr  circuit Lceps track of the posiLion  of the maximum outpuL
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When lhc maximum oulput is found, (he 3-bit dccodcd index is SIOI cd into the 8K 1<11’0 Vector  Ihrffcr with 9-bit
wide - even though only the first 3 bits arc mc:ming,fui  and sigtlitlcatlt. l?~c dccodcci index is made available to the
host comprrIcr  whcncvcr it requests. l’lic W1’A  state-nlachinc c(mtrcdlcr  cooIdillillcs  all activities during the
opcra[ions  of the comparator, the dccodcr. and the 8Kx9-bi[  FIFO.

4. VMKNA PKRKORMANCF/  AN]) EVALUATION

I.ikc most syslcm designs, [hc emphasis in dcsignin~ the VMENA has been placed on optimizing all
awrilablc  rcsourccs  so as to satisfy systcm rcquircrncnts including both bmn d lCVC1  space and systcrn  lCVC1
computational throughput. As a rcsuli, some of the novel features. their impact on the systcm performance, and
other important, open tcchnieal issrrcs evolved from this design arc discussed in this section.

The first important feature of the VME3NA is that the NN chips of the NNI)B  have on-chip SRAMS,  into
which digital synaptic weight vahrcs arc wvitten  and stored: thus, there is no need to convert the weight values in(o
analog signals externally. A second fcamrc of the VME3NA that signitlcailtly enhances the overall systcm
performance is that most data transfers in the VIhlB are done loc:dly. For instanec, a 10CAI 16-bit data bus is
implcmenlcd to transfer the input data from the lVB to the DACS. Thus, the Ioc:il bus frees the VME3 data bus to
k used for other activities such as writing new input vectors into (tic lVB or reading, the NN output vectors. The
third mlicnt fcatrm  of [he VMENA  is that it allows the host comlwtcr to retrieve the neuron outputs during the
training phase as WC1l as lhc winner indices during Ihc validation pliasc while lhc VIMII and NNDf3  arc otherwise
occrrpicd  processing ncw inprrt vectors. l’his “overlap” of processing time in reading the outputs or the winner
indices substantially improves tlic overall performance of [hc system.

in spite of [hc above notable features, the first technical issue ccntcrcd  on (he weight-loading mechanism
of the NNDH. To s(orc  a synaptic weight value into a synapse, a scqucncc  of thlec (row, column, and weight)
consecut  ivc cxccut  ions is required. These executions take a m:ljor  fraction of time, particularly during the
hardware-in-lhe-loop learning or [hc training phase, itl which n very large number of synaptic updates are
rcpctitivcly performed. To compcnwrtc  for this laggard pmccss. a Weight Vector Buffer (WtsVB) is implemented
to buffer lhc transfer of synap[ic  weights from the host computer to the NNDB. Although the processing speed is
improved somewhat by this buffering scheme, the best solution is to load a weight value into a synapse directly
with a single execution ins(cad of three. l’his would allow the weight and its addlcss to be loaded simultaneously
in onc cxccuiion, improving the prcrccssing  speed at least by a factot of three.

The second technical issue is evolved around ii judicious selection of a SC[ of 64 input DAC neurons in
such a way that the trade-offs between the number of DACS. board real-estate. and computational throughput arc
optimiy.cd.  While faster and fewer DAC channels arc contfiincd in a physically larger DIP package, slower and
many DAC clmnnels  a[c compacted in a physically smaller chip. If faster IJACS aTc sclcctcd, the whole VME: 6U
board would consist mainly of 64 DAC chips. For optinlal selccti~m, eight nledium speed but small and compact
DAC chips, each of which contains 8 l>AC channels with 8-bit r{solutioll each, arc clloscn for implcrncntation.
Using these DACS, the synaptic loading throughput from the VIMB into tllc NNIJB is sorncwhat  moderate. The
synap[ic loa(iing Throughput coLIld  have been vastly irnplovcd by [Ising faster I)ACS.  For instonce,  if DACS wi[h
0.1 IN settling time arc used, the synaptic loading throughput would be aboul 7 tinlcs faster than DACS wi[h 5 ps
settling lime.

The final technical issue in the design of the VMEiNA is illvolvcd in the process of maximizing the overall
syslcm computational throughput, which depends Iargcly  on the sl,ccds of hod) the AT-VMF. adapter and the host
computer. ]ndccd, both the AT-VMEi  adapter and the host cornputcr  [urn out to be serious botllcrmcks.  1’o
illustrate, let us consider our dcmonstra(ive map scpamtes data application of a 61 K pixel map segment, which
will tx discussed in the next section. The VMF~NA  subsystem, which consists of ot)ly the VIMEI and the NNDB
and ~’ifhou[  the AT-VMI.3 adapter and the host computer. takes alxnrt 0.83 second to classify all 61K pixels (for an
effcctivc comprrlatiorml  throughput of 73K pixels/s). On Ihc olhcr hand, lhc overall systcm takes about 30 seconds
to classify all the pixels of the same map segment. I’bus, about 2.3% of ttlc computational time is utilized by the
subsystcm  for its classification tasks, and about 97-98% of the time is stmrcd  between the host computer for display
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of graphics anti [hc AT-VME  adapter for its daln hzmsfcrs  be(wccII  the host crmnprr[cr and the VI MB. Allhough
Ihc communication overhead overwhelms the overall processing. time, the conlputational throughput of the
VM17NA  subsys[cm is satisfactory compared it to an ISAbus  ba~cd of a similar neural network architccturc,
however. For lhc same map segment of 61 K pixels, it would takx the ISAbus bmcd neural network about 1.83
sccomis to process. } lcncc. the computational throughput of the VMFiNA subsystcm  is improved over twofold
rcla[ivc  to the lSAtms based neural network architcctrrrc.

There arc several approaches to further deal with the above bottlenecks an(i 10 improve the overall systcm
computational throughput. To rectify the data congestion on the Vhlt3 data bus. one way is the use of Pas[  buffers.
U[iliz.ing the fast (1511s) access time, low cost, and relatively small size 8Kx9 F1l;O rncmory as onc of the basic
building dcviccs, all brrffcrs  arc irnplcmcntcd as temporary storage buffers of data coming in and going out of the
VIMB, so that the 16-bit bandwidth of the VMi3 data bus can fully IX utili~.cd. For example, the input vectors arc
written to the Input Vcc[or  Buffer (IVB) a word instead of a byte at a time. and it is always ready to reccivc the
incoming data. Thus, the VMIZ data bus can bc freed immediately to rcccivc ncw data or to participate in other bus
related activities. Aoothcr  way for improving the speed of dam tra[lsfcr  between the host computer and the VIMB
is the usc of the VMl164, in which data could be transferred 64 bits or 4 words sirnultrrncously inslcad of 16 bits or
a word at a tirnc. This usage of VMI%4 would improve the ovcrd  I processing speed fourfold. Moreover, all data
transfers between the host computer and the VIMB should be done in the block or burst mode. i.e. a blrxk of data
is transferred discretely so that the idle time be(wccn write cycles could be substantially minin]iTcd, implying
another significant speed improvement.

5. MA]) SEPARA’I’l{;S  I)ATA CI,ASSI1 ‘lCATION PR[)III,EM

Digiti7,cd map-data have found numerous applications ft~r both conlrncrcial  and industrial, as WCII  as
military sectors. Thus, there is a concerted cffor(  to globally digltiT.c printed map-data into high-resolution (24
bits/pixel) map-data files and store the resulting data on CD-ROM storage dcviccs. Forlhcrmore, applications exist
where it is no Iongcr  adequate to display full coIor rcndi[ions  of [hc digilizcd map-data - but to prc-process the
map-data (either on-line or off-line), trig relevant features. and display the resulting map-data in an uncluttered
fashion.

lhc map scparalcs  problcm is therefore a fwturc  classification problcnl whc.rc classifications of map
pixels arc based on a surrounding window of pixels. This window approach incrcascs the accuracy by ckrssifying
pixels within their local context. In this application, each of our digitizc~i map-data sets consists of 61K pixels
(arranged as a 305x200 pixel irnagc) (Figure 5(a)), from which seven distinct features corresponding to roads,
rivers, forcs[s. contour Iincs, narncs/symbols,  man-made structure, and open areas, arc to b tagged (cIassificd).
For optimal classification accuracy, we selcctcd  a 3x3 pixc.t window for each COIOI.  As each pixel is rcprcsentcd in
full color (red, green, and blue wi[h onc byte each), a 27 byte digital input vector is gcncratcd for each NN input.
Each such input vcc[or is to be associated with a 7 byte output (t:)rgc!)  vcclor rcprcscnting the 7 distinct feahrrc
classes discussed. Among these outputs (or feature classes), only onc ckrssilicd  output, corresponding to the central
pixel of the input window, is ON and the rest are. OFF. Thus, c:ich input vector is paired with a target vector to
form an input/target pair, and a training set is manually gcncratd from the valiciation set by an cxpcrl  analyst -
resulting in 3766 such input/target pairs. Since the nlap scpar,ltes  data prohlcnl is defined to have 7 feature
classes, it utiti~.cs only 7 out of 8 VMF,NA’S  neuron outputs during the classification phase.

in solving the map-data classification ploblcn~ in hardwalc. several rrlliquc clmractcristics of the CBP arc
observed. The first characteristic is that the algorithni heavily depends upon [he values of the Icarning rate,
particularly during bardwarc-in-tbe-loop-learning. While onc set of learning rates produces stable results, another
set of Icm-ning  rates may drive the algorithm into oscillatory mode or the systcm into latchup mode. The second
cbaractcristic  is that as Ihc nelwork grows (as more hidden neurons arc added), the accuracy on the training set
incrcascs monotonically; however, it is not rrutomatically  implicti that the accuracy on the test set will incrcasc
monotonically. As a ncw hid(icn neuron is added, the accuracy on the test d:ita set may get worse over tbc
prcccding hidden neuron’s result, even though the accuracy on the training set generally continues to improve.
Consequently, there is a poin[ of dinlinishing  return in the nrnnbcr of added I[iddcn neurons for a given NN
m-chitccturc, at which (hc accuracy on the test d:)ta set begins to dcclinc. A sin]itar phenomenon is observed in the
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NN simulations.’ The undcrlyins  rcasrm  for [his unique behavior is a conscquc[lcc  of the network “over learning”
or “over spcciali~ing”  on the [raining data, Thcrcforc. the crilcrion for s[opping the algorithm is when the
pcrccrrtagc  of accuracy on the test data set at the currcrlt hidden neuron is much lower than that at the ‘point of
diminishing return’ hidden neuron, where the percentage of occur:lcy is maximo]. This maximum percentage of
accuracy is the best result for the given lcw-ning  troil. in [his pa~wr, the accuracy or the percentage of accuracy
expresses the ability of the neural network to correctly classify all unknowl)  or test dat;i set, and it is generally
employed in mca.surii]g  the algorithmic ixxforlnmce.  It is given as follows:

(N..,~tiA,~~ti,  - NT,&,A,,.~,.,
%AT.,.w, = – -- -.(N---

,dd; . N ]---) (1)
Tromti

Where
N~.,ti~i is the total number of input/target vectors ii] the validation data SCI.
A V.I.LW is the pcrccntagc of accuracy of the valiclatimr data set.
N,,.~W, is tlic number of ii~put/target  vectors used to train ttle neural net.
A,,.-v, is the pcrccntagc  of accuracy of ttic training set. which is the subset of tllc

validation set.

It is interesting to note ttiat the test d:ita set :ilso is the subset of tllc v:ilidation data set. The final
distinguishing characteristic is that this percentage of accuracy is a function of the number of the input/target
vectors in the training set. So, what size of the tr:iining set is necessary to accuratc]y  produce a sufficient mapping
from the input krycr to the output layer for this classification prt]blem  in h:irdw:ire? To properly address this
question, series of hardware-in-the-loop lcari~ing trials fol various size training SCIS arc conducted to dctcrminc the
spread of the percentage of the accuracy. For each tr:iining set siz.c, ten Icarlling trials arc performed. The
statistical results of c:ich sucli cxpcrimciit arc lahulated in Table 2.

I’able  2. Pcrccnt:igc (7o) of acculacy for various sires of training sets fo[ the map
classificnti[)ll~roblerll.

l:i-izz::zEz2EE%*

—. . . .—— . .— ———
% accuracy of different sizes of training set

S0 p i x e l s  ~ 100 p i x e l s- -” ~-” - ~0(1 ptxels  -. p “

minimum confidence interval

~= . . . . w:jy~o!!li~!~c in(crva,—-..-..!L.Q2L  ,1==’ L&L= L.. .2:,!!!==--1. 90’L_

“1’lic confidence inlcrval of a particular tcari~ing  trial k d(fined to be two standard deviations away from
the mc:in; tlic minimum confidence intcrva] is Iwo st:iridi-ird  deviations less than ttic mcarl,  and the maximum
confidence interval is two st:indnrd deviations more than the mean I’his mc:ins th:it a 957o confidence (certainty)
of the accur:icy of a particular learning trial will f;ill into this rang,c. r~ From q’able 2, wc observed that as the size
of the traiiling set incrc:iscs, bo[h the percentage accuracy mean and its standard clcviation incrcasc, and the
maximum confidence iiltcrval limit incre:iscs  as well. 13ccausc the stand;ird dcvi;ition of the learning accuracy
incrcascs, (he accuracy distribution of a given learning tri:il spreads wider as tlic siz.c of the (raining set increases.
For example, for ail arbitrary learning trial consisting of 2300 inllut/target pixel haining  set, the accuracy can lx
as low as 6070 ;iild as high as 9170. l“hc kit result of the NN hardware (89.3%), whicti is within the 2300 pixels
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training set’s confkkmcc  interval. shows that the hordwalc  pcrfornls  competitively comparable to NN simulation
(91.2% ).3 Tbc original map and Ihc hardware output map aflcr a completion of a hardware-in-(hc-lcrop training
arc dcpictcd in Figure S(a) and (b), respectively.

(ir) (b)

Figure 5. ~’hc original map imfigc (a) and [hc hardvar’c  neural  network ou[put (b).

l’hc discrepancy between the sof[ware and lhe hardware NN results is attributed to several sources.
13xperimcntally,  crnc observable source, as mentioned above. is the impact of the bnrdware  learning rate on lhc
mxrracy.  If the hardworc Icarning  rate dcvialcs by a few pcrccm from i[s best wrluc.  then the accuracy would  be
substantially affcctcd.  Another no[iccoblc source is the ccrnlputatiol~  of the dcrivalivc in hmdwarc, which is done
by perturbing the biases at the neuron inputs and taking (hc diflcrcncc in their tlcuron outpu(s. If the perturbed
bias value differs from its best value a Iittlc, the overoll accuracy would be glcatly affcctcd.  This effect could
possibly bc duc 10 the limited synaptic resolution. Moreover, not only tlic training set si~.c but also its contents
affect [hc overall accuracy. For exanlp]c,  Iwo training sets A and B of the same si~.c, i.e. 2300 pixels, but different
contcn(s arc used to train the network, If set A has nlorc rcdulidant co~}ics of the input/target pairs lhan set II,
then, the result of set A will be ICSS  accurate than that of set B. Obviously, this cf[cct is duc to the fact that the
training set A is the subset of the training set Il. F’imrlly, although the lcarllin~ utiliz.cs  all the avaikrblc bits of
hardware precision, the weight rrpdnlcs occasionally cn in either magnitu(ic  or sign or bo[h due to noises from
several hrycrs  of wire-wrap connections of and bctwccn  the VIMI1  and the NNI)II;  such n stochastic cmor can limit
the lcm’ning capability and alter the overall accul acy.
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6. CONCLUSIONS

F’ully parallel, analog neural nclwork hardware syslcltls could indeed meet the processing throughput
dcmandsrcyuired  byvarious  r’eol-timc application sin image ptoccssins. ‘E’he results for the mapsepara[csda[a
classification problcm  dcmonstra~c  this ca~]ability. For example, wi~hou~  the consideration of the speeds of the
AT-VMI; ad:l~Jlcr a[~dttlc  host coilll)utcr,  tllc VMENAsubsystcr[l  takes O.83 secon(ls to classify al] 61 Kpixeln~ap
segment (fo~ an cffectivc computational throughput of 73K pixels/s) whereas the ISAbus based neural network
takes about 1.83 seconds to process lhc same map segment (for an effective computational throughput of 33K
pixels/s). Ilowcvcr, the host comprr[cr  and the AT-VME adapter still ingest a greal deal of processing time,
Though the speed of [he host compumr  can txeasilyrectiflcd by replacing the host with a fasicrcomputcr,  the
primary botl]cneck which limits the data transfer throughput bctwccn  the host compuler  and the NNDE3 still
remains at both the AT-VMEiadfiptcr interface and at the input I)ACS. “E?wy arc largely compensated for by the
incursion ofthrccnovcl fcaturcsof  the VI MB: (1) the local data tlansfcr  technique,(2) the data buffering scheme,
and (3) reading the outputs (or winners’ indices) during the processing of the inpul vectors. Contributing to the
overall processing spcedup of the VMENA  individually, each of these tcchrliqucs  is cruploycd  in order to utilize the
VME da[a bus to its fullest cxtetlt by efficient meatls of augmenting its data transfer throughput, buffering the data
transfers, and time-multiplexing the input/output write/read operations.

Increiiscd computational throughput could be attained by clirnirmting the d:ita congestion problcm  via an
adoption of a VME%4  bus al-chitccture and of a burst mode data transfer between the host computer and the VIMEi,
The proecssin}:  speed of the VMENA  would be improved by at least a factor of four. Furthermore, another specd-
up could ix achicvcd with a sinrplc chip lCVC1  redesign. T}m existing NN chips require three consecutive
cxccu(ions  to load a sirlgle synaptic weight  value. A redesigned chip would need only one, hence a three-fold
improvement.
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