6. CONCLUSIONS

Fully parallel, analog ncural network hardware systems could indeed mect the processing throughput
demands required by various real-time applications in image processing. The results for the map separates data
classification problem demonstrate ibis capability. For example, wirhcut the consideration of the speeds of the
AT-VME adapter and the host computer, the VMENA subsystem takes 0.83 seconds to classify all 61K pixel map
segment (for an cffective computational throughput of 73K pixels/s) whereas the 1ISAbus based neural network
takes about 1.83 secondsto process the same map segment (for an cffective computational throughput of 33K
pixels/s). However, the host computer and the AT-VME adapter still ingestagreat deal of processing time.
Though the speed of [he host computer can be easily rectified by replicing the host with a faster computer, the
primary bottleneck which limits the data transfer throughput between the host computer and the NNDB il
remains at both the AT-VME adapter interface and at the input DACS They arc largely compensated for try the
inclusion of three novel features of the VIMB: (1) the local data transfer technique, (2) the. data buffering scheme,
and (3) reading the outputs (or winners' indices) during the processing of the input vectors, Contributing to the
overal processing speedup of the VMENA individually, each of these techniques is employed in order to utilize the
VME data bus to its fullest extent by efficient means of augmenting its data transfer throughput, buffering the data
transfers, and time-multiplexing the input/output write/read operations.

Increased computational throughput could be attained by elirinating the data congestion problem via an
adoption of a VME64 bus architecture and of a burst mode data transfer between the host computer and the VIMBE.
The processing speed of the VMENA would be improved by at least afactor of four. Furthermore, another speed-
up could be achieved with a simple chip level redesign. Theexisting NN chips require three consecutive
executions to load a single synaptic weig ht value. A redesigned chip would need ouly one, hence a three-fold
improvement.

7. ACKNOWLEDGMENTS

The research described herein was performed by the Center for Space Microclectronics Techinology, Jet
Propulsion 1 .aboratory, Catlifornia Institute of Technology, and was jointly sponsored by the Ballistic Missile
Defense Organization/Innovative Scicnce and Technology Office (BM1YO/1ST), and the National Aeronautics and
Space Administration (NASA). The authors acknowledge Dr. S. Narathong for his technical expertise and effort
in the design, debug, and test of the VML interface. The authors also wish to thank Mr. 11 Langenbacher for
useful technical discussions and assistance. If rrny beauty is perceived, it is the reflection of the professionalism of
the co-authors. If any discrepancy is found. it is the sole responsibility y of the principa author.

/!

/ '
8. REFERENCES ar ,

1. T. X. Brown, M.D. Tran, T.A. Duong, T.Daud, and A.P. Thakoor, "Cascaded VI .SInecural network chips:
hardware learning for pattern recognition and classification,” Simulation, S8, 340-347, Specia lssuc on
‘Neural Networks': Model development for applications. 1992.

2. T. J. Gracttinger, N, V. Bhat, and J. S. Buck, “Adaptive cont: 01 with NeuCOP, the Neural Control and
Optimization Package,” World Congress on Computational Intelligence, 1EEE International Symposium on
Involutionary Computation, pp.2389-2393, June 26-July 2, 1994.

3. T. A. Duong, S. P. Ike]-tlardt, T.Daud, and A. Thakoor, “| .carning in ncural networks: Vi .Slimplementation
strategies,” In: Fuzzy Logic and Neural Networks Handbook, Ed: C. H. Chen, McGraw-Hill (In press).

4. S. P.Eberhardt, A. Moopenn and A.P. Thakoor, "Considerations for hardware implementations of neural
networks,” in Proc. of the 22" Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA 1988.

5.R. Tawel, “1 .earning in analog ncuralnet work hardware.,, " Computers Electronic Engineering, Vol. 19, No. 6,
pp-453-467, 1993,

6. A. P. Thakoor, “Hardwarc implementations and applications of ncural network architectures,”
ARPA/DoD/NASA Final Rcport,JPI,1)-12518 (intcrnal document), Pasadena, California, May 1993.

Tran 12/13




training sct’s confidence interval, shows that the hardware perforis competitively comparableto NN simulation
(9 1.2%).3 The origina map and the hardware output map after a completion of a hardware-in-the-loop training
arc depicted in Figure 5(a) and (b), respectively.

Figure S. The origina mapimage (8) and the hardware neural network output (b),

The discrepancy betweenthe software and the hardware NN results is attributed to several sources.
Experimentally, onc observable source, as mentioned above, is the impact of the hardware learning rate on the
accuracy. If the hardware learning rate deviates by a few pereent from its best value. thenthe accuracy would be
substantially affected. Another noticecable source is the computation of the derivative inhardware, which is done
by perturbing the biases at the neuron inputs and taking the difference in their neuronoutputs. If the perturbed
bias value differs fromits best value a little, the overall accuracy would be gieatly affected. This effect could
possibly be due to the limited synaptic resolution. Moreover, not only the training setsize but also its contents
affect the overallaccuracy. For example., two training scts A and B of the same size, i.e. 2300 pixels, but different
contents are used to train the network. If set A has more redundant copies of the input/target pairs thansct B,
then. the result of set A will be less accutate than that of set B. Obwviously, this effect is due to the fact that the
training set A is the subset of the training set B. Finaly, although the learning utilizes all the available bits of
hardware precision, the weight updates occasionaly crr in either magnitude or sign or both due to noises from
severa layers of wire-wrap connections of and between the VIMB and the NNDR; such a stochastic error can limit
the learning capability and alter the overall accuracy.
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ABSTRACT

To fully exploit the real-time computationa capabilities of neural networks (NN) - as applied to image
processing applications - a high performance VMEbus based analog ncurocomputing architecture (VMENA) is
developed. The inherent paralelism of an analog VLSI NN embodiment enables a fully parallet and hence high
speed and high-throughput hardware implementation of NN architectures. The VMEbus interface is specifically
chosen to overcome the limited bandwidth of the PC host computer Industrial Standard Architecture (ISA) bus.
The NN board is built around cascadable VL.SI NN chips (32x32 synapse chips and 32x32 neuron/synapse
composite chips) for a total of 64 neurons and over 8K synapses. Under software control, the systcm architecture
could be flexibly reconfigured from feedback to feedforward and vice versa, and once sclected, the NN topology
(i.e. thc number of ncurons per input, hidden, and output layer and the number of layers) could be carved out from
the set of neuron and synapse resources. A N efficient hardwarc-in-th ¢-loop Cascade Backpropagation (CBP)
learning agorithm is implemented on the hardware. This super vised learning algorithm allows the network
architecture to dynamically cvolve by adding hidden neurons while modulating their synaptic weights using
standard gradient-descent backpropagation.  As a denionstration, the NN hardware system is applied to a
computationally intensive map-data classification problem, Training sets ranging in size from 50 to 2500 pixels
arc utilized to train the network, and the best result for the llardwarc-in-the-loop learning is found to be
comparable to the bestresult of the software NN simulation. Once trained, the VMENA subsystem is capable of

processing at approximately 7S,000 fcedforward passes/second, resulting in over twofold computational throughput
improvement relative to the 1ISAbus based neural network architecture.

Keywords: VMEbus, analog ncurocomputing, neural network, supervised learning,image classification.

1. INTRODUCTION

Neural nctworks (NN) have emerged as a powerfulnew methodology in information processing
applications. What distinguishes neural networks from mainstreain methodologies is thatthey arc trained from
excmplars, and this has made them effective at “learning” and performing arbitrarily complex nonlinear functional
estimations, mappings, and even control for a varicty of applications.'” Neural networks fall under the general
rubric of massively parallel fine-graincd systems. As such, their highly parallelarchitecture is typically composed
of numerous identical and functionally simple computational elements (called ncurons) which communicate with
onc another via the mediation of variable strength pathways (synaptic clements).  Although software
implementations of these NN models arc usually adequate, applications in image processing arc computationally
intensive and frequently require real-time classification or analysis. These requirements necessitate the mapping of
the NN formalism to dedicated hardware solutions. and there now exist a broad range of NN hardware approaches
and implementations. In our approach, wc maximize the computational throughput by building a fully paralel and
reconfigurable ncuroprocessor system based on customanalog NN chips developed at JP1..*% An extensive survey
of diffcrent and currently available NN chips and boards has been compiled by Duong et a.’

As a demonstration for our NN hardware, we selected the map-data classification problem. This

application is motivated by the need 10 effectively analyze, classify, and archive high-resolution digitized pixel
map-data renditions of actualink-printed maps as stored on CD-ROM cartridges. A classification of these dense
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and cluttered map images into  categorical, discernible and useful features could significantly reduce the storage
requirements, and their data arc in the most suitable form. with which further analysis can be carried out.

in the following sections. we begin with abrief background on both the hardware and software pertinent
10 the implementation of our ncuroprocessor. This is followed by a top level description of the VMEbus
Neurocomputing Architecture (VMENA). The performance of the VMENA, along with its novel features and

technical issues, is discussed in Sectiond. Finaly, the results of a map data classification problem arc reported in
Section 5.

2. CASCADABLE “BUILDING BLOCK” CHIPS

Analog NN hardware systems have emerged as an impel want class of computing devices. A variety of
large scale analog VI.SI circuits can now be fabricated. circuits which fully exploit the computational throughput
and implement the true asynchronous parallelism of neural network architectures.  The real scalability and
cascadability power of the synapse chips and the neuron/synapse composite chips in our existing library of VLSI
neural network “building block” arc fully utilized and exploited. Furthermore, from this scalability feature, the
resolution of the hardware synaptic weights generated from hardware-in-the-loop learning can be increased to
augment the high resolution requirements of the software synaptic weights.
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Figure 1. (8) A widerange, variable-slope sigimoidal neuron circuit. (b) A
synaptic cell circuit consisting of cascoded current mirrors and V/I common to
all the synapses aong a row in the mati ix (left), static latches os arc used to
program the synaptic weights (bottom.right). and current streer ing block, using
latch g as a curient polarity regulator (lop).

The VMENA isbascd on a hybrid of both analog-digital synapse chips and rleurorl/synapse composite
chips. This hybrid design utilizes digital niemories to store the synaptic weights and multiplying digital-to-analog
converters (MDAC) to perform the analog multiplication. Each of the ncuron/synapse composite chips consists of
a 32x32 crossbar matrix of synapses with the diagonal synapses substituted by 32 ncurons, and each of the synapse
chips contains a32x32 crossbar configuration of synapses. Since processing isperformed asynchronously and in a




fully parallel fashion and since the circuit scttling time is of the order of one microsecond. a chip consisting of
approximately 1000 synapses is capable of a computational throughput of ncarly a gigs connections per second
(GCPS). The neuron design (Figure I(a)) incorporates a wide-rarrgc variable gain and sigmoid-like transfer
characteristics. The synapse design (Figure 1(b)) is based on aStatic Random Access Memory (SRAM) with 7 bits
(6-bit + sign bit) of resolution and utilizestwo-quadrant current multipliers. Each synapse. therefore, appears as a
digital memory so that writing a digital valuc 10 an appropriate memory location constitutes a change of that
synapse's Weight. The functional descriptions of these two types of chip sets arc detailed clsewhere.””

Since these chips are cascadable, the output ports of onc chip can directly be connected to the input perks
of another chip without the usc of any intervening glue logic. This means that, in the synapse chips, the input
values arc encoded as voltages (for case of propagation) and output valucs are encoded as currents (for case of
summation). Conversely, in the neuron/synapse chips, the input values arc encoded as CurTeis and output values
arc cncoded as voltages. Because of their cascadability, such chips provide amecans to scale up a neural network
architecture to any arbitrary size. For instance, a fully feedback 64x64 7-bit synapses with 64 neurons neural
network architecture can be assembled from two synapse chips and two ncuron/synapse chips cascading in a plane.
In addition to being able to tile larger neural networks from these cascadable analog NN chips, the synaptic
resolutions of such networks can aso be scaled up by piggybacking, another synapse chip onto the existing synapse
chip in the z-dimension.” Moreover, as the “learning” information is contained within the synaptic weights, the
synaptic resolution is important for both the training phase and the recall phase. Typically, NN learning algorithm
requires high (-12 to 16 hits) synaptic resolution for an effective convergence. 1n general, high resolution weights
gencrated using an off-line software simulation can not be ported directly to a low precision analog hardware. To
compensate for such undesirable discrepancies between the software and hardware synaptic resolutions. hardware-
in-the-loop-leaming becomes necessarily indispensable.

A supervised hardware-in-the-loop Cascade Backpropagation(CBP)learning algorithm is implemented
on the VMENA. The details of the CRP arc presented clsewhere.*® This learning algorithm is similar to the
cascade correlation algorithm described by Fahlman and Lebiere!! with two variations: the methodology used for
the weight calculation between the inputs and the outputs, and the training technique of the ncw hidden units. The
weights between the inputs and the outputs arc initially calculated using pseudo-inverse procedure and down-
loaded to the hardware while the ncw hidden ncurons arc trained using the standard gradient-dcscent
backpropagation.”*  This algorithm inherits most of the impoi tant propertics of the “growing” algorithms,
including freezing the old weights to minimize the learning computations. 1'bus, it is quite adept at learning a
variety of difficult tasks. including, as wc will demonstrate in Section S, the map scparates data classification
problem,

3. VMEbus NEUROCOMPUTING ARCHITECTURE (VMENA)

This section centers around a description of the VMI NA and descnibes its essential components in
details. Asdepicted in Figure 2 and shown in Figure 3, the VMENA system consists of four magjor inter-dcperrderlt
functional blocks: (1) An Intcl386/16 Ml Iz host computer, (2) aBit3’s AT-VME adapter board, (3)a Neural
Network Daughter Board (NNDB), and (4) a VMEbus Interface Mother Board (VIMB). The last three
components of the VMENA system arc housed in a 12 6U sots Eurocard chassis. Communication established
between the PC host computer and the VIMB is via the Bit3’s AT-VME adapter board, and VIMB is
communicating with the NNDB via their on-boardlocal buses.

The PC host computer is used to download configuration and control information, weight matrices, and
input/output vectors. The commercialy available AT-VME adapicr serves as an interface betweenthe ISAbus of
the host computer and the standard VMEbus of the VIMB. The heart of the VMENA is the NNDB and VIMB,
each of which isthe subject of discussion in the following two subsections.
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Figure 2. The functional block diagram of the VMEbus based neurocomputing
architechture (VMENA).

3.1. Neural Network Daughter Board (NNDB)

The NNDB consists of six synapse chips and two synapse/neuron composile chips, for a total of eight
ncural chips. Since each of [he synapse chips is composed of a 32x32 synaptic array, and each of the
synapse/ncuron composite chips is composed of a 32x31 synaptic array withi 32 neurons along the diagonal, a total
of 8128 [=8(32x32)-64] synapses and 64 neurons arc available for usc inthe NNDB. To optimaly utilize all
synapses and neurons, the NNDB is hardwired and configured as afecdforward NN architecture with 64 input
neurons, from 1 to 55 hidden neurons. and 8 output ncurons. The system can be easily reconfigured under
software control for afecdback NN architecture, utilizing chips 4, &,6, and 7 in the NNDB.

3.2. VMEBus Interface Mother Board (VIM B)

The VIMB is onc of two major components of the VMENA. It provides a user interface with a high-speed
data transfer capability (via the data buffers) between the AT-VME adapter board and the NNDB. It stores both
the configuration setup and the weight matrices for the NNDB aswell asinput vectors for real-time processing. It
also collects the output neurons' activations and WTA indices to be read by the host computer.

4.



'VMEbus Interface Mother Board (VIMB) compsises 64 Digital-to- Analog Converters (DACs),
8 Analog-to-Digital Converter (ADXCs), 4 fast buffers, and 4 state-mcrchine controllers.

8 fast 20 MHz 4 state-machine
ADCs ] ,2 ~controllers

4 fast
buffers
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Neural Network Daughter Board (NNDB) coHe BEEEEA pi/) 1 Connector. communicating to
synapse chips and 2 synopse/neuron composite chips, in a the host computer via AT-VME
total of 64 sigmoidal neurons and 8128 synapses. adapter and VMEDbus backplane.

Figure 3. Photograph of YMENA consisting of the Neural Network Daughter
Board (NNDB) on the Ieft and the VMi:bus Intes face Mother Board (VIMB) on
the right.

in order to allow cach of the eight neural chips to betrained andto perform a specific function after
training, the VIMB must function not only as a digital memory but atso as a digital controller between the NNDB
and the host computer. As can be seen from Figures 2 and 3, the VIMB itself consists of four functional units
namely,
Input Vector Buffer (1VB) and the Main Controller,
Weight Vector Buffer (WisVB) and the Weight Controller,
Output Vector Buffer (OVB) and the Output Controller, and
WTA Vector Buffer (WtaVB) and the WTA Controller.

LT S

Each of these buffers is associated with a state-rnachilw controller whose primary function is to both
write/read to/from its buffer and to participate in arbitration with other controllers via the 1.ocal Control Bus and
the AT-VME Bus. Because VME board space is af a premium, trade-offs between minimizing the number of
device counts and maximizing the processing speed receive specia attention in the design and implementation of
the buffers and their associated controllers. While each of these buffers is implemented using a combination of
high density and high-speed (15ns access time) AMD Am7205A- 15 First-In-First- Qut (FIFO) 8Kx9-bit memory




devices, each of these state-nurchine controllers is implemented using high-speed (15ns access time) Lattice
22V 10L.P- 15 programmable logic devices (PL.D).

Using the combination of five address bits (A 18-22), six address modifier bits (AM0-5), and control
signals (AS, WRITE, L> SO, 1X31) of the VMEbus, each of the functional units of the VIMB isdecoded by the Main

Controller and is memory-nvrppcd into the address space ranging from 0xA00000 to OxFFFFO0 as tabulated in
I’able 1.

Table 1. VMENA Memory Map.

Buffers Memory Space Functions

WitaVB 0xA00000-0xATFFFE PC host reads the winner from the WTA Vector Buffer
OVB 0xA80000-0xBFFFFF PC host reads 4 words (8 bytes) from the Quuutt Wechorr Buffer

WisVB 0xC00000-0xD7FFFF PC host writes synaptic weight values to Weightt Vector Buffer
IVB 0xD800000-0xFEFFO0 PC host writes iinput values to Input Vector Buffer

3.2.1. Input Vector Buffer (IVB) and the Main Controller
The Main Controller has two primary functions. Whenit functions as a global arbitrator/decoder, it
coordinates all control signals among other controllers, the AT-VME adapter board, and the NNDB; it arbitrates
with other controllers and decodes the address bits (Al §-22) to determine which of four functional units (buffer
and controller) of the VI MB, including itself, has the right to control the VMEbus. When the Main Controller has
the rightto control the VMEbus, it functions as alocal controller for the 1VB. It controls the data flow from the
host computer to the IVB and from the 1VB to the DACS and carries out its normal write/read/transfer operations.

Although inputs arc 8-bit wide, they arc reconfigured into 16-bit wide word format so as to fully exploit
the total 16-bit data bus bandwidth of the VMEbus. Thus. the Input Vectors Buffer (IVB) is implemented using
four FIFOs, which arc connected together to form a 16K by 16-bit vord buffer. Because the input vectors stored in
theIVB arcin a digital format, they must be converted into analog signals before sending thcm to the NNDB.
Since the NNDB is hardwired to have 64 available input neurons, 64 digital to analog converters (DACs) arc
necessary,  in order to minimize the number of components tosave board real-estate, eight small, compact,
medium speed DAC chips are sclected. Each of these DAC chips consists of eight individual DAC channels each
with 8-bit resolution. These eight DAC chips are implemented as four individua banks in order to provide optimal
data transfer, using the full 16-bit data bus bandwidth. To maximize the processing speed, a pipeline scheme is
adopted. First, the Main Controller reads from the IVB as word-wide inputs, and then writes them to the DACS
buffers; it exccutes its read/write operations sequentially and continuously untiial 64 DACS' buffers arc filled.
After waiting for Sps for the outputs of the DACs to settle, the NNDB proceeds with its processing tasks. As will

be discussed later in Section 4, the long settling time of the DACS is onc of the limiting factors and bottlenecks
which slows downs the overall system operating speed.

3.2.2. Weight Vector Buffer (WisVB) and the Wei ght Controller

The WtsVB unit is used as a temporary storage of the NN configuration/sy naptic weights matrices whose
elements arc always available to be down loaded to the NNDB. To properly write a weight value into a particular
synapse’s location, a sequence of operations needs tobe performed as illustrated in Figure 4. First, the 5-bit row
address along with its control-bits field arc presented to the NNDB. A Chip Enable (CE) control signal is
subsequently asserted.  Secondly, the 5-bit column address along with its control-bit field are presented to the
NNDB; then, the CE is again asserted. Finally, the 7-bit weight vutue (from -63 to +63) along with its control-bit
field arc presented to the NNDB; and the CE is again asserted. Each of these write cycle takes about 225ns for a
total of 675ns per synapse or equivalently onc can address about 1.S million Synapses per second. For every
synaptic weight written to the NNDB, three write cycles arc required; these redundant cxccutions slow down the
downloading process and seem to be somewhat cumbersome, However, this computation overhead will be vastly
improved in the next generation of NN chip set, where row, column, and wecight arc presented to NNDRB



simultaneously and only one activated CE strobeis required.” This improves the speed in writing synaptic
weights to the NN chips by afactor of three. Because of the sequential execution of the row address. the column
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Figure 4.Instruction Command Formal for the Weight Vector Buffer (WisVB).

address, and the weight data, only onc 8K with 8-bit wide FIFO is neecded to store the synaptic weights for the
neural network. The flow of data from the host computer tothe WisVB buffer and from WisVB to NNDB is
governed by the Wrtc-machine Weight Controller.

3.2.3.0uput Yector Buffer (QV B) and (he Output Conu oller

The Output Vector Buffer (OVB)isimplemented with 2 FIFOs to forin an 8K by 16-bit word buffer, and
it is used as atemporary neuron outputs storage buffer. Although the NNIDB has 64 available neuron outputs, due
to NNDB board space limitation, only 8 neuron outputs are read at any given time in the current version. Each of
these 8 neuron outputs is connected directly to an analog 1o digital converter (DATEL ADC-208), operating at a 20
MHz sampling rate. The Outpuat Controller not only does its normal data read/wrilc/Lransfcr operation from the
ADCs to OVB and from OVB to the host computer but also handshakes with the Main Controller to indicate the
beginning and the end of the neural processing, where the ADC outputs become available upon the completion of
neural processing. When the Output Controller recognizes the completion or “done” signal after some preset time-
out, it reads the neuron outpuls from the ADCS, writes thcm to the OVB, and repeats for 4 times to store 8
neurons outputs into the OVB. Upon completion of its storage of the output values, the Output Controller sends a
signal to the Main Controller to begin another neural processing or to respond to other controllers requests.
Although an 8K FIFO with 16-bit word OVB scems to be small for storage of massive data, the stored outputs arc
frequently sent to the host computer during the neural processing of the new input vector. I'bus, the OVB always
has some available memory to accommodate the incoming neuron outputs.

3.2.4. Winner-T' olm-All (WTA) Vector Buffer (WtaVB) and the Controller.

The principal function of this unit is to find [he largest neuron output among a sct of output neurons. in
other words, the unit performs the following function: V pu=maximum{Vo, Vi, ... . Vx. 1, where N, is the number of
output neurons and Vi is the voltage value of the i outputnew on.  While al ‘less-Lhfin-nlaxilnum’ neurons arc
considered OFF, the maximum-output neuron is defined to be ON. It is [he ON neuron that is translated into a

certain feature or class. For example, if neuron #1is ON. it cos responds to a red colored road: whereas if neuron
#2 1S ON, it corresponds to g blue colored river, etc. This process of finding the maximum outputneurons among a

sct of output neurons is termed as a Winner-Take-All (WTA) opcration.

As the WTA circuit is receiving the ciglit-neuron outputs, an 8-bit magnitude comparator compares them
to determine the maximum output while a 3-bit decoder circuit keeps track of the position of the maximum output.



Whenthe maximum output is found. the 3-bit decoded index is stored into the 8K FIFO Vector Buffer with 9-bit
wide - even though only the first 3 bits are meaningful and significant. The decoded index is made available to the
host computer whenever it requests.  The WTA state-nlachinc controller coordinates al activities during the
operations of the comparator, the decoder. and the 8Kx9-bit FIFO.

4. VMENA PERFORMANCE AN]) EVALUATION

Like most systecm designs, the emphasis in designing the VMENA has been placed on optimizing all
available resources so as to satisfy system requirements including both boairdlevel space and system level
computational throughput. As a result, some of the novel features. their impact on the system performance, and
other important, open technical issues evolved from this design arc discussed in this section.

The first important feature of the VMENA is that the NN chips of the NNDB have on-chip SRAMs, into
which digital synaptic weight values arc written and stored: thus, there is no need to convert the weight values into
andog signals externally. A second feature of the VMENA that significantly enhances the overall systcm
performance is that most data transfers in the VIMB are done locally. For instance, a 10CAl 16-bit data bus is
implemented to transfer the input data from the 1VB to the DACS. Thus, the local bus frees the VME data bus to
be used for other activities such as writing new input vectors into (tic VB or reading, the NN output vectors. The
third salicnt feature of the VMENA is that it alows the host comyputer to retrieve the neuron outputs during the
training phase as well asthe winner indices during the validation phase while the VIMB and NNDB arc otherwise
occupied processing ncw input vectors. This “overlap” of processing time in reading the outputs or the winner
indices substantially improves the overall performance of the system.

in spite of the above notable features, the first technical issue centered onthe weight-loading mechanism
of the NNDB. To storc a synaptic weight value into a synapse, ascquence of three (row, column, and weight)
consecutive execut ions is required. These executions take a mijor fraction of time, particularly during the
hardware-in-lhe-loop learning or the training phase, in which o very large number of synaptic updates are
repetitively performed. To compensate for this laggard process, a Weight Vector Buffer (WisVB) is implemented
to buffer the transfer of synaptic weights from the host computer to the NNDB. Although the processing speed is
improved somewhat by this buffering scheme, the best solution is to load a weight valuc into a synapse directly
with a single execution instcad of three. This would allow the weight and its address to be loaded simultaneously
in onc exccution, improving the processing speed at least by afactor of three.

The second technical issue is evolved around a judicious selection of a sct of 64 input DAC neurons in
such a way that the trade-offs between the number of DACs. board rea-estate. and computational throughput arc
optimized. While faster and fewer DAC channels arc contained in a physically larger DIP package, slower and
many DAC channels are compacted in a physically smaller chip. If faster DACs arc selected, the whole VME 6U
board would consist mainly of 64 DAC chips. For optimal selection, eight medium speed but small and compact
DAC chips, each of which contains 8 DAC channels with 8-bit resolution each, arc chosen for implementation.
Using these DACS, the synaptic loading throughput from the VIMB into the NNDB issomewhat moderate. The
synaptic loading Throughput could have been vastly improved by using faster DACSs. For instance, if DACS with

0.1 us settling time arc used, the synaptic loading throughput would be about 7 timies faster than DACS with 5 ps
settling lime.

The final technical issue in the design of the VMENA isinvolved in the process of maximizing the overal
systcm computational throughput, which depends largely on the speeds of both the AT-VME adapter and the host
computer. Indeed, both the AT-VME adapter and the host computer turn out to be serious bottlenecks. To
illustrate, let us consider our demonstrative map separates data application of a 61 K pixel map segment, which
will be discussed in the next section. The VMENA subsystem, which consists of only the VIMBand the NNDB
and without the AT-VME adapter and the host computer. takes about 0.83 second to classify al 61K pixels (for an
effective computational throughput of 73K pixels/s). On the other hand, the overall system takes about 30 seconds
to classify all the pixels of the same map segment. I’bus, about 2.3% of the computational time is utilized by the
subsystem for its classification tasks, and about 97-98% of the time isshared between the host computer for display




of graphics anti the AT-VME adapter for its data transfers between the host computer and the VI MB. Although
the communication overhead overwhelms the overall processing. time, the computational throughput of the
VMENA subsystem is satisfactory compared it to an ISAbus based of a similar neural network architecture,
however. For the same map segment of 61 K pixels, it would take the ISAbus based neural network about 1.83
scconds to process. } lence. the computational throughput of the VMENA subsystcm is improved over twofold
relative to the ISAbus based neural network architecture.

There arc several approaches to further deal with the above bottlenecks and 10 improve the overall system
computational throughput. To rectify the data congestion on the VME data bus. one way is the use of fast buffers.
Ulilizing the fast (1511s) access time, low cost, and relatively small size 8Kx9 FIFO memory as onc of the basic
building devices, al buffers arc implemented as temporary storage buffers of data coming in and going out of the
VIMB, so that the 16-bit bandwidth of the VME data bus can fully be utilized. For example, the input vectors arc
written to the Input Vector Buffer (1VB) a word instead of a byte at a time. and it is always ready to reccive the
incoming data. Thus, the VME data bus can be freed immediately to receive ncw data or to participate in other bus
related activities. Another way for improving the speed of data trausfer between the host computer and the VIMB
is the usc of the VME64, in which data could be transferred 64 bits or 4 words sirultancously instead of 16 bits or
aword at a time. This usage of VME64 would improve the overal | processing speed fourfold. Moreover, all data
transfers between the host computer and the VIMB should be done in the block or burst mode. i.e. a block of data

is transferred discretely so that the idle time between write cycles could be substantially minimized, implying
another significant speed improvement.

5. MAP SEPARATES DATA CLASSIN'ICATIONPROBLEM

Digitized map-data have found numerous applications for both commercial and industrial, as well as
military sectors. Thus, there is a concerted effort to globaly digitize printed map-data into high-resolution (24
bits/pixel) map-data files and store the resulting data on CD-ROM storage devices. Furthermore, applications exist
where it is no longer adequate to display full color renditions of the digitized map-data - but to prc-process the

map-data (either on-line or off-line), trig relevant features. and display the resulting map-data in an uncluttered
fashion.

The map scparates problem is therefore a feature classification problem where classifications of map
pixels arc based on a surrounding window of pixels. This window approach incrcases the accuracy by classifying
pixels within their local context. In this application, each of our digitized map-data sets consists of 61K pixels
(arranged as a 305x200 pixel image) (Figure 5(a)), from which seven distinct features corresponding to roads,
rivers, forests, contour lines, names/symbols, man-made structure, and open areas, arc to be tagged (classified).
For optimal classification accuracy, we selected a 3x3 pixel window for each colot. As each pixd is represented in
full color (red, green, and blue with onc byte each), a 27 byte digital input vector is generated for each NN input.
Each such input vector is to be associated with a 7 byte output (target) vector representing the 7 distinct feature
classes discussed. Among these outputs (or feature classes), only one classified output, corresponding to the central
pixel of the input window, is ON and the rest are. OFF. Thus, each input vector is paired with a target vector to
form an input/target pair, and a training set is manualy gencrated from the validation set by an expert analyst -
resulting in 3766 such input/target pairs. Since the map sepatites data problem is defined to have 7 feature
classes, it utilizes only 7 out of 8 VMENA's neuron outputs during the classification phase.

in solving the map-data classification problem in hardware, several unique characteristics of the CBP arc
observed. The first characteristic is that the algorithm heavily depends upon the values of the learning rate,
particularly during bardwarc-in-tbe-loop-learning. While onc set of learning rates produces stable results, another
set of learning rates may drive the algorithm into oscillatory mode or the system into latchup mode. The second
characteristic is that as the network grows (as more hidden neurons arc added), the accuracy on the training set
increases monotonicaly; however, it is not automatically implied that the accuracy on the test set will increase
monotonically. As a ncw hidden neuron is added, the accuracy on the test data set may get worse over thc
preceding hidden neuron’s result, even though the accuracy on the training set generally continues to improve.
Consequently, there is a point of diminishing return in the nuinber of added hidden neurons for a given NN
architecture, at which the accuracy on the test data set begins to decline. A similar phenomenon is observed in the




NN simulations.’ The underlying reason for [his unique behavior is a conscquence of the network “over learning”
or “over specializing" onthe [raining data. Therefore. the critcrion for stopping the algorithm is when the
percentage of accuracy on the test data set at the current hidden neuron is much lower than that at the ‘point of
diminishing return’ hidden neuron, where the percentage of accuracy ismaximal. This maximum percentage of
accuracy is the best result for the given learning trail. in this paper, the accuracy or the percentage of accuracy
expresses the ability of the neural network to correctly classify anunknown or test data set, and it is generally
employed in mcasuring the algorithmic performance. It is given as follows:

([V_zaMSaAVaMCa - N 7,,.ns,,A7r...,\:,.)
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Where
Nyaus. iSsthe total number of input/target vectors in the validation data sct.
Av.us. iSthe percentage of accuracy of the validation data set.
Nr.ase 1Sthe number of input/target vectors used to train the neuralnet.

Ar..s. 1S the percentage of accuracy of the training set. which is the subset of the
validation set.

It is interesting to note that the test data set also is the subset of the validation data set. The find
distinguishing characteristic is that this percentage of accuracy is a function of the number of the input/target
vectors in the training sct. So, what sizc of the training set is necessary to accurately produce a sufficient mapping
from the input layer to the output layer for this classification prublem in hardware? To properly address this
question, series of hardware-in-the-loop learning trials for various size training sets arc conducted to determine the
spread of the percentage of the accuracy. For each training Set sizc, ten learning trials arc performed. The
statistical results of eachsuchexperiment arc tabulated in Table 2.

Table 2. Percentage (%) of accuracy for various sires of training sets for the map
—.... Classification problem.

Experimental —y % accuracy of different sizcs of training set
o Statistics | s0pinciss [ 100 peictsel B 560 pS00spixels 230@pixcls
e , _mean 6341 65.16 . 66.61 75.21
standard deviation ) 2.26 3.29 424 7.76
__minimum confidence interval 58.89 58.58 5813 59.69

~':==.quin)gmWc_Q(![idcnccjntc%[‘fﬂ,,: 6793 | | 7174 L, 1509 |_90.73

The confidence interval of a particular learningtrialis defined to be two standard deviations away from
the mean;the minimum confidence interval is Iwo standard deviations less than the mean, and the maximum
confidence interval is two standard deviations more than the mean This meansthata95% confidence (certainty)
of the accuracy of a particular learning tria will fall into this range.™ From Table 2, we observed that as the size
of the training set increases, both the percentage accuracy mean and its standard deviationincrease, and the
maximum confidence interval limit increases as well.  Because the standard deviation of the learning accuracy
increases, the accuracy distribution of a given learning trial spreads wider as thc size of the (raining set increases.
For example, for an arbitrary learning trial consisting of 2300 inllut/target pixcltraining set, the accuracy can be
as low as 6070 and as high as 9170. The best result of the NN hardware (89.3%), which is within the 2300 pixels
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training set’s confidence interval. shows that the hardware performs competitively comparable to NN simulation
(91.2% ).3 The original map and the hardware output map after a completion of a hardware-in-(hc-lcrop training
arc depicted in Figure 5(a) and (b), respectively.

(in) (b)
Figure 5. The original map image (a) andthe hardware neural network output (b).

The discrepancy between the software andthe hardware NN results is attributed to several sources.
Experimentally, onc observable source, as mentioned above. is the impact of the hardware learning rate on the
accuracy. If the hardware learning rate deviates by a few percent from its best value. thenthe accuracy would be
substantially affected. Another noticcable source is the computation of the derivative in hardware, which is done
by perturbing the biases at the neuron inputs and taking the difference in their ncuron outputs. If the perturbed
bias value differs from its best valuc alittle, the overall accuracy would be gicatly affected. This effect could
possibly be duc to the limited synaptic resolution. Moreover, not only the training set size but also its contents
affect the overall accuracy. For example, lwo training sets A and B of the same sizc, i.e. 2300 pixels, but different
contents arc used to train the network, If set A has more redundant copies of the input/target pairs than set B,
then, the result of set A will be less accurate than that of set B. Obviously, thiseffect is duc to the fact that the
training set A is the subset of the training set B. Finally, although the learning utilizes all the available bits of
hardware precision, the weight updates occasionally errin either magnitude or sign or both due to noises from

several layers of wire-wrap connections of and between the VIME and the NNDRB; such a stochastic error can limit
the lcarning capability and alter the overall accur acy.




6. CONCLUSIONS

Fully parallel, analog neural network hardware systeins could indeed meet the processing throughput
demands required by various real-time application inimage processing. The results for the map separates data
classification problem demonstrate this capability. For example, without the consideration of the speeds of the
AT-VME adapicr and the host computer, the VMENA subsystem takes 0.83 seconds to classify all 61K pixel map
segment (for an effective computational throughput of 73K pixels/s) whereas the 1SAbus based neural network
takes about 1.83 seconds to process the same map segment (for an effective computational throughput of 33K
pixels/s). However, the host computer and the AT-VME adapter still ingest a great deal of processing time,
Though the spced of the host computer can be easily rectified by replacing the host with a faster computer, the
primary bottleneck which limits the data transfer throughput between the host computer and the NNDB il
remains a both the AT-VME adapter interface and at the input DACs. They arc largely compensated for by the
incursion of three novel features of the VI MB: (1) the local data tansfer technique,(2) the data buffering scheme,
and (3) reading the outputs (or winners' indices) during the processing of the input vectors. Contributing to the
overall processing speedup of the VMENA individually, each of these techniques isemployed in order to utilize the
VME data bus to its fullest extent by efficient means of augmenting its data transfer throughput, buffering the data
transfers, and time-multiplexing the input/output write/read operations.

Increased computational throughput could be attained by climinating the data congestion problem via an
adoption of a VME®4 bus architecture and of a burst mode data transfer between the host computer and the VIMB,
The processing speed of the VMENA would be improved by at least a factor of four. Furthermore, another spced-
up could be achicved with asimiple chip level redesign.  The existing NN chips reguire three consecutive
executions to load a single synaptic weight value. A redesigned chip would need only one, hence a three-fold
improvement.
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