Quality Function Deployment (QFFD): An Effective Technique
I'or Requirements Acquisition and Reuse

Tuyet-Lan Tran and Joseph S. Sherif
~Jet Propulsion aboratory, Software Assurance
Cdlifornia Institute of Technology, Pasadena, CA 91109 USA

Abstract

A general and accepted understanding of
how to capture requirements, allocator
flow-down top-level requirements,
verify and validate lower-level
requirements, is at best sought in theory
but not rigorously sought in practice.
More often than not, the customers (or
users) arc blamed for not properly
articulating their requircments or even
understanding their own needs.
However, the problem is deeper than
that, and it involves not only the
customers but also the system analysts or
engineers and designers as well.

This paper discusses problems in
requirements acquisition anti reuse,
describes some tools to alleviate these
problems, and puts forward Quality
Function Deployment (QFD) as an
cffective tool for the capture and
refinement of requirements. QKD when
applied to a project will:(1) improve
quality by emphasizing defect
prevention rather than defect inspection,
(2) improve communications between
customers, system engineers,
programmers and testers and thus
contribute to project success, (3) enable
alignment between customer
requirements, product (or design)
requirements, and cost requirements (Or
constraints), by explicitly correlating kcy
product requirements to customer needs
and expectations, (4) reduce costs of
projects duc to reduced costs of late-in-
thc life-cycle rework, of unnecessary
post-facto documentation and inspection,
(5) improve the management of change.
through rigorous prioritization and

" explicit tradeoff anaysis, and (6) enable

refinement and reuse of requirecments
across projects through cataloguing of
key performance requircments .

Intreduction

Requirements cngincering is onc of the
most crucial parts of the development
process of any project, yet it is the least
supported or least understood part duc to
the following reasons: (1) requirements
arc particularly difficult to specify and
analyze since they arc derived from the
needs of many different customers or
pcople; (2) difficulty to achicve a
complete understanding of the
application domain within which the
proposed system will function, as
discussed by Rubenstein and Waters [9)];
and (3) al 1 relevant aspects of a proposed
system may be difficult to capture by a
single paradigm. This is duc to the fact
that cach paradigm is embodied in a
single requirement language that may
have its own limitations to express some
important requirement. Hsia, ct. a., [3]
also assert that the quality of a product is
only as good as the process that creates
it; and that requirements engineering is
onc of the most crucial steps in this
creation process. Hsia describes
requirements engineering as the
disciplined application of proven
principles, methods, tools, and notations
to map a proposed system’s intended
behavior and its associated constraints.
This mapping includes: (1) identification
and documentation of user needs, (2)
development of a requirements
document that describes how to satisfy
user needs, (3) analysis and validation of
the requirements document and (4)
means to support the evolution of users
needs. The primary output of
requirements cngineering IS a
require.ments specification that shall be
consistent; consistent with other existing
documents; correct and complete with
respect to satisfying users needs;
understandable to users, designers and

(esters; and capablec of serving as a basis
for both design and test [4],

Requirements Acquisition and Reuse

The principal problems in Requirements
Acquisition andRecuse include
difficultics in (1) agreement about
requircments statements, (2)
communication, (3) managing change,
i.e., maintenance and evolution of initial
requirements and identifying
inconsistencies between initial and ncw
requirements, and (4) formalism and
abstraction in capturing objective redlity,
since constructed reality is, after all, a
result of interactions among participants
in the requirements process.

Curtis, ct. al [2] identified two
significant problems in requirements that
may cause mgjor difficulties during the
development of projects: acquisition of
accuratc problem domain knowledge,
and volatility of requirements. Any of
these problems will contribute to low
quality projects, budget overrun and
schedule dip.

Lubars ct. al., [7] assert that the
traditional way of requirements capture
by prose-like unstructured, obscure and
somewhat ambiguous statements is no
longer cffective; and they recommend
that ncw techniques and tools for
requirements engincering should be
advocated. At the other end of the
spectrum, requirements can be
orthogonal to onc another. This high
level of rigor is sometimes worthwhile
pursuing, sometimes not.

Johnson ct. a., [5] develop atool ARIES
(Acquisition of Requirements And
Incremental ivolution of Specifications)
to investigate the support of
requircments analysis in evaluating
systemrequirements and codifying thcm
in formal specifications. The key feature
of this approach is to have a single
highly expressive underlying
representation interfaced simultaneously
to multiple presentations, each with
notations that have different degrees of

expression. in so doing, the analyst can
usc multiple languages for describing
systems and where these descriptions
yield asingle consistent model of the
system. The authors indicate two
problems that they encountered in their
approach. First their approach focuses in
recording the underlying semantics of
presentations, instcad of details of their
syntactic form. For example, if a flow
diagram is constructed, ARIES dots not
record the exact position of cach nodein
the diagram, so if the diagram is
recreated later, it may not have quite the
same shape. Second, when a diagram
cannot be mapped onto the underlying
representation in a unique way. This
happens when multiple expressions in
the underlying representation are all
expressed in the same way in a given
notation. The authors give workaround
ideas to rectify these. problems.

Lefering [6] discusses a new framework
that allows the efficient realization of
ncw integration tools to support software
development in different phases of the
software development life cycle. An
integration tool between requirements
engineering and programming in the
large has been built as a first prototype
of integrations that arc instantiation of
that framework. The tool integrates
requirements specifications and
architectures by executing a
transformation between the documents
and then controls the traceability by
examining links between transformed
increments.

Mays ct. al, [8] describe the Planing and
Design Mecthodology (PDM): a
requirements planing process that
supports the collection, analysis,
documentation, and tracking of software
requirements. The process includes
requirements collection, definition of the
underlying problems, development of an
external functional description that
addresses the problems, and
development of system and product
designs from the. external functional
descriptions. PIDM is designed to handle
both systcm-level and product-level

requirements with the following major
objectives: (1) the ability to categorize,
prioritize, coordinate, and manage a
large number of diverse requirements
from the time they arcreceived until
they have been successfully integrated
into a product design, (2) support for the
systematic analysis of requirements from
the customer viewpoint by first
identifying the underlying end-user
problem, (3) support for the verification
of the problem definition and its
proposed solution through customer
reviews, (4) support for the assessment
of a requirement's relative priority,
value, and business justification or
business case, (5) support for traceability
of requirements, from initial receipt
through implementation (6) support for
verification of the transformation of
requirements at each step of the process,
particularly at the critical transition from
external specification to internal design,
and (7) usability and human factors
emphasis during requirements definition.
Mays ct. al., assert that the Planning and
Design Mcthodology (PDM) has proved
to be valuable in systematically
analyzing, documenting, and managing a
large set of requirecments from initial
input through design. However, much
work remains to be done in the area of
planning and requirements engineering
SO as to attain additional gains in quality
and productivity.

Successful Projects

Tran ct. a., [10] describe successful
projects as those that meet valid
functional requirements as well as users
expectations; adhere to the spirit of
process standards that promote rigor,
discipline and continuous improvement;
and arc accomplished on time and within
budget. They also assert that successful
projects always exhibit an overall plan
with shared purposc and goals and
management’s commitment to these
goals. Also, and of equal importance,
arc the presence and support of
dedicated and skilled process people.
They summarize the criteria for in-depth
assessment of projects and give

attributes of projects that arc considered
successful. These attributes include (1)
consistent visibility of requircments, (2)
well-cnforced configuration control, (3)
involvement of sponsors, users, and
customers throughout the development
life cycle, (4) support of adedicated and
skilled development team, (5) effective
tcam communications, and (6)
compliance to sound process policies or
guidclines (for a disciplined and cost-
effective development process). The
authors also give the following
rccon ymendat ions for good requirements
engincering and management:

(1) ‘1’here must be an automated
facility or tool to support and
cnforce both the requirements
acquisition and configuration
control process, thereby making it
more cost effective.

(2) The customers (including users),
system engineers, programmers,
and test engineers should all work
as a team in validating the
requirements up-front. Of equal
importance is the thorough
assignment (and reassignment, as
appropriate) of requirements
prioritics. And, the system
cngincer (instead of a manager)
must be the person in charge of
making product-requirements
decisions and of closing the
requirements loop with
management and all team
members, cent i nuous] y.

(3) Therequirements management
process must be owned by a single
individual, and preferably by the
system cngincer (or his or hcr
delegate, such as a subsystcm
cnginccr Oor a process assurance
analyst). This owner must also be
responsible for requircments
basclining and requircments-
databasc control, to ensure a
minimum number Of hand-overs.

(4) Since the user representatives arc
kcy players in acceptance testing,
they must be responsible for

reviewing and concurring with the
acceptance. criteria specified for
cach and every high- level
requircment (01 "customer
acceptance criteria’). This buy-in
concept is a success factor critical
to the aligning of planned product
capabilities with customer neceds.

Quality Function Deployment (QKD)

QFD is part of Total Quality
Management (T'QM) which is a set of
methods and tools that all employees in
al departments can use; to maintain or
improve quality, cost, procedures and
systems; or to give customers or uscrs a
product which is of highest quality,
within budget and schedule. in support
of this goal, the QFD technique provides
astructured process for capturing and
bringing the voice of the customer into
the production organization. 1t enables
the tailoring of products to customer
needs, through customer interaction and
brainstorming with product
development, testing, maintenance,
quality control [cam, and system
designers. QFD assigns priorities or
weights to product improvements, and
reduces development time by focusing
on essential design (or change)
parameters, and by concentrating on
defect prevention rather than defect
detection -- -especidly at the customer
requirements level.

Y 0ji Akao introduced QFD to the United
States in October 1983 in a short article
in the Journal of Quality Progress. QFD
is a technique for improving the
transition of a project from requirements
to design and from design to
implementation to delivery. It helps to
introduce the idea of quality in the early
phases of the requirements cycle from
the customer’s perspective (as opposed
to engineering perspective) and to
recvaluate quality considerations
throughout the project’s entire life cycle
from that only perspective. In most
implementations, QFD uses charts or
matrices to discover interrelationships
between customers and/or users needs,

product performance characteristics and
design and implementation methods.

The goa of QFDisto deploy the “voice
of the customer” throughout the
product's entire technical specifications
and resource requirements. Detailed
matr ices listing the customer’s rated
"whats" (or expectations) arc correlated
with the “hews’ , to show how each
customer requirement will be met, and
which team(s) will be responsible for
each performance component [1], This
systematic technique of listening to the
voice of the customer, and insuring the
traccability of design to the customer’s
requirements arc the most crucial aspects
of QFD in delivering high quality
products.

The customer’s rcquircmcnls planning
matrix is the most important tenet for the
QFD concept. It is often referred to as
the House of Quality as shown in Figure
1 and consists of six basic steps. (1)
identify customer’s attributes or
requirements, (?,) identify technical
features (counterpart characteristics) of
the requirements, (3) relate the
customer’s requirements to the technical
features, (4) conduct an evaluation of
competing products, (5) evaluate
technical features and specify a target
value for each feat ure, and (6) determine
which technical features to deploy in the
remainder of the production process.

Customer’s attributes are the product’s
requit ements in customer's terms and
language. The technical features arc the
design attributes expressed in the
language of the system engincer,
designer, and dcveloper. These features
must be measurable, since the output
will be controlled and compared to
objective targets. Relating the
customer's attributes or requirements to
the technical features (also referred to as
product characteristics or performance
requircments throughout this paper) will
show the strength of the relationship
between them; and show whether the
attributes arc addressed fully and
properly or whether the fina product

will have difficulty in meeting customer
needs. Evaluationof competing
products will enable designers (0 seek
opportunities for improvement and
tcchnology deployment, and allows
importance ratings to be set on specific,
kcy design parameters. Evaluating
technical features and developing targets
will introduce quantitative measures for
product consistency,andcustomer-
perceived quality. Determining Which
fcaturcs to deploy will bc based on
identifying those characteristics that
have a strong relationship to customer
needs. Only these characteristics will
need to bc deployed in the design and
production process, to ensure that the
voice of the customer is heard and that
wc arc producing the right product right
(as opposed to producing the wrong
product right).

QKD and Software Development

Since 1980 few companies in Japan,
Europe and the United States had been
considering using Total Quality
Management (TQM), concurrent
engineering and QFD techniques for
software developmentor at least for the
first phases of software development,
i.e.,, software requirements and
specifications. For example IBM Japan
has developed a system called
SQUALAS for applying QFD in support
of quality assurance for software. This
system gives a thorough definition of at
lcast 39 specific quality characteristics of
software such as performance,
reliability, usability, flexibility, cost of
change, etc., and also clarifies and
specifics the divisions of the software
development process;, and prepares the
QED charts on matrices of the quality
control process, the quality assurance
item list, and the quality-cost tradeoff
matrices. NEC company has developed
a QFD technique for quantifying
software measurement methods to test
software quality. NEC also developed a
ncw QFD time sequence quality chart
that addresses the following problems:
(1) broadening customer’s requirements
during the design process, (2) situations

where technology could not be selected
until tile design was complete, and (3)
situations in which additions or changes
to software requircments occurred. In
essence, this QFD time sequence quality
chart can be used flexibly to deploy
design specifications in various degrees
of completion as explained by
Yoshizawa, ct. a., [12]. Digita
Iiquipment Corporation (DEC) adapted
QFD techniques to a software project
that deals with customers direct access to
an automated purchasing system
together with its accompanying
telecommunications and terminal
interfaces. Figure 2 shows (DEC)
adaptation of QFD four houses of quality
to QFD software development
terminology [1 1].

CSK of Japan has also been using QFD
for software since 1985. Figure 3 shows
the steps in their QFD activities for
developing the company’s software [12].
These steps include: (1) collecting
customer requirements (from original
interview data and brainstorming
sessions by a cross-functional team); (2)
generating the quality requirements (by
identifying the severa levels of product
characteristics that correlate with the
customer requirements (or “the
demanded quality”); (3) generating the
fLInction-based requirements (by
exploding the system functions into
several levels of functional
requirements); (4) establishing the
planned quality. This fourth step
consists in: (a) extracting and analyzing
sclected parameters from the quality
requirements, (b) deciding which
parameters arc most strongly correlated
with the demanded quality and become
the product’s "quality characteristics’,
(c) establishing a standard value for each
guality characteristic (also referred to as
tecchnical feature, or product
characteristic, or performance
requirement, throughout this paper), (d)
deploying these quality characteristics
into processes, and (e) implementing
these processes in software devel opment.
CSK's next major activities of the QFD
technique arc as follows: (5) analyzing

the relationships between the impact of
the implemented software on customer
demands (or customer requirements) and
the quality characteristics; (0) capturing
the results of this evaluation (by rating
customer satisfaction for each customer
demand); (7) analyzing the relationships
between the deployed software processes
and the sclected quality characteristics;
(8) refining the planncd- quality chart,
for the nextdevelopment effort. At
present CSK is developing a QFD
support system using artificial
intelligence for improving the company’s
softwarc development activitics, efforts,
quality and productivity.

Discussion of QKD Benefits

QFD has become an effective and
i report ant aspect of invest ment for many
companies because it is the cornerstone
for implementing concurrent engineering
and Total Quality Management (TQM).
One of QFD's mgor benefits is that it
enhances the efficient use of tools such
as Experimental Design and Statistical
Process Control for optimization of
design performance. QFD charts
achicve the competitive edge for the
customer and user by identifying desired
product goals and their interaction with
process capabilities and thus allow
explicit focus on sclected technical
improvements. An important
contribution of QFD to people
management, less evident in terms of
cost savings, is that it acts as a powerful
catalyst for team building and for
infusing technical cxcitement into the
consensus building process. Most
critically, and with respect to customer
fulfillment, the benefits of QFD arc that:
(I) customer needs arc better captured,
thoroughly rated, and assessed against
competing products; (2) customer
satisfaction for the entire product line
can be greatly improved via reuse and
refining of performance requirements
and of the relationships between the
product’s performance characteristics
and its customer needs. With respect to
cicvclopment-process cost cffectiveness,

-0

the advantages of QFD arc as follows:
(1) communication of rcquirements is
more consistent in (icgrec-of -abstraction
and more effective through quantified
relationships between the characteristics
of the product and customer nceds; (2)
planning becomes more specific, control
points arc clarified, and duplication of
effort is climinated; (3) tradeoff analysis
is more explicit and concentrated on
specific potentially-conflicting design
features or bottlenecks, consensus-
building becomes easier, and an
inforined balance between quality and
cost is made; (4) errors in requirements
capture, rcquirements analysis and
design arc fewer, and there are fewer
design changes late indevelopment or
production -- -which in turn reduces
overal product cycle time and project
development COStS.

It has been reported that, although only 6
percent of project cost and 10 percent of
project duration arc spent in the
requirements phase, it costs about 10
times more to repair a defect during
implementation than during the
requirements phase, and it costs
between 100 and 200 times more during
maintenance. Formal system
performance records also show that 30-
to-50% of the cost of building a
hardware-software system arc spent in
finding and correcting defects. For
certain application areas, about 60-90%
of software failures observed arc said not
to be caused by code errors, but are
attributed to requirements errors. These
rcqu irements-rclated problems, when
coupled with the Total Quality
Management (TQM) goals of incrcased
product quality and lowered cost,
suggest that the area for highest-return
on quality investment is in the
prevention of defects with greatest-
impact (or greatest amplification-rate)
potential; i.e., at the requirements level
and at the front-end of the development
life-cycle. This front-end could also
mean preproject phase, prototyping
phase, or exploratory or conceptual
devclopment phase.

QD targets both the front-end of the
development process and the product
life-cycle itsel f, for improvement (either
small ordramatic). By simultancously
capturing Customer requircments,
product requirements and the results of
rigorous analysis from a knowledgeable
tecam, QIFD becomes the repository for
product plans and specifications. This
repository in turn provides the single
source for subscquent retrieval and reuse
of requircments, whether for in-project
refinements or for acloss-project (or
across-release) revisions.

Conclusion

This paper discussed problems in
rcquircmcnls acquisition and reuse;
described some tools to alleviate these
problems, and put forward QFD as an
cffective tool for the capture and
refinement of requirements.

-

QFD is an cffective and promising
technique in alleviating the problems
associated with the early phases of
requirements and specifications. From
the TQM pe rspective, QFD 1S an
cxcellent avenue for specification of the
“right product”at the right price. QFD,
indeed, is a cross- functional tool that
cnablcs organizations to focus on kcy
customer's and user’s demands and
develop innovative responses to those
needs. M ost critically, Q F D
systematizes rigor in requirements
activities, while maintaining
documentation and requirements-tracing
costs 10 a strict minimum. Lastly, the
authors would like, to conclude that,
although QFD has been accepted as a
useful tool for product planning, as well
as for parsimonious requirements
specification, itsmost unique potential
will be as catalyst for rapid technology
deployment and for parameter design of
information systeins.

m_}:fngincering
_charactenigios

Customer attributes

House
of

Quality

Corrclation Matrix

£}
o
[=]
. . b
Relationship § N
WHATs Matrix N
= 23
o <
& | ®
=
£
L

aanndwo)

Target Values

[Competitive Evaluation

Importance Weighting

Figure 1. The House of Quality

Functional
__specification

|

I Requirements
: analysis
|

Parts Key process Production
__| characteristics operations Requirements
t ! I
| Parts t Process 1 Production
: cibgiloymment : planning ‘I planning
| | 1

Engineering characteristics Parts characteristics

The Four Houses of Quality

High-level

_ design
t
| Amchitiectural
l design

*______

Requirements specification Functional specification

Key process operations

Methods/tools Resource
procedures plan
| I
: Tectsnology : Implementation
1 assessmenit { planning
1 |

High-level design

Methods/tools/procedures

Figure 2. The Four Houses of Quality With Software Terminology

Collecung Requirements
{onginat data)

- 4
l Classdication
{7 X -
Quatity
Requirements
prepanng demanded
Qualty deployment than " —-
PR ey

2nd love!

function tunction

‘Sl 'CVQ' 310 lovel
hunction J

15[lovcl
funclion

f Unction
Requirements

¥

prepanng funciion
system chan

2nd leve!
tunction

L

Jrd level
function

establishing
planned quaiity
N N\
Quakty kuncton
Characlenshcs requwements
A (
f:
<aq ;
5 &
~N -
standarg
values
«]
< x
H
£
3

Figure 3. Ssteps in QFD Activities

9.

R

cxllaclung and ar1tanging
Quality charactensncs

prepanng
Quality chan
[v{, RN
establishing
standard values

| S—

¥

deployment
into processes

lmplemennng
sohware development

r analysis of relationship
between evaluation results
and Quality charactenstics

tesulls
evaluaton

analysis of relationstp
10 process evaluation

i 2

apphication 10
next development

(1]

[2]

(3]

(4]

[5]

[6]

[7]

(8}

REFERENCES

Clemmer, J. and B. Sheeby, Firing
on Al 1 Cylinders, Irwin,
11011cWOCQd, 111,1992

Curtis, B., Krasner, 11., and N.
Iscoe, “A Field Study of The
Software Design Process for Large
Systems,” Comm. ACM, 31,11,
pp. 1268-1287, 1988.

Hsia, P, and A. T. Yaung,
"Another Approach to System
Deccomposit Ion: Requirements
Clustering,” Pmt. The Twelfth
Annual Int'l Computer Software
and Applications Conference
(COMPSAC), Chicago, ILL, pp.
75-82, 1988.

Hsia, J ., Jayara, Jan, S., Gao, J.,
King, D., Toyoshima, Y., and C.
Chen, "Formal Approaches to
Scenario Anaysis,” 1EEE Software
11,2, pp. 33-41,1994.

Johnson, W. L., Feather, M., and
D. Harris, "Representing and
Presenting Requirements
Knowledge,” |EEE Trans.. on S/W.
Eng.18, 10, pp. 853-869, 1992.

Iefering, J., “AnIncremental Tool
Between Requircments
Engineering and Programming in
the Large,” .Pwne LEEE Int. Symp.
on Req. Eng., San Dicgo, Calif.,
pp. 82-89, January 4 - 6, 1993.

Lubars, M., Potts, C., and C.
Richter, “A Review of The State of
The Practice in Requirements
Modeling,” Proc. 1EEE Int. Symp.

on Req. Eng., ., 2-14, Sa
Diego, CA, January 4 - 6, 1503,

Mays, R. G., Orzech,1.. S,
Ciarfella, W. A., and R. W.
Phillips, "PDM: A Requirements
Mecthodology For Software System
Enhancements,” |IBM Systems
Journal, 24.2, pp. 134-149, 1985,

(9]

[10]

[11]

[12]

Reubenstein, 1. B., and R. C.
Waters, "The Requirements
Apprentice: Automated Assistance
For Requirements Engineering, "
IEEE Transon SE, 17, 3, pp. 226-
240, 1991.

Tran, T.1..,1.cc, S, and J. S.
Sherif, "T'he Network Operations
Control Center (NOCC) Upgrade
Task: lessonsl.earned," TDA
Progress Report Number 42-118,
NASA, JPL.,, pp. 160-168, 1994.

Treeck, Van, G., and R. Thackeray,
“QFD at Digital Equipment
Corporation,” Concurrent

Engineering, 1,1, pp. 14-22,
Jan./Feb. 1991

Yoshizawa, T., Togari, H., and T.
Koribayashi, "QID, Intcgrating
Customer Requirements Into
Product Design, (Akao, Y. editor),
Productivity Press, Cambridge,
MA, 1990.

