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1. Introduction

Baroclinic Rossby waves represent an important component of’ equatorial wave

dynamics. Of particular interest is the question about these waves nonlinearity. One of the

goals of the present work is to detect manifestations of the nonlinear natu~  of equatorially

trapped baroelinic  Rossby waves.

Weakly-nonlinear long Rossby waves obey the KdV equation and, in a stationary

regime, may form solitons  (Boyd, 1980; Marshall and Boyd, 1987). When their amplitude

is sufficiently large, the solitons acquire properties of westward propagating mid-latitude

modons (Boyd,  1985). In particular, they carry a region of closed m-circulation - an

important featu~  with respect to mass and heat transwmt in equatorial regions. A set of

non-interacting solitons  with randomly distributed amplitudes is ]efmed to as soliton  gas or

soliton turbulence (Kingsep  et al., 1973; IYyachenko  et al., 1989). An alternative regime

of nonlinear wave dynamics is represented by weak wave turbulence (/akharov  et al.,

1992). Spectral cascades of energy, momentum and other quantities which are manifested

in a cascade pattern in the surface topography are an ii nportant  feature of this particular

~gime.  In either case, the characteristic propagation speed of nonlinear waves is greater

than that predicted by linear wave theory, and the wavenumber  spectrum of sea surface

height (SSH) z,onal  variations tends to be rather broad. One formal distinction between

soliton and weak wave turbulence is the degree of pha se coupli n~ bet wcen individual

Fourier components of the wave field: being weak for wave turbukmce,  this coupling is

strong for solitons. Unfortunately, the present analysis does not allow us to estimate this

coupling, although the wavenumber spectrum of zon~l  SS1 I variations and other properties

of the wave field reported in section 5 suggest that the process is essentially non-linear.

Using a recentl y developed statistical approach (Glazman et al., 1995), we examine

SSH variations in a narrow zonal channel centered orl the Pacific equator. Sampling

limitations related to the satellite orbit configuration dctenninc  the tempoml and spatial
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resolution of our analysis. As explained in sections 2 and 3, we can presently resolve

variations with time scales greater than about 10 days and spatial scales starting at about 800

km. Wave motions with smaller scales m filtm-ed out due to the averaging procedure

described in section 3. In order to emphasize this filtering property, a remote analogy

between our statistical approach and the quasi-geost.rophic  approximation may be pointed

out. While insufficient for studies of baroclinic  Kelvin and till types of barotropic waves,

our technique is adequate for analysis of long, baroclitlic  Rossby waves. Indeed, as shown

in Fig. 1, the period of the first meridional, first baroclinic Rossby mode is at least three

times as large as the corresponding Kelvin wave period for the same wavelength - i.e., is

always greater than 35 days.

As an alternative to statistical analysis, large-scale zcmal motion in equatorial regions

could be deduced from a sequence of SSH contour plots by tracking propagation of

individual, conspicuous features of the SSH field (e.g., Delcroix et al. 1991; Musman,

1992). However, such a “detemlinistic”  approach permits positive identification of only

rather intense events of equatorial waves, on a case-by-case brsis. Altimeter measurement

errors, not suppressed by averaging over a large data sample, make it difficult to resolve

small-amplitude SSH oscillations (under 5 cm or so). Moreover, the plots of an

“instantaneous” SSH field, based on observations over a large time interval (at least 17 days

in the case of Gcosat altimeter measurements and at least 10 days for Topex measurements),

do not permit an accurate detem~ination  of the sha~~ of observed waves.

The satellite data and their Auction  are described in Section 2. our statistical tezhnique

is sketched in Section 3. Section 4 reviews properties of autocorrelation  functions important

for our analysis. Results of the data analysis am IcpoI-ted  in Section 5. In the Appendix we

present linear model predictions for the autocorrelation  function of a broad-band system of

baroclinic  Rossby waves. This facilitates the interprwation  of the statistical quantities in

Section 6. Conclusions are summarized in Section 7.
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2. Dataset of SSH observations and data subletting

As described in (Benada,  1993), Topex altimeter data contain a number of standard

corrections. For our application, the most important ones am the static atmospheric pressure

(“inverse barometer”), electm-magnetic  (“sea state”) bias, tidal (solid Ekth  and ocean) and

geoid.  The residual (r.m.s.) error in SSH measurements is presentl  y believed to be about 5

cm (Fu et al., 1994). In addition to the standard corrections, we introduce an orbit

correction in the fashion of (Tai, 1989), as discussed in detail in (Glamnan et al., 1995).

Finally, we remove the time-invariant trend in the SS} I field. Ilis is done by subtracting

the mean (over the period of observations) SS11 value at each spatial point fmm a current

value, Usually this procedure is employed to elimina[e remaining uncertainties in the Earth

geoid. In our case, it also serves to remove spatial trends duc to stationary featunx  of ocean

dynamics. Specifically, it eliminates a stationary cmnponent  associated with the mean east-

west slope of the sea level (caused by Trade winds) along the equator. Our check of the

thus processed data showed the remaining linear trend along the equator to be 3 x 10 -5

cm/knl,  i.e. practical] y absent.

covering cycles 13 through 65

sequence of Rossby waves.

The datasct  includes 530 days worth of Topex observations,

- the June 93-Aug  94 period characterized by a pronounced

We consider SSH spatial and temporal variations in a 12,200 km long zmnal channel

centered on the equator. SSH measutvments  am spaczd roughly 6 km along the altimeter

groundtracks. Figure 2 illustrates geometry of the tracks for a small area of the equatorial

Pacific, based on the full (l O-day) cycle of Topefloseidon  observations. Apparently, the

minimal spatial separation of SSH measurements in tl]e zonal  direction depends on the

latitude. At 320 off the equator the longitudinal separation is down to about 10 km.

However, on the equator this distance exceeds 150 km. This factor, along with some

additional requirements described in the next section, constrains the spatial resolution of our

analysis.
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Altimeter data from all ascending and descending passes were. grouped into one-

dimensiomd  zonal strings spaced by about 5 km in the meridional, i.e., y - direction, Fig. 2.

To estimate spatial-temporal autaorrelation  function W(r,z) at a given latitude, we employed

four adjacent zonal strings. The autocormlation  functions calculated for strings in a group

wetv ultimately averaged - to increase the statistical significance of the W(r,z) estimation -

and the mean W(r,~) was referenced to the central latitude of a 4- strings group. Therefore,

our spatial-temporal autocorrelation  function represents a meridional average over a zxmal

“sub-channel” about 20 km wide. The analysis pine]  lted in the following sections employs

four strings centered at about 0.75°S. The shape of the autocorrelation  function estimated

for other strings was essentially the same.

3. Evaluation of spatial-temporal autocorrelation  functions and power

spectra

Accurate wavenumber-frequency spectra cD(oA) would be most useful for analysis of

wave processes. lIowever,  practical estimation of dxm,k)  requires data on a regular space-

time grid. The actual format of satellite altimeter data is not suited for the task, and

interpolating the SSH data onto a regular grid would drastically degrade the spatial and

temporal resolution of spectral analysis. Autocorrehition  functions W(r,z) provide an

effective alternative, for they am much easier to estim ate based on non-gridded data. Their

use for analysis of wave processes is explained in the. next section,

“For each zonal string, the data were analyzed in tile following manner. In order to

estimate spatial-temporal autocorrelation  function W(r,~),  wc calculated SSH products

q(x,t)q(x+r,t+z)  for all possible pairs of points on the. (x,t) plane and grouped them by

values of spatial and temporal lags into (Ar, AI) bins on the (r,z) plane. Therefore, the

absolute times and longitudinal positions of individual measurements were “forgotten.”

Strictly speaking, this is justified only for a statistically stationary and spatially

homogeneous random function q(x,t). The assumption of spatial statistical homogeneity
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and stationarity  implicit in our analysis is quite common in ocean and atmosphere studies.

However, possible effects of non-stationarity remain largely unknown, hence the results

should be treated with some caution.

The minimal size Ar of the spatial-lag bins is constrained by the longitudinal separation

of satellite tracks. We selected Ar = 350 km as the o])timal size. ‘1 ‘he choice of AT is based

on the following compromise. On the one hand, the greater this interval, the more SSH

products become available for estimating the autocormlation  function on the r-grid for a

given z. On the other hand, the distance traveled by all ocean wave during a large time

interval At may well exceed the size of the Ar-bin, hence this wave will distort the

autocorrelation  function. Obviously, for studies of Rossby  waves, we should choose ATs

&/CR where CR is the characteristic phase speed of bw-oclinic Rossby  waves (CR = 1 ntis).

Within this time interval, the surface’s variations can be neglected. Therefore, AT is called

the “synchronicity interval.” The averaging over the time-lag bins filters out SSH

oscillations with periods smaller than 2A%. Most of the results described in Sections 5 and

6 are obtained with AT = 4 days. Obviously, the choice of Ar = 350 km and Az = 4 days is

quite adequate for analysis of baroclinic  Rossby waves. However, information on gravity

and Kelvin waves will be suppressed due to the averaging within the bins. Really, Kelvin

waves would travel 860 km in 4 days, hence they would  cross two Ar-bins. Their effect on

the autocorrelation  function W(r,O) is illustrated later in this section.

Ultimately, all SSH products falling within the (AI, AT) cells wcm averaged. This

yielded an unbiased estimate of the autocorrelation  function W(r,~) on the regular r-~ grid.

This function characterizes the regime of SSH variations for a given period of observations.

Fh-ror analysis for this technique is presented in (Glamnan et al., 1995). The averaging

suppresses adverse influence of altimeter measuring emors and has other advantages. The

r.m.s. error of the autocorrelation function estimate, as caused by SSH measuring errors, is

&W=&~N where N is the mean number of independent products !~(x)q(x+r) in Ar bins

and e is the root-mean square error of SSH measurements. Fore = 5 cm and N=3x103,  we
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find &W=O.5 cm2. The distribution of the number, N(r), of SSH products falling into Ar

bins is presented in Fig. 3 for z=O, for several values of Az, The fact that this distribution

is highly non-uniform complicates estimation of er-mr bars. 1 lowever, if the lowest values

of N(r) are of order 1@, the overall accuracy of the statistical analysis is sufficient to resolve

1 cm SSH variations. A more detailed description of our statistical approach is provided in

(Glazman et al., 1995).

Figure 4 illustrates the effect of the synchronicity interval on the spatial autocorrelation

function W(r), for a full-length zonal sub-channel centered at y = 0.75%. The diamond

represents the total variance of SSH, ~2> == W(0), for which both temporal and spatial

lags am exactly zero. The points connected by the solid cuwe have the synchronicity

interval ranging from 2 to 10 days (panels A through 11), and the actual time difference in

individual SSH products is always greater than mm: point ~% is not included into the

curve (and is also ignored in the following discussion) because this point is dominated by a

delta-con-elated (i.e., “white”) noise due to instrumental and measuring errors.

On a close examination of panels C and D in Fig, 4, one can notice a slight eastward

displacement (about 600 km in Panel C) of the peak c)f W(r). We explain this shift by the

influence of baroclinic Kelvin waves. Really, with a 7-day synchronicity interval, Kelvin

waves will make their largest positive contribution to W(r) at spatial lags r = CKt where 0<

t <7 days and cK is the Kelvin phase speed. Considel  a Kelvin-wave-induced component,

WK(r), of the total autocorrdation  function W(r). Effect of the synchronicity  interval, T, is

found by averaging the true spatial-temporal autocordation  functicm, K(r,z), of Kelvin

waves over all time-lags within T:

w~(r) = +~K(r -c~z)dz  = +:y:p - g)dg
CK ‘

Hem we introduced ~ = CKT - CKT/2 and p = r - CK1’/L As a function of p, this

autocordation  function is even: WK(p) = WK(-p), which yields rnl = CKT/2 for the point

at which WK(r) attains its maximum. With T = 7 days and CK = 2.5 m/s, rm = 750 km.

October 2, 1995
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The dominance of the Kelvin-wave-induced component of W at these small time scales

explains why this rm is in a reasonable agreement with Fig. 4(C).

The spatial autocorrelation  function, Fig. 4, shows a near-linear behavior at large scales

-- from about 1000 to 9000 km. The corresponding shape of the wavenumber spectrum is

inferred based on the following argument. The 1 d wavenurnber  spectrum of form

F(k) = k-3+2v , (1)

with v >0, yields the following asymptotic form of the spatial autoconelation function:

W(r)  = W(0) – Br2-2v , (2)

(e.g., (Glazman and Weichman, 1989)). Here, B is a constant. Hence, when W(r) is a

linear function (~= 1/2),

range of wavenumbers.

The spatial-temporal

the spectrum follows power law F(k) - k-2 in the corresponding

autocorrdation function is illustrated in Fig. 5.

In principle, autocorrelation  functions permit estimation of power spectra. However,

random errors in the values of W(r,z) and the limited] ange of r and ~ for which W(r,z) is

estimated would greatly degrade the accuracy of the corresponding Fourier transform.

Therefore, the direct use of autocorrelation  functions for analyzes of wave properties is

preferable.

4. Using autocorrelation  functions for analysis of wave processes

The spatial-temporal autocorrelation  funct ion, Fig, 5, contains a great deal of

information on processes occuring  within our 530-day period of observations. For

example, let us notice that the secondary ridge of W(r,z) is separated from the main one by t

= 1 year. This ridge (and its mirror image at negative ~) is associated with the inter-annual

variability rather than the intrinsic period of Rossby waves. Most rdevant  to our problem is

the main ridge of W(r,z), especially the part for which the lag is well within 100 days -- the

time required for long baroclinic  Rossby waves to freely traverse the equatorial channel at

October 2, 1995
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the sped = 1 m/s. For this range of z, W(r,z) is related to the wtivenumber  spectrum of

SSH zonal  variations by

~(~,T) = JF(k)f3k[r-c(k)’ldk , (3)

where c(k) is the wave phase velocity. For a narrow-band spectrum F(k), the integral can

be evaluated by the stationary phase method. This would immediately demonstrate that the

most prominent feature of the 2-dimensional function W(r,z) is a “ridge” on the r-z plane

passing through the origin. Its orientation yields the propagation speed of a wave train,

dm/dk.  The latter, of course, is the wave group velocity. (Provided the spectrum is

sufficiently narrow, a system of parallel ridges of a rapidly decreasing height would also be

visible on this plane.) In a non-dispersive case (c(k) is const),  (3) rcxluces  to

W(r,t) = W(r – m) (4)

In other words, W(r,~) at time T is obtained from W(r,O) by a uniform shift along r. The

wave propagation speed, c, is found as
r(~)

c = —-
‘t

(5)

Here, r(~) is the position of the correlation maximum at time z. Obviously, equation (4)

remains also valid in the case of wave solitons  because wave dispersion is exactly balanced

by effects of wave non-linearity: the wave shape travels without distortions.

For a broad-band spectrum, such as (1) with p >0, the interpretation of the

autocorrelation  function is not trivial. In the Appendix, we carry out numerical simulations

of W(r,z) for a special case of linear Rossby waves whose spectrum contains a power-law

range k-z.

5. Statistical analysis of baroclinic  Rossby waves

a) Spatial aulocorrelation  fmtion and wavenumber  spectrum

Figures 4 and 5 point to the existence of two regimes of SSH spatial variations. The

short-scale variations responsible for a narrow peak at the origin have spatial scales under

1000 km and are characterized by SSH variance ~2> = 16 cm2 estimated as W(0)-W(A)

October 2, 1995
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where A is the characteristic spatial lag (A = 103 km) at which W(r) starts displaying the

linear trend, and W(0) is pmented  in Fig. 4 by a dian iond. The long-range variations

(corresponding to the linear trend in W(r)) have spatial scales greater than about 1000 km,

Their variance, ~2> = 8 cm2, is found as W(A). A more formal evaluation of the SSH

variance for large spatial scales can be done by fitting a parabola W-a@ to several points

with hi >1000  km surrounding the W(r)’s narrow peak: its maximum, ~, provides the

desired result.

In accord with(1) and (2), the linear behavior of W(r) on scales from about 1000 km

and to almost the basin size scale corresponds to the k‘2 range in the 1-d power spectrum

F(k). The power spectrum pertaining to these large-scale oscillations can be idealized as

F(k) = Const  . e-(k@e-(k/kJk.-2 (6)

where the exponential factors serve as the high- and low-pass filtem, respectively: ~

~presenting  the lower-wavenumber boundary of the linear range and km serving as the

“microscale” or the “inner scale” of the spectrum [see, e.g., (Glazman  and Weichman,

1990) for a discussion of this kind of spectra]. The use of a low-pass filter is necessary

only for the study of the SSH profile (reported in section 6) to guamntee  convergence of an

improper integral. To better understand the narrow peak of W(r) corresponding to small-

scale motions one has to analyx the temporal evolution of W(r,z).

b) Spatial-temporal autocorrelation  ~tion

Figure 6 illustrates several sections of W(r,~) for fixed values of the temporal lag.

Ignoring for a moment the evolution of W(r,z) near its peak, we earl estimate the speed of

the westward propagation using (5). Based on the last three panels in Fig. 6- with z = 40,

60 and 80 days -we find E = 1.1 m/s - in agreement with previously known estimates for

baroclinic  Rossby waves, see e.g. (Delcroix et al., 1991) and references therein.

A more formal estimation of this speed can be done, for instance, as follows. For each

fixed value of z, one can estimate the r-coordinate of t}le autocormlation  maximum and then

fit a straight line r(z)=m to all such points within a selected range of z-values. The

octobeI  2, 1995
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autoccmdation  maximum for a fixed I is found by ap~JrOXkithg W(VZ) by a quadratic

polynomial ~+alr+ayz  and solving equation Ml&= O = a]+2a~r  for r. With step Az =

4 days (for values of t from 20 zo 80 days), this procedure yields c = 1.1 lMI.22  m/s

where the uncertainty of 0.22 m/s is taken as the standatd  deviation of experimental points

from the straight line r(z) = FT. Since the total number of such points is n = (80-20)/4

=15, we estimate confidence intervals as Ac = t cddn where o is the standard deviation, o =

0.22 m/s, and t is found from Table 26.10 of (Abramowitz and Stegun,  1970) for a

specified value of the significance level, A, Taking A = 0.9, we find Ac = 0.1 m/s.

Therefore, at the 90 percent significance level, we have c = 1.11 t ().10 m/s,

If the wavenumber spectrum were narrow, C could be viewed as the wave group

velocity of baroclinic Rossby waves corresponding to the spwtral peak wavenumber. In

our case, C strongly depends on the spectrum shape. Hence, its usefulness as a

characteristic of the equatorial waveguide is not very high. In this respect, the Kelvin wave

speed represents a more fundamental quantity, for Kelvin waves arc non-dispersive and

their velocity is determined by the Brunt-Vtisala  frequency. A detailed analysis of this issue

is presented in the next section,

As evident from Figs. 4 through 6, the sharp peak in W(r,’c) is confined to the shortest

temporal and spatial scales. These short-scale variations may be caused by the following

factors:

1) SSH measuring errors, such as the electromagnetic (sea state) bias caused by wind-

generated surface gravity waves. With respect to the coarse spatial and temporal

resolution of the our technique, this factor represents a delta-correlated noise, hence it

contributes only to W(O,O).

2) I ligh-frequency  SS11 oscillations due to barOtIOpiC and fastest baroclinic  gravity wave

modes. Considering the relatively large size of the time-lag bins, Az, contribution of

these fast waves is similar to that of a delta-correlated noise: they increase W(r,~) only for

smallest values of z.

October 2, 1995
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3) Kelvin waves. Similar to other high-frequency oscillations, Kelvin waves - due to

their short wave period (2.4 days for a 500 km wavelength) - would require a very small

synchronicity  interval for their detection. Although these waves are not observed in Figs.

5-6 (because of the large lag bins used in our analysis), they manifest themselves in the

eastward shift of the W(r) peak in Fig. 4 panels C and D.

4) Short Rossby waves. These are defined as the waves with wavelengths shorter than

the Rossby radius of deformation. Considering tk relatively large size of the spatial-lag

bins, Ar, effect of short (although slow) Rossby waves is similar to that of fast waves,

except that these waves would manifest themselves as spatial rather than temporal delta-

correlated noise. Therefore, they could increase W(r,~) only at short spatial lags r.

For our analysis of long baroclinic  Rossby waves, all these processes present little

interest.

6. Interpretation of the results

Since we have no information on higher statistical moments, the interpretation of Figs.

4-6 depends on our assumptions regarding the phase coupling between Fourier

components comprising the spectrum. The simplest assumption is that the SSH variations

represent a Gaussian random field. In particular, there is no phase coupling between

individual Fourier components - the waves are linear. In the Appendix, a linear-wave

analysis is presented to relate the propagations=  Z, of the autocorrdation  maximum,

which was estimated based on our SSH data, to the phase spexxi,  c~,l (0), of longest (non-

dispersive) baroclinic Rossby waves. In this section we show, in particular, that the

observed F is higher than pruiicted  by linear theory. This and other arguments presented in

this section lead us to suggest that the linear theory of baroclinic  Rossby  waves is at odds

with our observations.

Most of the earlier experimental studies reported the value of the Kelvin waves-

CK, rather than the Rossby wave speed, Indeed, cK is a convenient intrinsic property of

October 2, 1995
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the equatorial waveguide because it is unambiguously dated to the Brunt-VtiisMa

frequency. In order to express our experimental quantity F in terms of the Kelvin speed,

we need the following theoretical relationship between cK and the phase speed, c~,~ (0), of

the longest Rossby waves of the m-th meridional mode (e.g., L&lond  and Mysak, 1978):

CK = -(21n + I)cR,m(o) $ ( 7 )

where cRm(k)  is the phase speed of the m-th Rossby mode for wavenumber k. Equation

(A8) shows that c~,~(0) must be about 1.15 times as high as the propagation speed of the

autoeorrelation  maximum. Using F=l. 1 m/s this yields cR,~ (0)= 1.2 m/s. According to

(7), our measured F would correspond to the Kelvin speed of 3.6 m/s. This value is well

outside the range of typical Kelvin speeds ( 2.3 to 2,8 m/s) reported for the equatorial

Pacific.

The hybrid, Rossby-gravity mode, m=O, (also known as the Yanai wave) does not

agtee with our observations, either. As shown in the Appendix, this mode is inconsistent

with the shape of W(r, ~). in Fig. 6,

Of course, one may try explaining the high value of c~,l (0) by possible inaccuracies

of our data analysis. However, we believe that a more relevant explanation can be

suggested based on non-linear theories of tquatorially  - trapped waves.

A non-linear theory of Rossby waves due to Boyd (1980) yields  a single-hump

soliton or a modon [provided the amplitude is above a certain threshold (Boyd, 1985)]

propagating at the speed that exceeds CR~ by an amount proportional to the wave

amplitude. Let us show that a soliton  gas hypothesis is consistent with the observed

aumeorrelation function of SSH variations. As evident from Fig. 6, the peak value of

W(r,@ established at z = 20 days does not drop as the time lag continues to increase,

whereas the linear  theory predicts a monotonic decrease of the W(r,z) peak value with an

increasing T, Fig. 8. For dispersive waves this can happen only if t he effect of wave

oetober  2, 1995
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The other argument in support of the soliton  gas hypothesis is that the longest waves

in the spectrum, being near the basin length size, would be affected by the western

boundary which would prevent their propagation as either fme or forced progressive waves.

However, as the Fourier components of a compact, soliton-like  formation, these waves

cause no controversy. The surface profile of a non-Gaussian random field with power

spectrum (6) can be constructed based on the following idealization. Let the instantaneous

wave field q(x;t)  be comprised of (identical) surface disturbances, ?ln:

n(x) =xm?l(x  -%), (8)
n

satisfying condition TIn (x) --+ O at I xl 2 L where L characterim  the width of a soliton.

In other words, individual solitons  are well separated in space. If, additionally, the spacing

is constant, a Fourier transform, f(k), of the surface profile is given by the Fourier

transform of a single soliton times a constant which is inversely proportional to the number

of solitons  per unit length of the surface. Obviously, this Fourier transform is related to the

power spectrum (6) by F(k) = [f(k)]z. Therefore, the surface profile is found as the real
m

part of (2?t)-1 JIF(k)]l’2e-ibdk.  This profile is illustrated in Iiig. 7. Unfortunately, in
—m

the small vicinity of its peak, the shape of this “soliton” is strongly affected by our choice of

the low-pass filter in (6). Not knowing the “amplitude” (in terms of the thermocline  depth

displacement) of these disturbances, we cannot indicate their theoretical propagation speed

However, the fact that this speed would  exceed the phase sped of linear Rossby waves

indicates that a Rossby soliton (or its higher-nordineal  version - the modon)  is consistent

with our observations.

The theoretical shape of Rossby solitons  (Boyd,  1980) is different from that in Fig. 7.

However, since the spacing and amplitu& of individud  solitons  am not constant, the above

analysis should not be viewed literary as a derivation of the mean shape. This shape also

depends on statistical distributions of quantities entering  (8). Our main goal here was only

to show that a broad-band spectrum, such as k-2, may lead to single-hump formations of a

reasonable horizontal extent - comparable to that of Rossby solitons.
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, Alternative explanations arealso possible. Inparticular,  onecould  suggest thatthe

observed F(k) spectrum is the result of weak wave ttu bulence.  Unfortunately, theoretical

spectra for this case am absent, because present theories of Rossby wave turbulence are

limited to short (as compared to the Rossby radius of deformation) waves (e.g., Zakharov  et

al., 1992).

6. Summary and conclusions

Equatorially-trapped  waves represent a rich dynamical system characterkd  by many

degrees of freedom. Statistical analysis of ocean wave observations, as opposed to a

determination of individual wave properties on a case by case basis, offers a natural way of

studying such systems. This is especially true for satellite-altimeter data because their

temporal and spatial rwolution and measuring accuracy are limited while the spatial and

temporal coverage is quite large. The technique employed in the pnxent  work allowed us to

infer some new and interesting properties of baroclinic  Rossby waves.

Our main finding is that, in a wide range of scales (from about l@ to 104 km), zonal

spectra of equatorial Rossby waves exhibit a power-law behavior F(k) - k-2. Present

interpretation of these waves as a sequence or baroclil  Iic Rossby solitons  is tentative, for we

have no information on higher statistical moments of the wave ficki. Such information is

necessary in order to directly assess the degree of the phase coupling between Fourier

components. The main arguments in support of the soliton gas hypothesis are summarized

as follows:

1) At sufficiently large values of time lag, 20 days < z c 80 days, our function W(r,t)

preserves its shape as z continues to increase, see Fig, 6. (The upper bound on z represents

the time taken by a signal to pass 8“10s km at speed 1.2 m/s.) We interpret this observation

as an indication that wave dispemion  is balanced by wave non-linearity - as expected of a

collection of solitons.
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2) The observed propagation speed, F= 1.1 m/s, appears to be higher than the

prediction of linear theory.

3) A power-law spectrum k-2 of westward propagating waves with length scales up to

8“ 10s km - comparable to the basin size - corresponds to a set of compact, soliton-type,

formations.

In the absence of higher-order statistical moments we cannot eliminate a possibility of

weak wave turbulence as being responsible for the observed spectrum, However, at the

present time, estimation of bispectra  or other characteristics of a non-Gaussian random field

of SSH variations is impeded by the relatively low measuring accuracy, limited spatial and

temporal resolution and still insufficient volume of SSH observations. The use of

alternative statistical approaches might prove advantageous in future studies.

APPENDIX A: Linear model of Rossby and Yanai waves
M ::’+??’

Linear theory yields the following dispersion relationship for thex meridional mode

Rossby waves:

whexe c; is the Kelvin wave speed,

[)In# 1/2

R =  —
2p

3 (Al)

cK = {~% = 2.5 m/s, and

(A2)

is the internal Rossby radius of deformation, and /3 = 2.3”1011  (m s)-]. In the case of a

two-layered ocean, g’ is the reduced gravity and h = )11H2 / (1~1 + ~J2) where HI is the

thermocline  depth and H1+H2 is the total ocean depth, H. For the first vertical mode in a

continuously stratified ocean, h in (A2) is replaced wilh (NH/n)2/g  where N is the Brunt-

Vtiisiila frequency, and g’ is replaced with g. We are concerned with the case when the

Rossby radius is small - as specified later in this section. For brevity, let us re-denote the

Rossby wave phase speed CR~ (k) by c(k) and CRm (0) by co. For long Rossby waves,
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the dispersion relationship can be simplified by assuming (Rk)2 <<m+ 1 / 2 fork in the

range (k~, km). Thus, the phase speed is

c(k) =co(l– Ek2) , (A3)

where

&h
/—

R2
co =–——

2m+-1 ‘
~ ., —-— (A4)

m+lJ2

Let us write (3) with (A3) in a non-dimensional form
w

~(~,~) = ~ ~(K)CXp[iQK(~<)  + fiiK3 ]dK , (A5)
o

where the non-dimensional variables are rdated  to R, co and ko by the following scaling

relationships:

co
K=k/ko,

(~R)2QF=rj L, i= -L-T, Q = koL, E=: –-mT (A6)

2

Here, the spatial length scale L is arbitrary. Selecting L = S. 10S km, k~ = 2Z 1O-4

rad/krn and CK = 2.5 m/s, we have form= ].’ R =23.? km, co =0./?3 m/s and E = 0.04.

These values of CK and R are typical for the equatorial Pacific (IeBlond  and Mysak, 1978).

The corresponding time scale L.JcO = 70 days.

The non-dimensional version of(6) is

F(K) = cxp(-] / K2)K-2 (A7)

(we omit the low-pass filter in (6) because the integral (A5) converges sufficiently fast.) In

Fig. 8, the real part of (A5) is plotted based on numerical integration. At time moment ? = 1

(corresponding to 70 days), the maximum of W(r,z) is found at a point ; ==-0.87. In the

absence of wave dispersion it would be at a point ?=- 1. This delay allows one to estimate

the ratio of the longest-Rossby-wave speed to the propagation speed of the autocormlation

maximum (5):

cO/E=l/0.87  =1.15  . (A8)

In order to show that the mixed Rossby-gravity mode, m=O, cannot be responsible for

the observed W(r,~),  one may use the (non-dimensional) dispersion relationship for these
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waves, fi = [1 + ~1 + 2 / (v~)2 ]/2, in the linear model analogous to (A5). Here,

v = ~R. The nsult is shown in Fig, 9 (all scaling parameters as the same as for Fig, 8).

Evidently, the broad-band spectrum of the Yanai wave-s is inconsistent with our estimate of

the spatial-temporal autocormlation  function.
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Captions for Figures

Figure 1. Period of linear baroclinic  Kelvin and Rossby waves (1st baroclinic,  1st

meridional mode) versus wavelength, based on equation (A 1 ). The Kelvin wave speed is

assumed to be 2.5 m/s and the (1st baroclinic)  Rossby radius of deformation 250 km.

Figure 2, Satellite ground tracks in a tropical Pacific region during a 10-day cycle, A

horizontal dotted line illustrates the position of a znnal  string: the SSH data w sampled

from gmundtracks at intersections with the string.

Figure 3. Number N(r) of SSH products falling into 350 km r-bins for W(r,O) of the full-

length z.onal  string. Values of the synchronicity  interval are provided on top of each panel.

Figure 4. One-dimensional spatial autocorrelation  function, W(r), for the area 1600-

2700W referenced to latitudhud  position y = 0.75%, estimated for several values of the

synchronicity  interval At, as indicated on top of each panel. The diamond ~presents

W(0) = wZ>. The solid curve approximating W(r) igt)ores this special point because this

is the only point for which both r and z are emct.ly  zero (see Sections 3 and 5 for detail).

Figure 5. Spatial-temporal autocorrelation  coefficient, W(r,’t)/W((),O),  fOr y = 0.75°S,

calculated for y = 0.50S, Here, W(O,O) = 24 cm2 (s <qZ>).  Bold contours correspond to

W(r,z)=O.

Figure 6. Spatial-temporal autocorrelation  function, W(r,t),  for y = 0.75°S, for selected

time lags, ~ , as designated on top of each panel. Horkontal  axis: r (km). Vertical axis:

W(r,~) (mZ). Synchronicity  interval At=4 days.
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.

Figure 7. Non-dimensional surface profile, fi(i), for spectrum (6) with ~ /km= 0.1.

Sea surface is assumed to be a sequence, (8), of single-hump disturbances (the “soliton

gas”). Vertical axis: arbitraxy units of nondimensional length. Honz,ontal  axis is scaled as

ii= ~ where x is the dimensional distance along the equator and ~ is the low-

wavenumber cutoff introduced in (6). Therefore, i = 1 corresponds to x=1500 km.

Inset: the expanded region in the vicinity of i =0.

Figure 8. The non-dimensional spatial-temporal autocorrelation  function (A5) (normalized

to unity at d) for linear Rossby waves with spectrum (A7). Hori~ontal  axis: the non-

dimensional spatial lag, 7, (scaledbyL=5’10? km). Other scales are. indicated in the

Appendix. Numbers at the curves are values of ~ with time scale I/cO = 70 days. Dashed

curve: %=0.

Figure 9. The same as Fig.8,  but for linear Yanai waves with v = 0.14. Numbers at the

curves are values of %. The curve for ~=0 is not plotled  - as it is identical to the dashed

curve in Fig. 8.

October 2, 1995



80

Wave 60
period, T

days

Rossby
Kelvin

40

20

0
0

——

1000 2000 3000 4000 5000

Wave length, kr I
trace 1
trace 2



6

4

2

0

-2

-4

-6

0-,
0 \ I I ~

f“ “~, /0 \ / \ /’
/ \ /’ \\ \ /’

\ /’ \ /’ \
\ \ \ /’
\ /’ \v/’ \
)(

\x/’— / \ / \\ #\
\ / \
\ / \ /’ ~, /’ \\ \

—’\ 0
—\  + —\ ‘ .  f“ — “ . \ -  ,L_ J.,

\/\&/ \ \\</’ \*/’— // \\ // \ /4 \/ \ \/ \ / ‘\ // \\ /<

7 ’ \ /
\

\ \ /’
\

/ \ /’
\ / ’

\

1

\ \ /’
\ /’

\ /
I

\
\. /’ \ /’

200 202 204 206 208 210

Fig. 2



r- I ‘~-~- r-. I ‘“I T“” I ‘“–7 “ - - r  ~—T-~
o
0
0
0

>
0
0
0
cc

1---

0
0
0
w

0
0
0
CN

9Z!S 91qUIwKJ92?!S S1qtL19SU~

r-r-~  r7–~ -‘- 1–~

!{’

$.
‘a

N

i
0L—1 1.. LL LL .~L L

m
0

&
CJ!-+



2 days
25 .’

20 -

15 -

“E
*
3

5 -

0 :

-10000 -5000 0 5000 10000
r, km

-5 ~
-10000 -5000 0 5000 10000

r, km

25

20

15

“E
; 10
3

5

0

4 days
1 1 6 “ ’ ” ’ ’ ’ ’ ” :

-5 ~
-10000 -5000 0 5000 10000

r, km

10 days
25 ‘
l“”

,
0’ ‘j

20

I

-5 ~
-10000 -5000 0 5000 10000

r, km



o

F’.:.
.
. . .

.
—

o.

. . . . . .-. .’,-. ---

,: .,,
. . . . . . . . ...->’.........:.::-.  ,“

---- - -,.-,-- -
,..  .
. . .

a

. . . ..-. . . . . . . . ..-. ... >. . . . . . ., ---.:. . . . . . . . . . . . . . . . .- . .
. .

< _-> —.
.,. . . . . .-- . . . . .-. . . .--.-:. . . . ..-
. . .

00 0 0 0
0 m lo 0

I

%-’

o0
d-

I

o0
y

Ulx ‘.11



.

r-!

;
-c!
c

1

H
-,

CA

%’
Q
o
-d

J’,uLuLLhullLLLI  u, LIL1id LL1lLLL

N2U

)

i 000+

0 0z
o

(

E
03

0
0
0
V)

0
0
0
0

1

E
OFM

k-

r,rrrrrprrl

I!!l IL 111 LIL1
0s
o

o ’



1

0 0 0
u) m 0

~_J__L_
0
%-

0
+

0
0

0
T+1

c?
ql

o
0



——

0

I



*
;

—

—

—

/

\

\

——. —

—

.

\
/./y

0.

..—

—

—

M)

o
.rjl
u

U)
N
6

G-
0

w)

q


