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Abstract

This paper presents a method for planning the motion
of arobotinadynamic environment by computing
atrajectory that avoids all obstacles and t hat sat. is-
fies the robot dynamics and its actuator ¢ onstraints.
This method consists of two steps: the computation
of the traje ctory and its refinement with a dynamic
optimization,

The trajectory consists of a sequence of avoidance
maneuvers that are computed at discrete time inter-
vals using the concept of Velocity Obstacle, i.e. se-
lecting those velocities that avoid future collisions and
satisfy the dynamic constraints. This trajectory is de-
termined by a global search over a tree of avoidance
mancuvers, computed at discrete timeint ervals to sat-
isfy t he constraints re presented by the velocity obst a-
cles and the robot dynamics. This trajectory is then
smoothed and further refine d nsing a dynamic opt -
mization t hat accounts for the robot dynamics, actu-
ator (wrist ramts andt he stat icand moving obst acles,

The dynamic optimization uses the smoot hed tra-
jectory as its initial puess, eliminates the effects of the
diseretization, and mintimizes motion time, subject to
the dynamics of the robot, its actnator limits and the
state megnality constraints due to the moving obsta-
cles. The optimization is based on a steepest descent
method i which the state inequality constraints are
transformed imto state-dependent control constraints.,

This approach is demonstrated for planuing the tra-
sectory of a simple robot manipnlator.

1 Introduction

This paper addresses the problem of motion planning
in dvnamic envitonments. Typical examples of dy-
namic environments include manufacturing tasks in
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which robot manipulators track and retrieve parts
from moving conveyers, and air. sea. and land traflic,
where aircraft, vessels and vehicles avoid each ot her
while moving towards their destination.

Motion planning in dynamic environments is con -
siderably more dif ficult than the widely studied static
problem. since it. requires the simultaneous solution of
the path planning and of the velocity planning proi)-
1r111s.  Path planning invelves the computation Of a
collision free pat h from start t o goal without consid -
ering robot dynamics. Velocity planning, on the ot her
hand. involves the computation of the velocity profile
along a given path. satisfying system dynamics and
actuator constraints.

Previous methods consisted of a graph searchin a
position-time confignration space of the robot [7], and
checking for intersectionof the swept. volumes of the
robot and obstaclesina Cart(wian-time space [4]. Ve-
locity constraints are consideredin [25] for the solution
of the asteroid proble m. and acceleration const rains
are satisfied in [3] and in {23] for planning for a point
llls.ss.

Approximate dyvnamic con straints are satistied in
{15] by decomposing the planning problem into path
an d veloeity planning. and by liiting slope, direc -
tion and curvature of the trajectory in a space-time
plane. Dynamic constraints are used in [12] to define
the collision front. and in {1 1] to introduce the con-
ceptof o rail.s)t,nl obstades, also applicable ta dyvnamice
plannin:.

The time-optimal motion planning problem in
static environments has been treated previously us-
Iy parameter optimizations, representing the trajec-
tory as a polvnomial in time and accounting for obsta-
cles usiug 4 penalty funection [14)0 and representing the
path by a cubic spline 28] 1], computing the motion
time along the path with an etheient method devel-
oped in 1} and in (291 Thne optimal motion planning




Figure 1: Therobot and amoving obstacle.

of coo peratingrobots moving along specified paths hiws
been studiedin[17], [29].

In this paper. we develop an eflicient method to
compute the dynamically feasible trajectories of a
robot moving in a time-varying environment. It uti-
lizes t he concept of Velocity Obstacle (V()), whichrep-
resents the robot’s velocities th at would cause a colli-
ston with an obstacle at some future time. Thus, an
avoidan ce maneuver is computed by selecting veloci -
ties that are outside of the velocity obstacle. To en-
sure that. the maneuver is dy namically feasible, robot
dynamics and act uat or const raints are mapped in to
the robot velocity space. A trajectory consists of a
sequence of such avoidance maneuvers. These trajec-
tories are then refined by using a dynamic optimiza-
t ion. The method t hat we use iS a steepest descent, [2]
[6]. modified toinclude the state-dependentineqguality
cons tramts due to the moving obstacles. The init ial
guess of the optimization is the approximate trajec-
tory generated by the global search ove r the maneuver
tree.

This paper s organized as follows, Section 2 de-
fines the Velacity Obst acle, the avoidance veloeities,
and desenibes the representationusedto compute t he
trajectories. Section 3 deseribes thhe dynamic opti -
mization used to re fine the trajectories. A n examples
of atrajectory and its time optimal refinement is pre-
sented 1 Section |,

2 The Velocity Obstacle

The Velocity Obstacle 1 VO) ix an extension of the
Confignration Space Obstacle 20] to a time-varying
environment. It consists of the velocities of the robot
that will cause a collision between the robot and the

[

Figure 2: The Collision Cone CC4 g, .

obstacles at some future time. Although this concept
1s valid for general robots and obstacles, in this paper
we restrict our analysis to circular robots and obstacles
in the plane.

In this section we first define the VO concept and
then we combine it with the dynamic constraints of the
robot to compute avoidance velocities that are also dy-
namically feasible. The corresponding avoidance ma-
neuvers are used to build a tree that represents, within
the given temporal resolution, all the avoidance trajec-
tories generated to satisfy the constraints represented
by the velocity obstacles.,

2.1 Definition of Velocity Obstacle

The VO s illustrated using the scenario shown in Fig-
ure 1. where two circular objects, A and By, are shown
at time fy with velocities vy and v, Cirele A repre-
sents the robot, and cirele 13 represents the obstacle.
The velocities aud positions of A and By were chosen
so that Atand I, will collide at some time £, (1, > 1),
provided that v and vy, do not change.
To compute the VOO we first represent 3 in the
Configuiation Space of A by reducing A to the point
A and enlarging By by the radins of A to the cirele
B, "19]. and then we attach the velocity vectors to the
posttion of A and to the conter of l/f\‘ respectively.
By considering the relative velocity v p, = v -
v, . aied by assuming that A4 and B maintain their
enrrent velocities, a collision between A4 and IT will
occur at some future time £ >ty if the line A g gy of
the relative velocity v p, intersects 17 In fact, any
relative velocity that les between the two tangents to




Figure 3: The velocity obstacle VO,

By Ay and A, will cause a collision between A and B,.
Therefore, we define the Collision Cone, CCy4 p,. as

the set of colliding relative velocities between A and
B or:

CCap, = {Vvan | Aap, N DB # 0} (1)

This cone is the planar sector with apex in/j. bounded
by the two tangents Ay and A, from A to By, as shown
in Figure 2.

The collision cone thus partitions the space of rel-
ative velocities into colliding and avoiding velocities.
The relative velocities, v 4 g, . lying on the boundaries
of CC4 p, represent tangent maneuvers that wounld
praze the obstacle By.

The collision cone is specific to a particular pair
of robot/abstacle. To consider multiple obstacles. it
15 useful to establish an equivalent partition of the
absolute velocities of A. This is done simply by adding
the velocity of 1. v, . to each velocity in CCy p, or.
equivalently, by translating the collision cone CC 4 p,
by v, asshownin Figure 3 9], The Velocity Obstaclr
VO is then detined as:

VO = CCuap, v, (2)

where  3ois the Minkowski vector sum operator,

Thus, the VO partitions the absolute velocities of
A amto arording and colliding velocities. Velocities an
the boundanies of VO would result in A grazing B,.
since the corresponding relative veloeities lie on the
boundary of the collision cone C'C 4 p,. Note that the
VO of astationary obstacle is identical to its relative
velocity conelsince then vy, = 4.

To avoul multiple obstacles, the VO's of each ob-
stacle are combined inta a single velocity obstacle:

VO = 0™ vo, (3

100

Figure 1: The reachable avoidance velocities RAV.

where m is the number of obstacles. The VO assumes
that the velocity of I3 remains constant. To account
for variable velocities, V(O is recomputed at specified
time intervals.

2.2 The Avoidance Maneuvers

The velocities reachable by robot A at a given state
over a given time interval At are computed by trans-
forming the dynamic constraints of the robot into
bounds on its acceleration. The set of feasible accel-
erations at time tg. FFA(29). is defined as:

FA(tyg) = {X]|X = f(x.x.u).ue U} (4)

where f(x.x.u) represents the dynamics of the robot.
u are the actuator efforts, U is the set of admissi-
ble controls, and x is the position vector defined ear-
lier. Note that the feasible acceleration range of a
two degree-of-freedom system with decoupled actua-
tor limits is a parallelogram [27).

The et of reachable velocities, RV(ty 4+ At). over
the time interval At is thus detined as

RVit 4+ Aty = {vivz vta)d i A Fctg)d (D)

The set of vachable arotdance veloeities. RAV., s
detined as the difference between the reachable veloe-
ities and the velocity obstacle:

RAVity 4 At = RVitg + Ay VOt 16)

where Zodenotes the operation of set difference. A ma-
nenver avolding obstacle By ois thus camputed by se-
lecting any velocity in RAV. Figure 4 shows sehemati-
(;11))- the reachable \'rlln‘ily set RAV consisting of two
disjoint closed sets, Seand S, For multiple obstacles,
the RAV may consist of multiple disjoint subsets,
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Figure 5: Tree representation for the global search.

2.3 The Avoidance Trajectories

The trajectory is computed as a discret e sequence of
avoidance maneuvers, select ed by a global search over
the tree of all feasible maneu vers at specified time in-
tervals,

We represent the state space of the robot by a t ree
of avoidance maneuvers at discrete time intervals. The
nodeson this tree correspond to the positi ons of the
robot at discrete times £;. The operators expanding a
node at time t, into its successors at time tiv1 = ¢, 47T
arethe velocitiesin t he reac hable avoidance velocity
set RAV. The edges correspond to the aveidance ma-
neuvers at those positions [24. 22]. The search tree is
then defined as follows:

Ny, :{x,.J:(I)(f.).yJ(f,,)).v‘.) (”)J(’l)*“j.y(ll))}
‘)1, IR {VI l v € R.‘\\"J (f.)}
Cok = {‘”I.)'”I‘l‘k) I vk = ”!.)'+{”I‘j.1Ati}

where ny o if the jth node at time #,0 RAV 14,) is the
reachable velocity set computed for node n, ;o 0, ; is
the Ith operator ou node 3 at time t.and ¢, is the
edge between node o) at time #,and node nyg at time

foar.

Sinee the avoidance manenvers are selected hased
on the veloeity obstacles VO, they are never on a coll-
ston course with any of the considered obstacles. This
exclindes trajectones that might, part of the time, he
on a colliston conrse with some of the obstacles, How-
ever such trajectones may be generated by either con-
sidering only obstacles with nnminent collisions, or hy

refining the trajectory using a dynamic optimization,

as diseussed next.,

3 The Dynamic Optimization

The retinement of the approximate trajectory for off-
line applications is car ried out by formulating the
planning, problem as & dynamic optimization, using
Mayer notation fo r the performance index J:

min J o owith J =ty = d(x(ty) tg)  (T)
!A!!)EU

subject to the following kinematic and dynamic con-

straints:
Plxtto )to) = 0 (8)
Qxtty), ty) = 0 9)
oo U [S.x(t). ) =) (10)
x = Fix.u) = f(X) 4 g(x)u (1)
U = {u]w(min) <u <u(mar)}(12)

where (8) is the initial manifold. (9) is the terminal

manifold, ( 10) represents the time-varying obstacles.
( 11) is therobot dynaunics, and ( 12) representsthe
admissible controls.

State constraints duetothe presence of obstacles
( 10) are differentiated with respect to time until they
become explicit in the controls u. and then appended
as state depend ent control constraint to the Harnilto -
nian {3]. [6]. The number of differentiations of vach
coust raint represents the arder p of that constraint.
T his approach requires an additional tangency con-
straint at the entry point of the obstacle [30]. This
may over-constrain the problem for constraints of or-
der higher than two [13].

For example, in the case of a single obstacle, the
state constraint (10) is replaced by the tangency cond -
tion, denoted Wy, and the control equality constraint.,
:l«'nuh‘d‘l’::

Sixtt)tyr =0

Sixtf)y =10
\Ir.‘ . X t =1, 113

SP ixit =0
Pao STixithuiti i =0t <t <ty BEY

Then. the admissible control set I for the aptimal
control 4Tt hecomes:

T Wy I X S0 Mg, 1 X)

U
I .. 5 101
SPaxtticaty =0 for Six oty =0 tEt




3.1 The Necessary Optimality Condi-
tions

The optimal controt” u(t)inthe interval tg <t <t
(hat pgenerates the optimal solution. x-(f). minimizes
J. and satisfies the fixed terminal m anifolds I’ and Q.
is computed by satisfying the necessary conditions of
Pontryagin Minimum Principle {3}.

The Hamiltonian function H for this problem is de-
finedas [3] [1 9:

H(A. x.u) = AT(f(x) + g(x)u) + 1 o(x. u) (16)
where A and g are vectors of Lagrange multipliers,
and g(x.u) is these tof active control constraints at

time t, ¢y <t <ty
The adjoint equations for the Lagrange multipliers

are given by:
, OHN\T i b 00
A—-—(m) A (f,):<5;+ll —(7; .,
(17)

which exhibit the discontinuity at the entry point of
the constraint givenby [6]:

. v
T _ T T !
A‘._ = At|1 + 7 27011 (1s)

When the constraint (14) is active, the minimiza-
tion of the Hamilto nian for an antonomous system is
equivalent to satisfy ingg:

HL (A x"().a™(1)=0 1y <t <ty (19)
and adjoint equations for the constrained arcs become:

[ ox Jx

( (();lx. ui ! dpix. )
X
B u ax

I summary. the rajec tory minimizing the perfo -

- \T of (x) 4 0;;(x)u~ (20

mance index J =ty is characterized by the following:
(1) 1ts controls 7 are in the admissible set U, (1) the
states satisfy the terminal mantfolds [T at 14 and ) at
ty. (1) the costate equations are described by (17)
on the free ares and by (200 on the constrained ares,
with a discontinuity at the junction of the two given
by (181, and 2/ the Hamiltonian is minimized over
the entire interval. These conditions are satisfied by
the trajectory computed by the numerical method de-
senibed next,

3.2 Numerical Computation

The optimal trajectory is computed numerically by
appending the constraints to the performance index
J via appropriate arrays of Lagrange multipliers, and
by computing the corrections to the controls that drive
to zero the differential of the augmented pe rformance
illd(?X:iJ‘l‘lsing;ls!m'pv.\‘( {i’set’']It. me:thod [S]. This
differential is then detived as funct jon of the varia-
tions in the control switches, ‘assuming a bang-bang
solution [31]. Singular ares on the solutionare tilt!l
appr oximated by a finite munber of switches generat -
ing a quasi-opt imal solution {21}.

The differential of the augmented performance in-
dex is formed by computing the differentials of J, Q
and ¥y independently, then including the effects of ¥1
on dJ and d€. and finally combining all into dJ. The
final forin of the augmented performance index is:

- D¢ o0
4] = (‘,9 .unTuw{) dt (21)
ot y

ot

t ty
+ / Hududr + / Hodudr
ty t}

where the Hamiltonian is givenby H = ATF + ppas
inequation (16): the Lagrange multiplier A is defined
as AT = AT + oTAL + 9T Al since tile constraints ¥,
are not affected by the Stat e after f1: and . and v are
two constant Lagrange multipliers.

Bang-bang controls canonly assume one Of two val-
ues aag Or a,,, and the variat jonin u is rewrit ten as
du, = (orpy — ay, ) sgn{d t,), where sgn is t he signum
function.

If s,, indicatesthenumber of switches in the s
sepment of the trajectory for the rthinput, and mn
indicates the number of elements in u. thendJ for
bang-bang controls becomes:

Al = DTN (M cudty, (22)
11y 1

™m AP I

YD e St
]

1ol oar
m "3,
4 Y ML At
r')«‘; (’)”
N AT A it
N (()! : T (>g(’ !

This differentialis minimized by choosing the steep-
est descent increments as 3h:
1M, b
dty, ;= - - u (23

TR T
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with oy, and b being suitable p osifive va ve s.
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The values of dt,; and dt; depend on mult ipliers »
and v. Their val nes are computed by requiring that
ditferentials dW¥ (¢, ) and d Q(ty) be reduced by given
quantities ¢ and #. The values for the multipliers e
and n are:

no= =Igyle+ Tyav + Iyy) (25)
voo= = (111111 + 11\14/11;;,]1%: SELS A
1 fdQanT
3
I ol Bt
et o T
ty
(04 o = aw gy (e 4 Tay) 4
n 1 [dQ2d
-1 J] = ee ity
ne " lue + b ( dt dt )t!
oF _,oFT
{ T -1
h.k 2 Zl h Ou, Wi Ou; *
=1 = t,,

where h = ¥ Q. bk = ¥, Q. ¢, and [ = 1,.2.3. The
index ! indicates the segments of the trajectory be-
fore, on and after the state constraint. Index i on the
constraint boundary represents only the independent

controls.

3.3 Generating the Initial Guess

The trajectory computed by the heuristic search con-
sists of a sequence of straight line segments and ve-
locities assigned to cach segment. Since the velocity
changes abruptly between segments, it is not possible
to use this trajectory as the initial guess of the opti-
mization, but it must first be smoothed by a spline
mterpolation. Fach trajectory segment 7 is divided
into the two halves 1y and 750 and the spline inter-
polation is applied to the trajectory segments 12 and
(+ 4 1)y, This replaces the veloeity discontinuities by
a polynomial blend. chosen as a third order Hermite
spline (10].

The bang-bany controls for the spline interpolation
are computed as follows, First, the actuator etforts
are computed from the aceelerations of the spline in-
terpolation using the inverse svstem dynamies. Then,
the smooth actuator efforts are approximated by bang-
bane contrals. o that the trajectory obtained by the
mtegrating the controls has the same shape of the tra-
jectory computed by the search. The optimal trajec-
tory is the locad mimimum., in the vicinity of the heuris-
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Figure 6. Planar 2-dof Manipulator: a) top view, b)
side view -

tic trajectory. obtained by improving the position of
the switches determined by the threshold.

Y1

Owecton O coatacte 2

Drection of obsim te 1

Figure 7: Planning example.

4 Example

In this example, the computation of a trajectory is
demonstrated for computing the collision {ree tra-
jectory of the end effector of a planar manipalator,
treated as a SCARA robaot with the links placed abaove
the plane of the obstacles: Only the tip of the manip-
nlator reaches the plane of the obstacles by means of
a prismatic joint in the z-axis direetion, as shown in
Figure 6-h,

The time interval 77 between nodes in the search
tree 1s chosen arbitranly as 7 = 1s. The circles rep-
resenting the robot cnd-etfector and the obstacles are
displaved at D« intervals,

Theninal scenanio of this example is shown in Fig-
ure 7. The base of the tobotis marked by the sign 4 at
it oriein. The two obstactes move with constant ve-
locity, starting from the positions marked by the sign
+. Obxtacle 1 starts from position 1r =
with velocity (1, =

Ao =5 my,

REE I T T I

y = 04D /s and
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Figure 8 The smoothed {rajectory.

Figure 9: Optimal trajectory.

obstacle 2 starls from position (z = 1.15 m, 7 m)
wit hvelocity (v, = - .007 m/s, v, - .03 m/s). The
robol starts with thie hand located at (x = .3 m. .2 m)
and zero velocity, and is required toreach the goal
marked by the black dot.

Thesplineinterpolation of the 1rajectory computed
by the scarch is shown in Figure 8. and the resulling
trajectory has a motiontime of is 4.81 s. This is the
nominal trajectory used by thie dynamic optimization.
The solulion compuled by 1he dynamic optimization
is shown Figure 9. and it has a motiontimeof 2.6 s.

5Conclusion

A novel method for planning the motion of a robot
moving in a time-varying environment. the Velocily
Obstacle approach, has been presented. This signifi-
canlly different from currently available planning al-

gorithms, since it siinnltancously computes the path
and velocity profile that avoid all static and moving
ob staclesand satisfy the robot’s dynamic constraints.

Themethod Consists of compuiing, for every obsta-
cle. its corresponding velocity obslacle. which is the
se 1 of colliding velocilics belween the obstacle and the
robol. [ "11(" 11. by sublractingitfromthercachableve-
locities of the robot. 1 he sel of reachable avoidance
velocities is formed. which consists of all the veloei -
ties 1hal avoid the obsta cles and salisly the robol’s
dynainic constraints. A secarch space is then formed
by rept esenting the stat ¢ space of the robot by a trec
of avoidance mancuvers. A global scarch over the tree
yiclds { rajectories 1 hat mindimize motion time. The
solution is then refined by a dynamic optimization to
compule the time oplitnal solntion in the vicinities of
the approximale trajectory. The method is demon-
strated for planniug the traject ory of asimple manip-
ulator.

The main advantages of the velocity obstacle ap-
proach include the eflicient geometric representation
of mancuvers avoiding any numb cr of moving and
static obst acles. andhe simple consideration of robot,
This approach,
therefore. makes it possible Lo co mpute safe and fea-
sible 1:jeel ories for robots in dynamic environiment s.

dynamics and aclualor constraints.
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