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ABSTRACT

An approximating algorithm for computing cquivalent degrees of frecedom of the Modified Allan
Variance and its square root, the Modificd Allan Deviation (MVAR and MDEV), and the Time
Variance and Time Deviation (1'VAR and TDI:V) is presented, along with an algorithm for
approximating the inverse chi-square distribution. These two algorithms allow relatively simple
computations of confidence intervals on MDIEV and TDIV, the latter currently used as a
standard in the telecommunications industry. These algorithms cnable users to present variance
results with confidence intervals corresponding to any useful probability for most data lengths
and noisc types.
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Introduction

We present here a simplified algorithm for calculating approximate confidence intervals on the
modified Allan deviation, MDEV, and thercfore also on the related time variance, TDEV. The
algorithm has two parts: the first gives approximate cquivalent degrees of freedom, edf, for the fully
overlapped estimate of MVAR; the second gives approximate values of the inverse chi-squared
distribution. An algorithm for estimating cdf for the other measure commonly used in time and
frequency metrology, the original Allan deviation, was published previously [1].

Confidence intervals are defined in terms of edf and the chi-squared distribution as follows. 1f's’
denotes the usual sample variance of n independent and identically distributed Gaussian measurements
(i.c., white noise) with actual variance 0%, then it is well-known that
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Figure 1 Finding the 95% confidence limits
under the chi-squared distribution with 10
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has a chi-squarc distribution with v = n-1 degrees of
freedom [2]. In the classical situation, the degrees
of frecdom associated with o” arc intcger values
depending only on the number of measurements,
and exact confidence limits on the measurement
variance arc casily calculated using percentiles of
the appropriate chi-square distribution.  For
example, figure 3 shows the chi-square distribution
with 10 degreces of freedom, and also depicts the
percentiles a and b that are needed to calculate a
uncertainty bounds on o’ at the p = 0.95 confidence
level from a particular s? based on 11 Gaussian
measurements.

A 95% confidence interval is obtained as follows.
First we find values a and b such that the
probability is 0.95 that U of cquation (1) lics

between a and b, This condition is equivalent to the following:
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The lower and upper bounds in the final incquality are confidence limits on the unknown variance o’
Note that the confidence factors v/b and v/a needed in the calculations are independent of the actual



data. They give the magnitude of the confidence interval as a function of the number of points used to
compulc the variance. Hence we can compute these confidence factors for cach noise type and various
data lengths. The factors 1-v/b and v/a-1 give the multiplicrs for the magnitude of the lower and upper
confidence intervals on the variances, respectively. For deviations such as TDEV, the corresponding
multiplicrs arc 1 - /v/b and \/v/a- 1.

Since the common time and frequency stability measures (AVAR, MVAR, TVAR) arc calculated from
data arising from non-white noisc processes, the confidence limit procedure outlined above is an
approximatc method [3] that is based on approximating the distribution of U in (1) with the chi-square
distribution with degrees of freedom

. 2007

AV .
Var (s 2)

@)

where o represents the appropriate stability measure (c.g., TVAR), s represents its corresponding
estimator, and Var(s’) is the variance of the §” estimator. The quantity v is called the cquivalent
degrees of freedom, edf, since it need not be integer-valued.

In this contribution we have combined an algorithm previously published by Greenhall [4] for
approximating cquivalent degrees of ficedom (edf) with an algorithm for approximating the inverse of
the chi-squared distribution function. This latter algorithm was derived by Greenhall based on work of
Barnes used in deriving tables in [5], but not published, and formulas from Abramowitz and Stegun
(A&S) [6]. Previously, tables for confidence of TDEV and MDEV were published in [7]. Thesc are
cxact computations for edf and the associated confidence intervals for various cases in computing
TDEV and MDEV. We compare values approximating the exact edf and confidence factors in tables
in [7], finding a worst casc disagreement of -9.7% for the edf and 4 10.8% for the confidence intervals.
Most cases arc much better than that. The confidence intervals are pessimistic if they are too large and
optimistic if they are too small. In many cases here, pessimism is better than optimism, since the true
valuc of the variance is more certain to lic in a larger range than a smaller. For the comparison with the
published tables the confidence intervals are no smaller than -3.3%.

Approximation for Equivalent Degrees of Freedom
This version of the formula is restricted to the case of the usual fully overlapped estimator of MVAR or
TVAR ([8], Eq. (12); [4], Eq. (6), m,; = 1).

l.et:
N =- number of time residuals,
m = averaging time / sample period.
M = N-3m+ 1, the number of terms summed in the estimate,
q= M/m.
Restrictions:
N>16,
m<N/5.

The approximate cdf is given by



cdf = - s
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where a, and a, arc given in Table I as functions of m and the noise type.
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Table 1. Cocfficients for Approximate cdf Calculation

m s} meo2 . o.om=2
Noisc'l‘ypcr ~a, a, a, a, a, a,
White PM 0.514 0 0935 0 1225 0.589
I'licker PM 0576 0 0973 0 1.003 0.602
White FM 0.667 0 1.010 0 0968 0.571
Flicker FM 0811 0 1.027 0 0947 0416
Random-Walk FM  1.000 0 0.866 0 0.768 0.41]

Undecr the assumptions given above, a maximum crror of 11.1% in this approximation has been
observed. Usually, it is much less.

Approximation for Inverse of Chi-Square Distribution

Let U be a chi-square random variable with df degrees of freedom (df can be nonintegral). 1.t
0<p<1. Define x = x(p,df) as the 100-p percentile of the distribution of U; thus p is the probability
that U < x. The algorithm below computes an approximation to x.

Restrictions:
df > 1,
0.005 < p < 0.995 .

Maximum observed crror with these restrictions: 3%

if p < .5 and df < 10 then

'Mcthod: truncate power secries in A&S [6] 26.4.6, invert by iteration
a = df/2

'Calculate G = Gamma (14a) (A&S 6.1.35)

constants

¢l = -.5748646
c2 = .9512363
c3 = -.6998588
cd = .4245549
ch = -.1010678

n = integer part of a

y = a-n
G = 1 4 y*(cl 4 y*(c2 4 y*{c3 + y*{cd 4 y*ch))))
for k= 1 ton !'do nothing if n: 0



G = Gi{y 4 k)

next k
A= prG
uns= 0
for i = 1 to 7

u u u
g= 14 ----- A1 A e A (14— ))
a4 1 a4 2 a 4 3

u = (A*exp(u)/g)~(1/a)
next i
X = 2*u

clse

'Method: A&S 26.4.17
pl = min{p, 1 - p)
ICalculate X = inverse of normal distribution at 1-pl (A&S 26.2.22)
constants
a0 = 2.30753

al = .27601
bl = .9922¢
b2 = .04481
t = sgrt(-2*log(pl))
ad 4 al*t
X = { - memmmmmmmmm e m e

1 4 t* (bl 4 L*bh2)
s = sign(p - .5H) !'sign(u) = 1 if v > 0, -1 if u <0, 0if u= 0
b = 2/(9*df)
X df* (1 - b 4 s*X*sqgrt (b))"3

Numerical Example

Before giving tabular results, we show by example how they are used and how they are calculated by
the algorithms given above. Assume the situation of the last line of Table 11: White PM noise, 1025
time residuals, averaging time = 128 sample periods. Suppose that an MDEV value s is computed by a
fully overlapped estimate. The tabulated 95% lower and upper factors arc 33.89% and 104.1%.
Therefore, a 95% confidence interval for the true MDIXV 0 15 0.661s to 2.041s.

The tabulated cdf and confidence factors are obtained as follows: N:= 1025, m:= 128, M: 1025 -
3¥128 4 1= 642 (the number of summands in the estimate), q = M/m = 5.0156,a,= 1.225,a,= 0.589
from Table 1, edf = 6.9617 from (4). For 95% confidence we need to compute the 2.5% and 97.5%
chi-squarc levels. The inverse chi-square algorithm, with df = 6.9617 and p- 0.025, gives x = 1.6720
as the 2.5% level, denoted by a in (2). Similarly, the 97.5% level is 15.928, denoted by b. The
computed confidence factors are 1- edf/b = 0.3389, yedf/a-1 = 1.0405. (Notc that the valucs in
Table 11 were computed from values of a, and a, having more significant digits than the ones given in
Table 1)

Results

The following data arc the results for White PM with fully overlapped estimates. Table 11 gives the
approximate edf and confidence factors. Table 111 gives the percentage errors from the exact values.
‘The crrors for White PM are the largest.
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edfl
7.714
5.610
15.94
13.09
7.543
32.40
28.05
17.29
7.241
65.31
57.97
36.86
16.98
7.091
131.1
117.8
76.04
36.55
16.83
7.016
262.8
237.5
154.4
75.75
36.40
16.75
6.978
526.1
476.9
311.1
1541
75.58
36.32
16.71
6.959

Jower 68%
17.74
19.67
13.65
14.71
17.87
10.29
10.91
13.23
18.12
7.622
8.030
9.746
13.33
18.24
5.579
5.857
7.128
9.780
13.37
18.31
4.045
4.241
5.177
7.141
9.798
13.40
18.34
2.913
3.052
3.757
5.182
7.148
9.806
13.41
18.36

Table I
Approximate edf and Confidence Vactors
Noisc type: White PM

upper 68%
39.14

lower 95%
32.
36.

.52

27.

33.

46

.60

.78

47

.58

.33

48

.94

69

.76

25

79
24

40
03

upper 95%
94.61
128.7
52.42
60.97
96.58
31.99
35.19



17.0
17.0
33.0
33.0
33.0
65.0
65.0
65.0
65.0

129.
129.
129.
129.
257.
257.
257.
257
257,
257.
513.
513.
513.
513.

513.
513.
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1025.
1025.
1025.
1025.
1025.
1025.
1025.
1025.

m

1.000
2.000
1.000
2.000
4.000
1.000
2.000
4.000
8.000
1.000
2.000
4.000
8.000
16.00
1.000
2.000
4.000
8.000
16.00
32.00
1.000
2.000
4.000
8.000
16.00
32.00
64.00
1.000
2.000
4.000
8.000
16.00
32.00
64.00
128.0

cdf
-3.426
-9.743
-1.647
4,167
3.427
-0.8256
-1.951
3.878
-3.550
-0.4043
-0.9504
4.033
-2.917
-5.303
-0.1949
-0.4919
4.101
-2.707
-4.608
-5.754
-0.1132
-0.2498
4.113
-2.612
-4.387
-5.041
-5.880
-0.05344
-0.1088
4.163
-2.596
-4.285
-4.788
-5.150
-5.905

Table 111

Percentage Frror: (Approximate-Correct)/Correct
White PM

lower 68%

0.
2.
-0.
0.
-2.
-0.
0.
-2.
0.
-0.
-0.
-2.

2167
224
1272
7902
067
3389
1303
181
2623
4403
2007
284

L4245
.8504
.5022
.3668
.351
5069
.079
L9825
.5156
L4671
407
.5655
246
.257

050
5274
5118
462
L6215
.341
419
269
.028

uppet
2

8.
0.
2.
-2
-0
0.
3.
2.
-0
-0.
-2.
1.
3.
-0.
-0.
-2.
0.
2.
4
-0.
-0.
-2.

- 68%
.221

438
2460
026

.940
.2002

5085
262
416

L4065

1216
982
134
895
4934
3280
859
9700
286

297

5110
4547
751

8747
.038
.590

650
441

lower 95%
0.9884
3.030
0.4867
1.409

-1.226
0.2024
0.6388

-1.523
1.012
0.03683
0.2545

-1.712

0.9731
1.600
-0.08395
0.04159
-1.874
0.9826
1.639
1.761

-0.09529

-0.03606

-1.922

0.9799
1.708
1.809
1.812

-0.1347

-0.09570

-2.013
1.038
1.743
1.850
1.853
1.807

upper 95%
3.178
10.82
1.416
3.668
-3.074
0.4626
1.291
-2.614
3.383
0.1016
0.4675
-2.577
2.324
5.169
-0.07942
0.09829
-2.472
684
.645
.651
.1023
.02684
424
437
.842
.994
797
L1431
.1039
.351
.315
494
.089
.084
.829
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