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Abstract

Spacccratl dcsigrr optimization is a domain that can benefit
from the application of optimization algorithms such as ge-
netic algorithms. However, there arc a number of practical
issues that make the application of these algorithms to real -
world spacecraf~ design optimization problems difficult in
practice. In this paper, wc dcscribc DIN(), an evolutionary
optimization system that adctrcsscs thcsi issues and pro-
vides a tool that can bc applied to a number of real-world
spacecraft design applications. Wc dcscribc two current ap-
plications of DEVO: physical design of a Mars Microprohc
Soil Pcnctrator, and system configuration optimization for
a Neptune Orbiter.

1 Introduction

In tbcory, many aspects of spacecraft design can bc viewed
as constrained optimization problems. Ciivcn a set of de-
cision variables X and a set of constraints C on X, con-
strained optimization is the problem of assigning values to
X that minimize or maximize an objcctivc function J’ dc-
tincd on X subject to the constraints C. In practice, there
arc a number of theoretical and practical obstacles that make
constrained optimization of spacecraft designs difficult.

First, while optimization of smooth, convex objcctivc
functions is WCIIunderstood (and cfticicnt algorithms are
known to exist, SCC,for cxarnplc, [Nc87]), global optimizat-
ion on surfaces with many local optima is not. Traditional
approaches to optimization usually fare poorly on these so-
callcd “rugged” surfaces, which arc often characteristic of
real-world optimization problems.

Second, many real-world optimization problems arc
black-box oi)lirnizafion problem, in which the struclurc
of the cost function is opaque. That is, it is not feasible to
analyz.c the cost surface by analytic means in order to guide
an optimization algorithm. Often, this occurs when I“(X )
is computed by a cornplcx simulation about which the op-

timization algorithm has no information (e.g., to evaluate
a candidate spacecraft design, wc could simulate its opcrw
tions using a suite of legacy I?OR’f’RAN code about w]lich
very Iittlc is known cxccpt for its 1/0 spccitications). Dlack-
box optimization problcrns of this kind arc challenging from
a practical point of view for two reasons: 1) Iixccuting a
black-box simulation in order to evaluate a candidate so-
lution is usually very cxpcnsivc relative to, for example,
evaluating a cost function that is cxprcsscd as a systcm of
equations, and can take on tbc order of several minufes.
This is particularly problematic bccausc optimization algo-
rithms for black-box problems arc necessarily Mind search
algorithms that must rcpcatcdly choose sample points from
the solution space, evaluate them by running the simula-

tion, and then apply various heuristics in order to choose
the next points to samp]c, 2) Interfacing optimization tools

to black-box simulations can bc difficult, particularly when
the black box is a cornplcx software systcm that involves
various components written in different languages, possibly
running on a distributed environment running on a number

of different platforms.

Finally, many spacecraft design cnginccrs do not have (hc
optimization expertise required to apply sta(c of the al-t al-
gorithms to their problems. Obtaining this cxpcrtisc is often
prohibitively cxpcnsivc; as a conscqucncc, optimization us-
ing algorithmic methods is somctinlcs not even attempted,
bccausc of the perception that it is not wot-th the effort and
cxpcnsc.

In this paper, wc dcscribc Design Evolvcr (I) EVO), an
optimization systcm dcvclopcd in an cffor( to acldrcss these
issues. To address the problcm of optimization of difticult
cosl surfaces, DEVO implements a g,cncric, rcconfigurablc
implementation of an evolutionary oJNimization algorithm.
10 ovcrcomc the practical difticultics dcscribcd above that
arise when designing tools for black-box optimi?.ation prob-
Icms, DEVO is integrated with MIDAS [(;1’S95], a rcccntly
dcvclopcd intcgratccl spacccraf[ design environment, mak-
ing it possible to apply au[omatcd optimization to any spacc-
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cl-aft design moclcl spccificcl in this cnvironmcnl.

‘1’hcrest of this paper is organiT.cd as follows. Section
2 dcscribcs the architecture of the I)IiVO systcm, focusing
on the practical issues that arise in the integration of an evo-
lutionary optimi~.ation algorithm into a spacecraft design
environment, and the automated reconfiguration of the op-
timization algorithm for a particular problcm instance. In
Section 3, wc dcscribc two spacecraft design optimi?.ation
problems which arc currently being used as tcstbcd appli-

cations for IJIWO: tbc NASA Ncw Millennium IX-2 Mars
Microprobe, and the Neptune Orbiter spacecraft.

2 ‘1’hcDesign Evoker (DIWO) System

1)1lVO is a sys(cm for spacecraft design optimization cur-
rently being dcvclopcd at the Jet Propulsion Laboratory
(JI’I ,). “1’hcgoal of DIiVO is to provide an optimi~ation tool
that is scamlcssly integrated into an existing computer-aided
design (~AIl) environment for spacecraft, which cnahlcs
users to apply optimiT.ation algorithms, including evolu-
tional-y algorithms, with a minimal amount of human cf-
fol-t. A fundamental assumption in the DIiVO design is
that CTU cycles arc plentiful and cheap relative to the cost
of an cnginccr band-tuning an optimization engine. In this
section, wc dcscribc the DEVO systcm. Wc first dcscribc
the cvc)lutionary optimization algorithms implctncntcd in
I>IWO. Wc then dcscribc MIDAS, the design cnvironmcrtt
into which DEVO has been integrated. Then, wc dcscribc
various features of DJ3V0 that address the practical issues
that arise in the application of evolutionary optimiTJation
techniques to real-world, spacecraft design problems.

2.1 Reconfigurablc Evolutionary Algorithms

‘1’hccentral component of DEVO is lhc Reconfrgurablc Invo-
lutionary Algorithm (REAL). The REAI. is an implemen-
tation of a generic evolutionary optimization strategy that
can bc reconfigured at runtimc to behave as onc of the vari-
ous classes of evolutionary algorithms. I;igurc 1 (following
[IIS96]) shows the general schema for evolutionary algo-
rithms which the REAI. implements.

Ilricfly, an cvolu(ionary algorithm works as follows: a
population of sample points from the cost surface is gcn-
crated. In a process analogous to biological evolution, this
population is evolved by rcpcatcdly selecting (based on rela-
tive optimalit y) members of the population for reproduction,
and recombininghnutating to gcncratc a ncw population.

By providing different implementations of functions such
as initialize, recmnbine, mutate, and select, and a selection
of encodings (rcprcscntations) of solutions (e.g., bit-string
encoding, possibly with Gray coding, floating point rcprc-
scntations, etc.) [hat can bc chosen at runtimc, it is possible

to reconfigure the REAL to simulate a wide variety of cvo-

t :,: ()

initialize }’(t);
rvahratc P(t);
while not terminate do

I“(t) :==recombine I’(t);
I“’(t) := mutate P’(t);
evaluate I’(f);

P(f + 1) := select (P’’(t) U Q);
f:=- t,-tl;

end while
—.

I:ifmrc 1: Alryrritlmschcnm for an evohrlionary algorithm 1’ is a
po~ula[ion of can&datc solutions; Q is a special set of_ind[viduals that h~s
10 hc considered for selcc(ion, e.g., Q = l’(t).

Iutionary algorithms. lior example, using a JIUIIrecombine
function and implcmcntirrg a mutate function Iha( applies
Gaussian Inulation, wc achicvc the canonical Evolutionary
Programming (cf., [I;og95]) algorithm.

~url-crrtly, [hc RI~A1. supports bit-string rcprcscntations
of numerical paranlctcrs, as WCIIas floating point numhcr
rcprcscntations. Various mutation, rccombina(ion, and se-
lection operators arc available. Furtbcrmorc, the RI iAI.
supports a number of different population structures, in-
cluding the traditional generational population structure
[Cio189], a steady-state population structure [Sys89], and a
distributed population structure [Tan89]. Thus, the REAL
can bc configured to simulate a wide range of common
Genetic Algorithm (cf. [Go189]) and Evolutionary Pro-
gramming (cf. [Fog95]) variants.

2.2 Spacecraft Design Model

A spacecraft de.ri,gtl model is a software simulation of a
spacecraft design. The design mode] takes as input de-
cision variables to bc optimized, and outputs an objcctivc
function value, which is assigned as the result of an arbitrar-
ily cmnplcx computation (i.e., the simulator is a black-box
simulation).

Thus, the design mode] is domain-spccitlc, and is pro-
vided by the cncl users, i.e., spacccraf[ designers. In order
for an optimiT.ation tool such as DEVO to bc useful in
practice, it must support a wide range of design models,
whicl] may consist of models implcmcntcd using various
Ianguagcs on different platforms. It is not feasible to expect
spacecraft designers to implcmcnl their modck in a particu-
lar Ianguagc on a particular platform – if such inconvenient
constraints were imposed, the optimization systcm will not
bc used by spacecraft designers.

l’bc Multiclisciplinary Intcg,ratcd Design Assistant for
Spacecraft (MIDAS) [GPS95] is a cotnputcr-aided design
environment dcvclopcd at JPL that allows a user to integrate

a SyS~CJllof (possibly distributed) design model components
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]iigurc 2: Scrccn she! of a MII)AS Ine[hogvam (part of the NcpILInc

Orbiter mc)rkl).

using a tt~crhogt-an~, a graphical diagl-anl dcpic(ing the ciata
flow of the systcm. 1lath rrocic in Ihc mcthogram cctrrc-
sJJonds to a design mode] COIIlpOJICJIt, which may bc Onc
of 1) a model in a commercial design tool such as IIJIiAS,
NAS’f’RAN, or SPICX1, 2) a prograln writ[c.n in ~, ~++, crJ

FORTRAN, 3) a MIDAS built-in too], or 4) an cmbcddcd
mctbogram (i.e., mcthograms can hc hierarchical). Inputs to
nodes in (1ICmcthogram correspond to input parameters for
the component rcprcscntcd by the node, and outputs from a
mctbogram node correspond to outpul values compute.d by
tbc component. Since it was implco~cntcd as a distributed
object systcm and since an output node can bc used to corll-
putc an arbitrary function of the pararnctcrs in the model,
M1lJAS provides a uniform intcrfacc to a wide variety of
design models without requiring optimization algorithms to
have strong dcpcndcncics on tbc target simulation. l;igurc
2 shows a scrccn shot of the MIIJAS mctbograrn for the
Ncptuoc Orbiter model.

2.3 Automated Configuration of the RNA],

As wc rncntioncct in Section 1, a significant practical obsta-
CICto applying optimization algorithms to spacecraft design
is the optimization knowledge and cflort rcquirccl of space-
craft designers. Wc thcrcforc designed 1IIIVO to bc usable
with as Iittlc input as possible beyond what is already pro-
vided by the user in the MIDAS space.craft design model.

In order to run DEVO, the user is required to input the
following:

● A MIDAS mctbogram that encapsulates tbc design
JllOdCl :

. A list of decision variables, as well as ranges of their

●

●

possihlc values. “1’hcsc may bc continuous, disclctc,
or cnumcratcd [ypcs;’

An output from a mcthogram JIodc [hat corrcspon(is to
tbc user’s objcc(ivc function wrluc; and

A termination condition for a run of tllc optimization
algorithm. This can bc either 1) a time lin~it, 2) a n]ax-
imum number of simulation runs, or 3) a simple check
for convcrgcncc of the algorithm, i.e., no ilnprovcmcnl
is rnadc for soJnc number of simulation runs (a default
value is provided).

The user input Iistcd above is sufficico( for I)IIVO to
automatically configure tbc R1;AI. to an appropriate default
configuration and run the evolutionary algorithm. Dascd
on tbc decision variable types and ranges spccificd by the

user, tbc gcJIoJnc evolved by the RIiAl. is appmpliatcty
configured, and tbc evolutionary aigol-itlltll is c.xccutcd. A

user can, of course, manually configure tl]c Rl;AI. using
either a command-line or graphical user interface.

‘f’bus, the effort and knc)wlcdgc require.d by tllc spacecraft
designer to run IJIWO is minimal, since cssclltially all that
is required for a user to LISC DF.VO to optin~iz,c a design is to
specify the decision variahlcs and the cons~raints on thcm,
and to specify an objcctivc function.2

Wc should make it clcarthat by no rncans are wc claiming
that DEVO can provide a default configuration that works
WCII for all spacecraft design problems. In fact, in the

abscncc of any knowledge of the cost surface structure,
it is quite possible that any default confi~uration of the
RliAI. may bc no better than ramiom sca[cb.3 /loweve~
tww if the default Cwajiguralim chosctt by I~liVO pctjiotm

relatively poorly, we arg UPthat applying some optittl iza(im
algorithm is better thatJ not applying atly optitnizatim at
all (particularly when computational rc.sources arc readily
available).

When a run of a particular configuration has tc.rminatcd,
l) IiVOcontinucs the optimization process by saving the best
solution found so far, and restarting the optimization pro-
cess using another configuration. 4 ‘1’hisprocess is rcpcatcd

until terminated by the user. ‘1’hcstra~cgy curt-cntly used by
I) IWO to cboosc the next RliAI. configuration is a simple
randorni Tqd strategy: gcncratc tbc next con figumtion ran-
domly, the only constraint being that tbc configuration is
conq~atiblc with the decision variable type.s. s ‘1’l)cgeneral
prob]cm of adaptive probkttl srthing, i.c., reconfiguring a

I~nutllcratcd ty~s are snapped onto discrete valum by I)I~V()

2br many cases, this objective is already tsvailablc in IIw owthogram
3SCC[WM94] fOr a r~cent tt,coretical perspccliw On this i$sne..

4WC are currently investigating whether it is better to stall the IICXI
optilnimtion run from scratch, or to seed the initial population using
solu[irrns foond in previous runs.

’11 is acceptable to repeal configurations, since ttlc pcrforllmncc of
cvolutionnry al~oritbms is s(octmftic.
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ploblclo SOIVCI10 pcl-rorm WCI1on a particular pmblcn) im
slancc, poses many difficult tbcorclical challcngcs, and is
Iwyon(i (ilc scope of tilis paper (SCC[I:~M-{ 97] for a mole
dclailcd discussion of ti~is problcrn, as wcli as more sophis-
licatcci solutions that wc arc currently invcstigaling).

2.4 Optimization as an Intcractivc l’recess

Most of lhc work on Cvolrrtionary oplimi~.atioa focuses on
optimiz.alien as a fully automated process, in which the
i)li/i(//izr step in Iiigurc 1 is accompli sbcci by random illi-

[ialimtioa. I)csign optimization, however, is of[cn an in[c.r-
aclivc pmccss, since the designers who cicvclopc(i ti]c mo(icl
i~avc sufficient domain cxpcrlisc to saggcst some “rcason-
ahlc guesses” as (o what good ciccision variable paramc(crs

might bc. lnciccd, in many cases, it is difficult for a com-
i)lctcly automated optimization process to produce cicsigns

of i)cl[cr quality (ban a human cnginccr.
A l’LXiSOllab]C altcrnalivc is (0 atlcnlpt focal Oplimizatiml

of a design tilat is initially spccificd by a human cnginccr.
‘Il)c.rcforc, in a(idition to the usuai random initial i~.ation

func(ions, wc have implcmcntcd an initialization funclion
for ti]c Ri iAI. t}lat gcncratcs the initial population base.d on
Ian(ioln pcrtuhations of decision variable pararnctcrs which
tl]c user has spccificd in ti~cmode]. The perturbations apply
l-andom noise with Gaussian or uniform noise applicci at (ilc
usct-’s [iiscrc(ion.

2.S Additional implementation Details

2.S.1 Ilanrtling Instabilities in Illack-I\ox Simulation

A comn~on problcm wbcn trying to appiy evolutionary ai-
gorili~ms to biack-box simulations is ti~c possibility of in-
slai)iiity in li]c simulations. Spacecraft cicsign mo(icis arc
often one-of-a-kind prototype sys[cms, designed and in~-
i~icmcntcci to provide proof of concept in tile hands of an
cxpcricncc(i cnginccr. Consequently, tilcy arc not neces-
sarily robust cnorrgh to bc cxccutcd with the thousancis of
(iiffcl-cn( assignments of ciccision variable values that an
evolutionary aigorithm at~cmpts. A particular input i>aran]-
cicr combination could, for example, cause an arithmetic
cxccp(ion, causing the simulation to crash. If tile optinliza-
tion sys(crn is not cicsigncd to anticiJ]atc such failures, (ilc
wlwic oi~timiz.ation systcm could faii as a result. 1( coui(i
bc argucci that such instability could bc symptomatic of an
unrcliabic simulalor whose results simuld not bc trustc(i :i(

ali (and tilcrcfore needs to bc fixed immediately). llow-
cvcr, wc take tile view that it is not fcasii~lc to demand that
tim simulation sof(warc bc rnadc completely robust for tile
sake of ti)c optimization systcm and designed DEVO so
tilat it wouici circumvent simulation inslailility as mucil as
imssihlc.

l)l;VO protects tlic optimization syslcm from simulation
softwal-c instability by exploiting fauit cictcction features

iwiit into Mii)AS, ami by separating ti)c oi>timimtion pro-

CL’SS (’10111l\Ic sin)uialion iwoccss as ]nucii as possible. MI-
i)AS is cai~zii~icof (ictccting common faiiurcs (e.g., core
[iulnps, al-ilhmctic cxccptions) tilat occur wbcn cxcculing a
pr(wcss tha( cor[csponds to a node in a mctiiogram. l>I;VO

monitors tilis inforlnalioa, and immediately abc)rts the ex-
ecution c)f lilt simulation upon dctccling a faiiurc. Some
kriiurcs can actuaiiy cause MIDAS itscif to crash. Since
iJI;Vt3 is implcmcntcd as a separate process wi)icil invokes

M1i)AS and manipulates it ti]rougb its ~ORBA intcrfacc,
i)llVO can dc(cct M1ilAS crasilcs and abandon tllc cam

(ii(iatc soiu[ion evaluation that caiicci (i]c faiicci Mii)AS
simulation, It is, of course, not possible to detect with ccr-

lainty if a simulation has cn(crcd an infini(c ioop; ilowcvcr,

if I)liVO i)as been waiting for lhc result c)f a simulation for

an :ibnormaiiy iong time (e.g., if a simulation run is taking
?~standar-ci (icviations more time than an average simulation
run to (iatc), ti~cn it is assumed ti~at tile simulation is trapped
in a ioop, an(i I)iiVO wiil terminate the simulation.

Aii in[cl-csling issue is what to do witi~ tile cvalua(ion of
solutions ti]:it cause failrircs that arc dctcctcd as cicscrihcci

above. Wc currcn(ly apply the simp]c poiicy of assigning
(i}c wors( imssiblc fitness values to these solutions. On
onc il~n(i, lilis i~as the effect of ‘causing tbc cvoiationar-y
algorithm to a~oid soititions ti~at arc very simiiar to tbc of-
fcn(iing solutions. Assuming ti~at the simulation is unstable
in regions of ~hc soiulion space, ratiwr tilan isoiatcd points,
this is a rcasonahic policy. On the otilcr hand, if this is not
ti~c case, then [i]is poiicy could cause an undesirable bias in
li]c evolutionary scarcil. Wc arc currently investigating tile
significance of this bias,

2.5.2 Paralldization

Ilxccuting a cornplcx si~acccraf( design rnoclcl simulation
oflcn takes a significant amount of time. For cxarnplc, a
single execution of our current Neptune Orbiter (SCC3.2)
takes several minutes on a Sun tJltra workstation. Given
tiiat a singic run of an evolutionary algorithm requires iiun-
(irc(is to tilousands of candidate solution c,valuations, ti~is
poses a serious problcrn, if wc want to complctc ti~c opti-
rniz.ation proccsscs in a reasonable amount of time. Forlu-
natciy, cvollitionary algoritim~s arc particularity well-suited
(o i~arailc.liz.ation, since each candidate soiution can hc cval-
uatcci incicpcndcntly of (IICotilcr solutions, i.e., the evalu-
ate step in Figttrc 1 can bc paraiiclizcd with near-]incar
efficiency. ~’ilcrcforc, DIiVO distributes simulations over
a network of workstations using Parailcl Virlual Machines
(PVM) [GIHl+ 94].

3 Spacecraft Optimization Problems

In ti~is section, wc dcscribc two spccitic si>acc.craft cicsign
oi>timization problems to which wc arc curlcntly applying



dlC lJIiVO systcnl. “1’hcfirsl is a low-lcvc] optin}imlirm
of the physical dinlcnsions of a soil penctra[or microprobe.

‘1’hcsccrsnd is a systcn-]cvcl oplimiy.ation of the configura-
tion of the cc~ll}lllllnicatior~systcm of an orbi(cr spacecraft.
‘1’hcsc examples arc iltus(rativc of tbc wide range of dif-
ferent spacecraft design optimization problems to which
m ;VO can bc app]icd.

3.1 TIN Mars Soil l’cnetrator Microprobe

As part of the NASA Ncw Millennium program, two nli-
croprobcs, cacll consisting of a very low-mass acroshc]l and
pcnctrator systcn~, arc planned to launch in January~’1 999
(attacbcci (o ti~c Mars Surveyor iandcr), to arrive at Mars
in I>ccc.rnbcr, 1999. Tiw 3kg probes wiii enter tile Martian
atmosi]i~crc an(i orient tilcmscivcs to meet bca[ing and in~-
pact rcquircmcnts. ~Jpon impac(ing the Martian surface, the

probes wiil i>unci~througil ti~c entry acroshc]i and separate
into fo]-c- an(i aftbmiy systems. “1’hcforcbody wiii rcacil a
dci>tb of 0.5 to 2 meters, wi~ilc tile aftbody will remain on
the surface for colllrllllllicaliolls.

Ilacb pcnc(rator systcm inciudcs a sui{e of highly nlinia-
turizcct comi>oncnts ncccicci for fulurc micro-pcnetrator net-
works: uill”a iow tcmpcraturc batlcrics, power n]icroclcc-

tronics, and advanccci microcontroiicr, a Illicrotclccorlllllu-
nications sys[cln ami a scicncc payioad package (a n~icro-
Iascr sys(cm for ctctccting subsurface water).

The ol)[inlization of physical design parameters for a
soii pcnctrator bascci on tbcsc Mars microprobcs is the first
tcstbcd for the IIIiVO systcm. I’hc microprobe optimization
ciomain in its entirety is very complex, involving tbrcc stages
of simulation: separation from tbc Mars Surveyor, acrody -
narnical simulation, and soii impact and penetration. ‘1’hc
cornpictc (icsign modci for (hc pcnctrator is currcntiy under

dcvcloim~cn[, Below, wc dcscribc ti~ccurrent mocicl, wi]ich
irnpicmcnls tile simulation of s[a.gc 3 (inlpact/penetration).

Given a distriimtion on parameters describing ti~c initiai
conditions inciuding iilc angic of attack of the pcnctrator,
tile impact velocity, and the ilardncss of the target surface,
tile optimi?.ation probicm is to scicct the totai lcngtil and
ou(cr diarnclcr of the pcnctrator, so as to maximize tile
cxpc.c[cd ratio of tile dcptil of penetration to tile Icngth of
the pcnctra[or. Wc maximize this ratio, rati]cr than sirnpiy
rnaximiz. ing tile (icptil of penetration, since for the Mars
rnicroproi)c scicncc mission, tile depth of penetration simuld
bc at icast as iargc as ti]c ovcraii lcngti~ of the pcnctr ator).

Using the (icfauit RIIAI. configuration gcncratcd by
l)IIVO (a canonicai gcncrationai GA using bit-string cn-
coding,s, one-point crossover, bit-flip mutation, poimiation
siz.c of 50), it is consistently imssibic to gcncratc a ncar-
optimal (icsign aftc.r about 50 gcncralions.

3.2 The Neptune Orbiter

NciMunc Oli)i(cr is a mission concept currcntiy being stu(i-
ic(i un{icr the Oulcr Planet Orbitai Ilxprcss progratll at the

Jet I’ropuision 1.aboratory. “1’hcgoais of ti~c mission arc

to imt a spacecraft in orbit aroun{i Neptune using statc-of-
tile-arl Iccilnoiogics in the areas of Iciccomrnunications,
propulsion, orbit inscrliorr, and autonomous operations,
‘1’i]csi~acccraft is cxpcctcd (o arrive at Nci~tunc (30 au.)
5 years af(c[ iauncil in 2005 using a I)cita iauncil vchicic.

l’i~c subsystem rc(iuircrncnts inclu(ic 100 kbps ciata rate,
soiar cicc[ric propulsion, soiar concentrator power source

and a cost of icss ti~an $400 miiiion (in l;Y 94 doiiars).
I;or the iniliai phase of tile optirniz.ation effort, tbc focus

is on tile ori)itai operations of Neptune Orbiter. Tile launcil
and cruise pi~ascs of tile mission wiii bc inciu(icd in tile
optinli~,ation once the orhitcr problcm is wcli understood.
The driving constraints of tile orhitcr probicm arc the opti-
cai c{)lllllltlriicaliorl apcr-lute. Iransrnit power ami si>acccrafl
mass. “1’i]ctlansmit power is a ciircct input into the intc-
gratcci spacecraft (icsign modci. ‘1’i]cotilcr inputs inciudc
lilt scicncc observation time pcr orbit and tile data conli>rcs-
sion factor. ‘1’hcoutput of ti~cmodci that is being maxirnizcci
is tbc scicncc ciata volurnc pcr orbit. For designs in which
tbc spacecraft mass is greater than 260 Kg, tile data volume
outi]ut is zero. A spacecraft witi~ a dry mass of greater tilan
260 Kg is too heavy [o iift on tile target launch vchiclc.
‘1’bus ti}c mass iimit constrains the oi~timization problcrn.
Currcnlly, wc arc using COS1rnocicis in conjunction witil
the simuialicm of [hc orbiter as dcscribcd above to obtain
our cost function - a quantitative cslimatc of tile scicncc
return (rncasurcci in, e.g., volume of scicncc ciata obtained
pcr doiiar cost of tile spacecraft).

4 Conclusions

Designing a wi(iciy applicable tool for black-box design
optimization poses a significant technical challcngc. In this
pai>cr, wc have dcscribcci DIIVO, an evolutionary optinliza-
tion sys(cm for spacecraft design that provides a design
optimization IOOi that can bc appiicd to reai-world space-
craft design optimization probicrns with minirnai i~uman
cfforl.

MLICh of the rcccnt work in tbc evolutionary algorithm

ii[craturc focuses on cicvclopmcnt of spcciaiiz,cd rcprcscn[a-
tions ami techniques to cuslomiz.c an evolutionary algorithm
for a particLllar appiica[ion. Wbitc wc agree that develop-
ing, spccializcci aigorithns for particular applications is the
bcs[ mcti~odoiogy for obtaining ti]c best performance for

any pal-licuiar (iornain, this approach is often infcasibic in
practice, duc to ~i)c human cxpcrtisc and effort required to
dcvciop a spcciaiixcd aigorithrn.

I;or probicms that arc unique in nature, a promising ai>-
proaci~ is to provi~ic toois (hat make it possibic to appiy
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vcI-y general mc(hods witlI little overhead. As long as the
application of the mcthorl is virlually free of human cfforl,
it is worthwhile to LISC available computational rcsourccs to
approach the problcm in a “brute-force” manner off-line,
since the potential benefits of improving design quality can

bc quite substantial. l’hc rlcvclopmcnt of IJIWO is a first
slcp in this direction.

So far, wc bavc found that the dcfatrlt behavior of J)EVO
has been sufficient for finding near-optimal solutions to tbc
Mars soil pcnctrator microprobe problcnl.6 However, wc
bc]icvc that in order for rcconfigurablc systems such as
DEVO to bccomc more useful, tc.cbniqucs for intclligcn(ly,
automatically configuring lhc syslcm to suit a particular
problcm ins(ancc must bc dcvclopcd and integrated into
the systcm. Wc arc currently invcstiga(ing this problcm
[FCM+ 97].

l;inally, wc note (hc utility of systcm dcvclopmcnt efforts
such as D1WO to Ihc evolutionary algorithm research con]-

munity. A myriad of promising approacbcs to evolutionary
optimization have bicn proposed iri the literature. }IOwcvcr,
the success of a particular tcchniquc for a given problcm
depends Iargcly on the match bctwccn the tcchniquc and tbc
ptoblcm [WM94], and thus, assessing (IICutility of a par-
ticular approach is mostly an empirical, problcm-specific
issue. Since applying a ncw tcchniquc to a real-wodd
problcm is often difficult and time-consuming, evolution-

ary algorithm rcscarcbcrs often restrict their evaluation of
ncw approaches to synthetic cost functions (e.g., [DcJ75],
[WMRD95]) or other easily irnplcmcntcd problems (e.g.,
tbc Traveling Salesperson Problcm) whose relationship to
most real- world problems is tenuous. By providing a sta-
ble, uniform intcrfacc to a wide variety of black-box opti-
mization problems, DEVO provides evolutionary algorithm
rcscarchcrs with a framework into which many ncw tech-
niques can bc easily integrated, enabling the evaluation
of ncw approaches on real-worl~ problems. As an ex&n-
plc, wc have rcccntly integrated an ittcr<tnenial evqlation
tc~hniquc [FK95] into DIiVO, and demonstrated its util-

ity (compared to standard genetic algorithms) on ibc 11 S-2
probe design problcm (SCC[lWMi 97] for details).
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