
.

A Compact VLSI Neural Computer Integrated with Active Pixel Sensor
for Real-time Machine Vision Applications

Wai-Chi  Fang, Suraphol Udomkesmalee,  Leon Alkalai

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA

ABSTRACT

A compact VLSI neural computer integrated with an active pixel sensor has been under development
to mimic what is inherent in biological vision systems. This electronic eye-brain computer is targeted for
real-time machine vision applications which require both high-bandwidth communication and high-
performance computing for data sensing, synergy of multiple types of sensory information, feature
extraction, target detection, target recognition, and control functions, The neural computer is based on a
composite structure which combines Annealing Cellular Neural Network (ACNN) and Hierarchical Self-
Organization Neural Network (HSONN). The ACNN architecture is a programmable and scalable multi-
dimensional array of annealing neurons which are locally connected with their local neurons. Meanwhile,
the HSONN adopts a hierarchical structure with nonlinear basis functions. The ACNN+HSONN  neural
computer is effectively designed to perform programmable functions for machine vision processing in all
levels with its embedded host processor. It provides a two order-of-magnitude increase in computation
power over the state-of-the-art microcomputer and DSP microelectronics. A compact current-mode VLSI
design feasibility of the ACNN+HSONN neural computer is demonstrated by a 3-D 16x8x9-cube neural
processor chip design in a 2-~m CMOS technology. Integration of this neural computer as one slice of a
4“x4” multichip  module into the 3-dimensional MCM based avionics architecture for NASA’s New
Millennium Program is also described.
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1. INTRODUCTION

Machine vision is a challenge problem [1]. Many paradigms and algorithms have been proposed over
the pass three decades toward this problem. However, a versatile solution to this problem has not
emerged yet. The difficulty in obtaining a general and comprehensive solution is caused by the complexity
of machine vision in itself. As shown in Figure 1, machine vision processing can be broken up into a
hierarchy of low-level vision and high-level vision. Low-1evel processing must filter and segment an
image into distinct regions and assign various characteristics (such as shape, color, texture, distance, and
motion) to each region. High-level processing must recognize objects using information from low-level
processing and provide target category assignment, reasoning, and decisions, The challenge of this
problem is also caused by the enormous computation power required, the multiplicity of cues which must
be detected and integrated, the difficulties of extracting 3D information from 2D image, variations in the
sensing environment, limitations of the sensors, and noise. The success of a versatile machine vision
system depends on succeeding at all these tasks.

Neural network approaches appear to be very promising for vision processing due to their massively
parallel computing structures and learning capabilities, A number of studies have been reported on using
artificial neural net works for machine vision applications [2, 3]. The existing works using neural
networks share the same key idea that is performing the feature extraction or classification by defining an
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object function using semi- or non-parametric methods to iteratively update the weights. The network
with supervised learning is presented with both the input and the desired output for each input, and the
weight structure best realizes the input/output relationship. The network with unsupervised learning is
presented with the input data, and the weight structure is self-organized to follow data statistical
regularities and group data into categories.

In this paper, a composite neural processor which combines Annealing Cellular Neural Network
(ACNN) and Hierarchical Self-Organization Neural Network (HSONN) is proposed to provide a powerful
neural computation engine for machine vision applications. Many ACNN+HSONN  functions for vision
processing and transformation have been verified via system simulation. These functions include noise
filtering, isolated pixel elimination, hole filling, morphological operations, edge enhancement, edge
detection, line detection, connected component detection, minimal and maximal detection, feature
extraction, motion detection, motion estimation, etc. This composite neural structure can be effectively
applied to processing at all levels of vision systems. Incorporating of the proposed VLSI neural processor
into advanced vision systems offers orders-of-magnitude computing performance enhancements for on-
board real-time processing and control tasks.

Section 2 introduces the ACNN+HSONN based neural computer named Eye-Brain Machine (EBM)
which is a highly integrated multi-sensor and multi-processor system for vision applications. Section 3
describes the Annealing Cellular Neural Network and its associated VLSI neural processor design.
Section 4 described the Hierarchical Self-Organization Neural Network and its associated VLSI neural
processor design. Section 5 describes integration of this neural computer as one slice of a 10 cm x 10 cm
multichip module into the 3-dimensional MCM based avionics architecture for NASA’s New Millennium
Program.
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Figure 1: Functional block diagram of a general machine vision system.

2. AN EYE-BRAIN MACHINE FOR VISION APPLICATIONS

The ACNN+HSONN based neural computer named Eye-Brain Machine (EBM) has been under
development at JPL. The Eye-Brain Machine is a highly integrated multi-sensor and neural processor
system for vision applications. The design goal of the proposed EBM is to automatically recognize,
localize, and classify point, area, and volume objects and phenomena in real-time at a 30 frame-per-second
video rate.

The EBM includes two major subsystems: EBM-Eye, and EBM-Brain.  The EBM Eye is a compact
optoelectronic subsystem which integrates a wide range of different sensors with geometric, radiometric,
and spectral parameters meeting the actual science and mission requirements. The EBM Brain is a high
performance control and data subsystem which provides on-board computing resources for the EBM to
perform various on-board tasks.

Figure 2 shows a functional design for the ACNN+HSONN neural computer. Major functional block
of this neural computer includes multi-sensor parallel interface, parallel neural processor, on-line learning

2



.

coprocessor, digitally programmable synaptic weights, host system interface. A compact current-mode
VLSI design feasibility of the neural processor was demonstrated by an 16x8x9-cube neuroprocessor  chip
design in a 2-~m CMOS technology. The whole neural computer can be accommodated into one slice of a
4“x4” multichip  module.

For machine vision applications, the EBM neural computer can be used as a front-end sensory
information processor to provide high throughput real-time computing power at neighborhood of the
sensory circuit. Figure 3 shows a data flow diagram of the EBM design. An active pixel sensor [4] is
integrated with the neural processor to accommodate the applications in which high-speed parallel external
video inputs are needed, The integrated sensor and neuroprocessor architecture can take the combined
advantages of the parallel image input and the parallel processing neural hardware to achieve ultra-high-
speed sensory information processing.
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Figure 2. Functional Block Diagram for the ACNN+HSONN Neural Computer.
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Figure 3. Data flow diagram of the integrated sensor and neuroprocessor.

ANNEALING CELLULAR NEURAL NETWORK
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Cellular Neural Networks is a multi-dimensional array of mainly identical cells which are dynamic
systems with continuous state variables and locally connected with their local cells within a finite radius.
Since its original publication by Chua and Yang [5,6] in 1988, the CNN paradigm has evolved rapidly and
provides an unified framework for many computation-intensive applications such as signal processing and
optimization. The CNN architecture is a locally connected, massively paralleled computing system with
simple synaptic operators so that it is very suitable for VLSI implementation in real-time, high-speed
applications. However, under the mild conditions [5], a CNN autonomously finds a stable solution for
which the Lyapunov function of the network is locally minimized. To improve the local minimized energy
function of the basic CNN, the ACNN is invented which use the hardware annealing method to
accommodate the applications in which the optimal solutions of energy function are needed, Hardware
annealing is a highly efficient method of finding optimal solutions for cellular neural networks [7], It is a
paralleled version of fast mean-field annealing in analog networks. The ACNN is designed to perform
programmable functions for fine-grained  processing with annealing control to enhance the output quality.
The digitally programmable synapse weights are designed for the ACNN to accommodate the applications
in which programmable pre-determined operators are needed.

3.2. Operation Theory

Consider a ACNN with n x m neurons as shown in Fig. 4. Each neuron has the piecewise-linear
transfer function &w(. ) and its gain is variable. The gain is controlled by a monotonically increasing
function g(t) such that

+1, ifvx>~

Vy=fpw(gvx)=
{

gvX,if-~< VX<:

-l, ifvXc-~
(1)

The ACNN dynamic behavior satisfies a set of differential equations in the matrix notation as given:

C~=-~+Ay+Bu+lbw
‘d ~ (2)

where x = [VX1VX2..  .VXN ~> x =  [VY1VY2...VYNIT, u = [VU1VU2...VUN m, and w = [1 l...l]Tis  an Nxl unity vector, N= n x m.

The capacitance CX and resistance Rx at the state node of the processing element, and bias current lb are
assumed to be the same for the whole network. In (2), A and B are two-real N-by-N matrices consisting
of feedback and feed-forward synapse weights and determined by given cloning templates TA and TB,
respectively. For the shift-invariant ACNNS, they are real symmetric. Since a piecewise-linear  function is
used as the transfer function of the network, the generalized energy function is a scalar-valued quadratic
function of the output vector y,

( 3 )

E = - ~~, ~ A(ij;k,l V,ij V,k,  + & - ~ (V,ij~-  ~ ~ B(i,jk,l) Vyij v,,,, - ~ Ibvyij
I. J C(k,l)=N~i,j)
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where M =
( )
A - ~1 and b = BU +Ibw. Notice that Tx= #--

g gRx x

Here the factor l/g in the second term stems from the energy associated with the piecewise-linear  function
with a neuron gain other than unity. By noting that Mg  = A - Tx I - (( l-g)Tx/g)  1= M - (( l-g)Tx/gJ  1, t h e
relationship between the eigenvalues  of un-annealed  and annealed network can be easily shown to be
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(l-g) _A,k-(l-g)TX, ~= 1,2, . . . . NAk=a’k  -—.
gRx /? (4)

where l’k are the eigenvalues  of M. In the hardware annealing, the eigenvalues  /k ‘s are changed from all
negative initial values to the final values l’k ‘s by increasing the neuron gain g, such that the energy
function (3) which is initially a convex function of y, is transformed gradually into a concave function.
Regardless of initial state values, the network results in the optimal solution at which its energy is
minimized globally,

3.3. 3-Dimensional ACNN Design for Vision Applications

In the original 2-D CNN every pixel is represented by one neuron. In the 3-dimensional ACNN every
pixel can be represented by multiple neurons which form a hyperneuron and execute the maximum
evolution function for various profile selections or data synergy. The 3-D ACNN designed for motion
detection is shown in Figure 5. A set of (2Dx + l)(2Dy + 1) layers of neurons are used to represent the
optical flow field. Each layer corresponds to a different velocity and contains Nr x IVc neurons if the
images are of size IVr x NC. All neurons in the same layer are self-connected and locally interconnected
with other neighboring neurons in a smoothing window of size (21Yr + I)(21VC + 1) . There are no
interconnections between neurons in the different layers except those in the same hypercolumns.  Every
image pixel is represented by (2Dx + l)(2Dy + 1) mutually exclusive neurons which form a hyperneurorz
for velocity selection. When the (i, j, k, 1)-th neuron at the point (i, j) in the (k, 1)-th layer is active high,
the velocity of pixel (i, j) is kB and /B in the k and 1 direction, respectively. Here, B is the sampling bin
size of the velocity component range. The interconnection weights Ti, i,k, Z;m,n,k,  1 consist Of the
smoothness constraints and the line process only. The bias input Iijj, k, 1 co;tain all” information from the
images. And thus the error function for computing the optical flow is transformed into the energy function
of the neural network that is defined by

~=-;$~ ~ ~

~ = 1 j= 1 k=-Dx l=-Dv

(x ‘i,j,k,l; m,n,k~?m n k 1 ‘ijk 1+ ~ijrk,lvi,j,k,l j’,,, ,,, ,
(m -i, n -)) ● SO (5)

Optical flow computation is performed by the neuron evaluation using a massively parallel updating
scheme which is based on the minimal mapping theory. Only the winning neuron is active high and the
other neurons of the same hyperneuron are turned off. The network operation will be terminated
whenever the energy function of the network reaches a minimum.

3.3. VLSI Design for ACNN Neuroprocessor

Building blocks and circuit designs for the ACNN neural processor include: digital programmable
synapse, hardware annealing circuit, summation circuit, the nonlinear transfer function circuit, active pixel
sensing circuit, etc. To construct a complete ACNN, a multiple of the units can be arranged in an n-by-m
rectangular grid with appropriate interconnections. A 3-D ACNN can be realized in a time-multiplexed
fashion or in a multiple ACNNS configuration.

To illustrate the implementation feasibility, a 16x8x9-cube ACNN chip of active dimensions 12.5 mm
x11.7 mm was designed in a 2-~m CMOS technology. A programmable 5x5-array ACNN prototype chip
was fabricated of active dimensions 1380 ~m x 746 pm. A circuit board was built to demonstrate the
operation of this prototype chip. Experiments on edge detection were performed. The measured result of
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the edge detection experiment agrees well with the C-based simulation result. The CPU time for the C-
Chased simulation is 2.53 seconds. The speedup is about 160,000.
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Figure 4. (a) An n-by-m ACNN array on rectangular grid. The shaded boxes are the neighborhood cells
of C(i,j). (b) Model of the ACNN neuron C(i,j).
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5. A 3-D cube multilayer ACNN model for motion flow computing.

4 Hierarchical Self-Organization Neural Network (HSONN)

4.1. Introduction

The success of most machine vision applications is closed tied with the reliability of the recognition of
3D objects or surfaces from 2D images. The hierarchical self-organization neural network (HSONN) is
proposed to provide a high performance recognize. It effectively performs recognition to find a
correspondence between certain features in the image and similar features of the object model.
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The fundamental theory of self-organizing networks was presented by Grossberg [9], Kohonen [10],
and other researchers [11 ]. To improve the learning efficiency and the recognition reliability, the HSONN
is based on a hierarchical structure which is composed of a global winner-take-all layer and a set of local
winner-take-all competitive networks.

4.2 HSONN Architecture and Learning Process

As shown in Figure 6, the global layer is a winner-take-all network with supervised learning.
Meanwhile, the local layer is a set of local winner-take-all networks with self-organization learning. Each
local winner-take-all network is trained by feature- or profile-specific data vectors for corresponding
feature or profile selections. The local winner-take-all network systematically distributes the training data
vectors in the vector space Rn to approximate the unknown probability density function of the training data
vectors. The synapse weight vectors quantize the vector space and converge to cluster centroids.

For the global winner-take-all network, the supervised learning is used. The network is presented
with both the input and the desired output for each input, and the weight structure best realizes the
inputioutput  relationship, Then the trained global layer serves as a classifier to encode the local winners.
The global winner-take-all network is used to recognize the global winner from all local winners.
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Figure 6. Hierarchical Self-Organization Neural Network.
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4.3 VLSI Neural Processor Design

The VLSI architecture design for the local self-organization network is shown in Fig. 7. The M input
neurons correspond to the elements of the M-dimensional input vector. Each input neuron gets its input
from the external data bus and distributes the buffered signal to N distance-computing neural units in the
competitive layer through the synapse matrix. Each distance-computing neuron calculates a square of
Euclidean distance between its synapse weight vector and the input vector. The competitive process is
performed throughout the whole layer by the winner-take-all operation. The winning neural unit is
determined according to the minimum distance criterion. The synapse weights are then updated according
to the local learning rule.
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A mixed-signal VLSI design technique is used to implement the HSONN neural processor. The
analog circuitry performs massively paralleled neural computation and digital circuitry processes multiple-
bit address information. This neural-based recognize realizes a full-search vector quantization  process for
each input vector at a time complexity 0(1).  It consists of the input neurons, programmable synapses,
summing neurons, winner-take-all cells, and an index encoder. The programmable synapse matrix is
composed of M x N synapse cells, which correspond to N M-dimensional synapse weight vectors. The
output neuron array is composed of N summing neurons, which perform paralleled summation of the
distortions between the input vectors and synapse weight vectors. The winner-take-all block consists of N
competitive circuit cells which perform paralleled comparison among N inverted distortion values and
choose a single winner. This block also provides a sufficiently high output level for the winning neuron
against the rest. The index encoder circuit is an N-to-n decoder that uses binary codes to encode N
classes. The on-line learning unit is a coprocessor to support a high-speed neural-network learning
algorithm.
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Figure 7. VLSI architecture design for the local self-organization neural network.

5. SYSTEM INTEGRATION WITH 3-D MCM BASED AVIONICS ARCHITECTURE

An ultra-low-power 3-D 1024x1024x27-cube ACNN neural processing engine has been under a
development study by using a 3-D VLSI die stacking technology combined with a sub-O.25 Lm low
power (V~~ = 0.9 V) SOI CMOS process technology. A 3-D VLSI die stack of dimensions 4 cm x 4 cm x
1 cm is projected to accommodate a complete ACNN+HSONN processor with one 1024x1024 active-
pixel sensor on the top of the die stack. The intrinsic computation power of the 3-D 1024x1024x27-cube
ACNN neural computer is about up to 30 pets-connections per second at a 40-MHz evaluation rate. A
miniaturized 30-pets-connection Eye-Brain Machine is therefore feasible to be implemented into a compact
multichip module at a manageable power dissipation rate.
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Integration of this neural computer as one slice of a 10 cm x 10 cm rnultichip module into the 3-
dimensional MCM based avionics architecture for NASA’s New Millennium Program is also feasible.
Figure 8 shows the projected 3-D MCM stack for 4 multichip module designs: neural computer module,
microcomputer and memory module, massive memory storage module, and communication and utility
module.
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Figure 8. Integration of the neural computer MCM into the 3-D MCM based avionics architecture for
NASA’s New Millennium Program.

6. CONCLUSIONS

Machine vision is a challenge problem. The difficulty in obtaining a general and comprehensive
solution is caused by the complexity of machine vision in itself. Neural network approaches appear to be
very promising for vision processing due to their massively parallel computing structures and learning
capabilities.

In this paper, we propose a neural network based machine vision system named Eye-Brain Machine
(EBM) which is a highly integrated multi-sensor and multi-processor system for vision applications. The
neural network is a combination of Annealing Cellular Neural Network and Hierarchical Self-Organization
Neural Network. The ACNN architecture is a programmable and scalable multi-dimensional array of
annealing neurons which are locally connected with their local neurons. The HSONN adopts a
hierarchical structure with nonlinear basis functions.

The ACNN+HSONN neural  computer is effectively designed to perform programmable functions for
machine vision applications with its embedded host processor. VLSI neural processor design feasibility
for the ACNN+ HSONN composite network is demonstrated. Incorporating of the proposed VLSI neural
processor into advanced vision systems offers orders-of-magnitude computing performance enhancements
for on-board real-time processing and control tasks. Major design features of this neural computer
includes massively parallel neural processing, hardware annealing capability, winner-take-all mechanism,
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digitally programmable synaptic weights, multi-sensor parallel interface, low-power VLSI design, and
advanced multichip  module packaging. Integration of this neural computer as one slice of a 10 cm x 10
cm, multichip  module into the 3-dimensional MCM based avionics architecture for NASA’s New
Millennium Program is also shown to be feasible.
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