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Abstract

This paper describes anew algorithmic paradigm for solving problems where a
model is extracted fromor fit to data. This paradigm has numerous applications,
particularly in computer vision. The new paradigm is called RUDR (pronounced “rud-
der” ) for Recognition Using Decomposit ion aud Randomization. The main components
of the paradigm are the decomposition of the problem into many smaller subproblems,
the usc of randomization to limit the number of subproblems that must be examined
to maintain high accuracy, and the useof peso space analysis techniques to solve each
subproblem. We show that, in general, this paradigm has advantages over previous
methods. The application of these techniques to object recognition, extraction of geo-
metric primitives, robust regression, and motion segmentation is discussed.

1 Introduction

The gellcrate-ald-test paradigin is a popular strategy for solving modelmatching problems
such as recognition, detection, and fitting. "Thebasic idea of this paradigm is to generate
a hypothetical solution using the minima] amount of information and thentest the quality
of the solution. This is repeated for many hypothetical solutionsand thebest. solution(s)
arc kept if they meet some criterion. Examples of this technique include RANSAC [7] and
the alignment method [12]. A competing paradigm based 011 the Hough transform also
generates hypothetical solutions using minimalinformation, but rather than testing each
solution separately, the testing is performed by analyziugthe locations of the solutions in
the space of possible model positions (or poses). This is often, but not always, accomplished
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through a clustering procedure. The large clusters inthe pose space indicate good model
fits. We call techniques that examine the pose space for sets of counsistent matches among
all hypothetical matches Hough-basced methods. Examples include variants of the Hough
transform (sce [13, 16]) and p ose clustering (e.g. [25]).

In this paper, a new paradigm that gencralizes and extends previous work on model fitting
[20,22] is presented. This paradigin draws ideas and advant ages from both the generate-and-
test paradigm and the Hough-based paradigm. Whilethe underlying matching technique
used is to examine pose space for sets of consistent matches like a Hough-based method, the
use of problem decomposition techniques allows this class of algorithms to be viewed also as
generate-an d-test algorithms, where the initial matches consist of data that is insufficient. to
constrain the model position to afinite set of possibilities (even for errorless data) and these
initial matches arc tested using pose space aualysis techniques in the subspace of the pose
space that is consistent with the initial matches.

The basic steps of the new paradigin are as follows. First, the problem is decomposed into
many small subproblems. (A method for performing this decomposition, in genera, is given
here.) Second, randomization is used to select a subset of subproblemsto be examined while
maintaining a low rate of failure. ‘1'bird, the subproblems are solved using some parameter
space analysis technique. We cal this new paradigm RUDR (pronounced “rudder”), for
Recognition Using Decomnposition and Randomization.

In general, these techniques test fewer hypothesesthan previous generate-and-test meth-
ods, with atest phase that is no more complex. Inaddition, the decomposition of the
problem allows each of the subproblems to examine a much smaller parameter space than
the original problem and this often allows the error inherent inlocalization procedures to be
propagated accurately and efticiently in the matching process.

This algorithmic paradigm has a tremendous number of applications. It cau be applied to
esscntially any problem where a model is fit to cluttered data (i.e. with outliers or multiple
models present). We discuss an example application of these techniques, where paralél lines
arc detected in edge images, in detail. Several practical issues arc examined with respect to
this application. Previous application of the RUDR paradigim to object recognition [20] and
curve detection [22], as well as methods by which RUDIR can be applied to robust, regression
and motion segmentation, are summarized.

There has been significant, previous work combining Hough transform techniques and
randomization ['2, 14, 15, 26]. Of particular iuterest is the work of lLeavers [h%s who, in
addition, considered subproblems where asingle point was used to place a constraint on
the allowable transformations. However, this dots unot achieve the full decomposition of
the problem and does not handle localization error robustly. RUDIR yields considerable
improvement, over this met hod.

2 A general problem formalization

The class of problemns that we attack using RUDR arc those that require a model to be
fit to aset of observed data features, where a significant portion of the observed data may

2



be outliers or there may be multiple models present in the data. These problems can, in
general, be formalized as follows.

Given:

e M: The model to be fit. This model may be a set. of distinct features as is typica in
object recognition, or it may be aparameterized manifold such as a curve or surface, as in
geometric primitive extraction and robust regression.

. D : The data to match. This data consists of a set of features or measurements, {d, ,.., d4},
that have been extracted, for example, from an image. For simplicity, we assume that al of
the data features are of a single type, but this restriction can be easily remnoved.

« 7 : The possible positions or transformations of the model. This pose space is a (possibly
unbounded) parameter space in which the model must lie. We denote individual transfor-
mations in this space by 7.

« AM, D, T, 7,D) : An acceptance criterion that determines whether a transformation, 7,
satisfactorily bringsthe model into agreement with aset of data features, D. We alow this
criterion tobe a function of theset of data features andthe set of transformations to allow
the criterion to select thesingle best subset of data features according to some criterion or
to take into account, global matching informat ion.

Determine and report:

. All maximal sets of data features, 1) € D, for which there is a transformation, 7 € T,
such that the acceptance criterion, A(M, D, T, 7, ), issatisfied. The stipulation that these
should be maximal sets of data features mcans that a set of data features should not be
reported if it is fully contained within another set thatis reported.

This formalization is very general. Many computer vision problems can be formalized in
this manmner, including object recognition, geometric primitive extraction. motion segimenta-
tion, and robust regression.

A particularly useful acceptance criterion is lined on bounding the fitting error between
the model and the data. Let C'(M,6,7)beafunction of themodel, a particular data feature,
and a model position that determnines whether the model at the specified position fits the
data feature (c.g. upto abounded error). We define C(M, 4§, 7) =1 if the criterion is
satisfied, and C(M, 4,7)= O, otherwise. A set of data features, D ={4;,....d,}, is sad
to be brought, into alignment up tothe error criterion if al of the individual features are
brought into alignment:

a

II C(M76177) =1 (1)
i1
The bounded error acceptance criterion specifies that asct of data features, 1) ={d,,....9,},
should be reported, if the cardinality of the set meets some threshold (# > ¢), there IS a
position of the model that satisfies (1), andthe set is not asubset of some larger set that is
reported.
This bounded error criterion can incorporate not only t he location of features, butin



addition, other local informationsuchas curvature, color, texture, and contrast. Weight.-
ing of the features canbe easily added. 1t cannot incorporate global information,such as
mean-square-error of least-median-of-squares. However, RUDR is not restricted to using
this bounded error criterion. Indeed, RUDR has been applied to least-mnedian-of-squares
regression with excellent results.

We note that this bounded error criterion, as stated, doesnot allow the exclusion of
multiple data features matching a single model feature in discrete models. However, this
exclusion is easy to achieve in practice, if desired. This also yields a technique that maximizes
the number of model features that are matched by data features, while excluding data
features from matching multiple model features.

3 Decomposition into subproblems

Let us call a set of matches between data features and the mode] a matching. The generate-
and-test strategy and many Hough-based strategies solve for hypothetical model positions
using matchings of the minimun cardinality to constrain the model position up to a finite
ambiguity (assuming errorless features). We call the matchings that contain this minima)
amount, of information theminimal matchings and we denote their cardinality k.1t should
be noted that wc consider, in particular, two types of model. Oue type of model is a set
of discrete features similar to the data features. Theother IS @ parameterized model SUCh
as a curve or surface. When the model is a set of discrete features, the minimal matchings
specify the model features that match each of the data features in the minimal matching
and we call these explicitn atchings. Otherwise, the data features are watched implicitly to
the paramecterized model and we thus call these implicitmatchings.

3.1 RUDR approach

In the generate-and-test paradigin, the model positions generated using the minimal match-
ings arc tested by comparing the model position to the data to determine if it results in a
good fit of the model to the data. In Hough-based methods, it is typical to determine the
positionus of the model that align each of the minimal matchings and detect, clusters of these
positionsin the parameter space that describesthe set of possible model positions, but many
other pose space analysis techuiques canbe used (eg. [3,6, 11. 13,1 7]).

The approach that we take in the RUDR paradigim draws upon both g[:ll[:rt~tc-alld-test
techniques and Hough-based techniques. The underlying matching method may be any one
of several pose space anaysis techniquesin the Hough-based paradigim, but. unlike previous
Hough-based methods, the problem is subdivided into many small subproblems, each of
which examines a subset of theminimal matchings. Thisdecomposition is achieved by
considering sets of distinguished matches between data features and the model. We call
these sets of matches distinguished matchings and t he data features t hat arc matched in
such a matching are called a distinguis hed set. Each subproblem cousiders only those model
positions that are consistent with the distinguished matching.



The cardinality of the distinguished matchings must be smaller than the cardinality of
minimal matchings for the RUDR paradigm to be useful. We will thus have a set of minimal
matchings that includes each distinguished matching. The restriction of each subproblein to
those positions consistent with the distinguished mat ching is achieved by considering only
those minimal matchings that include the distinguished matching in the subproblem.

This decomposition of the problem allows these techniques to be viewed as a new class of
generate-and-test methods, where distinguished matchings (rather than minimal matchings)
arc generated and the testing step is performed using a posespace analysis method (such
as clustering or pose space equivalence analysis) rather than comparing a particular model
position against the data.

We should note that if some special structure is required in the mininal matching to
suitably constrain the model position (such as colinearity), we must take care to select
suitable distinguished matchings. However, such special structure is not required for any of
the applications examined here.

3.2 Equivalence of formulations

Let's consider the effect of this decomposition of the problem on the matchings that are de-
tected by asystemn using a bounded error criterion,('(M,d,t), as described above. For now,
we assume that we have sonic method of determining preciscly those sets of data features
that should be reported according to the bounded error acceptance criterion. The impli-
cations of performing matching only approximately and the use of an acceptance criterion
other than the bounded error criterion are discussed subsequently.

Proposition 1:
For any transformation, 7€ 7, the following stat cinents are equivalent:

1. Transformation 7 briugs at least @ data features iuto aligniment with the model up to
the error criterion:
Y CM,6,7)>a
§CD
2. Transformation 7 brings at least (i) sets of data features with cardinality & into align-
ment with the model up to the error criterion:

k
2 (HCM«%@)>@
{81, 0fp D Nis 1
3. For any distinguished set, G = {Jo, ..., }, that is brought, into alignment with the
modelup to the error criterion by 7, there are () minimal matchings of distinct sets
of data features coutaining the distinguished set that are brought into alignment, up to
the error criterion by 7.

> (ﬁﬂM@m0>@$
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Proof

The proof of this proposition follows directly from combinatorics. We prove (8) Statement
1 implies Statement 2, (b) Statement 2 implies Statement 3, and (c) Statement 3 implies
Statement 1. Thus, the statements are equivalent.

(@ From Statement 1, there are at least = data features with C'(M,é;,7)=-1. We can
thus form at least (7) distinct sets of these data features with cardinality k. Each such set
has T1f. , C(M, &, 7)= 1. These matchings thus contribute at least (£) to the sum.

(b) ‘1’0 form the () sets of data features that are brought, iuto aligniment with the model,
we must have z individual data features satisfying L'(M, , é;,7)= 1. (If there werey <z such
features then we could only form (}) minimal matchings satisfying Equation (1). ) Choose
auy subset), G, of these matches of cardinality g.Form the (;”7) subsets of cardinality k — g
that do not include any feature in G. Each of these subsets when combined withG forms a
minimal matching that is brought into alignment up to the error criterion since each of the
individual features satisfies c(M, d;,7) = 1.

(c) Fromn Statement, 3, the g data features in the distinguished atching are brought into
alignment up to the error criterion by 7. In addition there must exist 2 — g additional data
features that are brought into alignment up to the error criterion by 7 to form the (;77)
subsets of cardinality & — g that are brought, iuto alignment up to the error criterion by 7.
‘1'bus, in total, there must be g + 2 — g =2 data features that are brought into alignment
up to the error criterion by 7. 0

The implication of this result, is that, if we arcint crested in finding model positions that
bring 2 data features into alignment with the model, it is equivalent to finding () sets of
k data features that, are brought iuto alignment with the model,and it aso is equivalent to
finding a sufficient number of such sets that snare some distinguished set that arc brought
into alignment. ‘1'bus, as long we examine at least one distinguished set that belongs to each
of thematchings that should be reported, the strat egy of decomposing the problem into
subproblems yields equivalent results to examining the original problemn.

Note that this theorem is stated in termns of distinguished sets, but for explicit matches,
the subproblems examine distinguished matchings, where the match for each data feature
is given. For each distinguished set that is considered in this case, the matching algorithm
examines all possible matchings for the distinguished set to ensure that we examine a correct
distinguished mat thing if the distinguished set belongs to the model.

Now, for practical reasons, we may not wish to use an algorithin that reports exactly those
matchings that satisfy the error criterion,since suchialgorithms are often not efficient. When
we UsC an approximation algorithm, Propositionlisno longer- precisely correct. Just as the
use of an approximation agorithm introduces the possibility that we do not find the best (or
all) solutions, itintroducesthe possibility that examining subsets of minimal matchings, as
described above, does not yield the same results as examining the full set. However, empirical
evidence suggests that the examination of these subproblems yields superior results when au
approximation agorithm is used [20, 23].

We can aso use these techniques with acceptance criteria other than the bounded error



criterion. With other criteria, thetheorem is also, usually, only approximately correct, but
if an approximation algorithin is used to detect good matchings, it often yields good results.
FFor example, an application of these ideas to least-median-of-squares regression has yielded
an approximation algorithin that was provably accurate with high pro bability, while previous
approximation agorithms do not have this property [18].

3.3 Error sensitivity

Hough-based methods have been criticized for their error seusitivity [8], but, from this anal-
ysis, it is clear that, if exact matching methods are used to solve the RUDR subproblems
(or even the original problem), then no other method cau achieve superior performance with
respect to the bounded error criterion, since we report exactly those matchings that satisfy
the acceptance criterion.

In fact, Hough-based methods are, ingeneral, superior to gc:llcratc:-all[l-test methods with
respect to localization error. Initially, generate-and-test methodsimplicitly assumed that
there was no localization error in the minimal matching used to determine the hypothetical
mode] position ['7, 12]. In this case, localization error causes correct matches to be missed.
More recently methods have been developed to propagat e localization error in the testing
step [1], but these methods do not ensure global consistency of the matches. These techniques
result in a significant) number of matches occurring due torandom accumulation of possible
matches [9]. When an accurate pose analysis technique is used, a Hough-based method can
propagale locdization error without resulting in false posit ives!.

3.4 optimal matching cardinality

W’ bile distinguished matchings of any cardinality could be considered, we must balance
the complexity of the subproblemns with the number of subproblems that are examined.
Increasing the cardinality of the distinguished matching is beneficial up to a point. This is
because the larger the distinguished matching is, the more constraint we have on the position
of the model,and thus the simpler the subproblems are to solve. On the other hand, as the
cardinality of the distinguished matching is increased. the number of subproblems that must
be examined tomaintain alow rate of falure also increases.

Our analysis below inSectiond shows that the decrease in complexity caused by in-
creasing the cardinality of the distinguished mat ching is great er than the increase caused by
a greater number of subproblems. Note though, that no matter how large the cardinality
of the distinguished matching is, we must always test each matching containing the distin-
guished matching and at least one additional feature matching to determine the quality of
the distinguished matching. Sinceit is not particularly useful to examine matchings that are
larger than the minimal matchings, the optimal cardinality of the distinguished matching is

1ere we define a false positive as a match that does not meet the acceptance critevion, but that is
reported, rather than a match that is not an instance or the model. Thus no match that m ect s the acceptan ce
criterion is considered tobe a fase positive,
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E — 1. We thus consider distinguished matchings with cardinality ¢ = & — 1 for the balance
of this paper.

4 Solving the subproblems

Now, we must use some ethod to solve each Of the subproblems that are examined. We
can, in fact, use any method from the literature that determines how many matchings of a
given cardinality can be brought into alignment with the model at, a particular position. This
includes the standard histogramining or clustering methodsusedin the I-lough transforin and
pose clustering and also recently developed pose equivalence analysis techniques that alow
localization error to be propagated accurately [3, 6]. Note that the histogramming techniques
require linear time in the number of matchings examined and that Breucl’s experiments
indicate that his techniques canoperate in linear expected time iu the nuinber of matchings
[3], so we can, in general, perform this step efficiently.

Each subproblem iu RUDR can be solved efficiently, not only because fewer matchings
arc considered tha n iu the full problem, but also because a small portion of the parameter
space is examined. Each subproblem must consider only the positions of the model that
bring the distinguished matching into alignment up to the error criterion.

If it is assumed that there is no errorin the features in the distinguished matching, then
each subproblem needs to consider only a sub-manifold of the parameter space.ln general,
if there are p transformation parameters and cach feature match yieldsb constraints on
the transformation, then a subproblein where the distinguished matchings have cardinality
g examines only a(p — ¢gb)-dimensional sub-manifold of the transformation space in the
errorless casc?.

Now, since each subproblemn is concerned with only a sub-manifold of the transformation
space, we can parameterize tile sub-manifold (using p - gb paramnet ers) and perforin analysis
in this lower dimensional space. A particularly uscful case is when the resulting manifold has
ouly one dimension (i.e.it is a curve). Iu this case, the subproblem cau be solved very simply
by parameterizing the curve and finding good matchings by histograimming or determining
which segments on the curve are consistent withmany minimalmatchings [22].

Note that this formulation of the subproblemns as considering a sub-manifold of the trans-
formation space allows the use of methods that determine how many individual features are
brought into alignment wit h the model up to the error criterion, since we have removed the
portions Of the transformation space that do not agree with the distinguished matching being
brought into alignment. Some examples of such methods are the Fast Hough Transform [17]
and the multi-resolution parameter space search of Huttenlocher aud Rucklidge [11].

When we consider thelocalization error inthe features of the distinguished matching, the
subproblerns must (at least implicitly) consider a larger space thau the manifold described
above. The subproblems are still much easier to solve, since the transformations usually do

2There are exceptions to this rule, but they donot cause serious problems (247, andwe donot consider
them here.



not stray far from the mnanifold that they must lic onin the errorless case. A technique
that is useful in this caseisto project the set of transformations that are consistent with
a minimal matching up to the error criterion onto the manifold that results in the errorless
case and then perform clustering only in the parameterization of this manifold as discussed
above [22].

5 Randomization and complexity

A deterministic implementation of these ideas that examines each possible distinguished
matching with the appropriate cardinality requires O(n*) running time [24], where n is the
number of possible matches between a data feature and the model. When explicit matchings
arc considered, n = md, where m is the number of model features andd is the number
of data features. Whenimplicit matchings are considered, n = d. Such a deterministic
implementation performs much redundant work. ‘1'here arc inany distinguished sets that are
part of each of the large consistent matchings that we are secking. We thus find each maximal
matching many times, once for each distinguished set that is contained in the maximal
matching. We can take advantage of this redundancy through theuse of a randomization
technique to limit the nunber of subproblemns that we must examine while maintaining a
low probability of failure. The usual method by which this is accomplished is to assumne that
some minimum number or some minimuim fraction of the data features belong to the model
that we are considering. 1f the number or fraction of data features that belong to the model
isuot. large enough, then we allow the algorithinto fail. This is reasonable since the model is
very difficult to find if the number of data features that belong to it is small aud the model
is not perceptually significant< if the fraction of data features that helong to it is small.

51 Implicit matchings

Let's first consider the case of implicit matchings (i.e. where the model is a parameterized
manifold). We use the assumption that some fraction of the data features belong to the model
and determine the number of random distinguished sets that must be examined to achieve a
fixed probability of examining at least one distinguished set. that completely belongs to the
model. Let € be the minimum fraction of data features that must belong to the model to
maintain a low rate of falure. I'or a distinguished set with cardinality g < k,the probabilit,
that all of the data features belongs to the model is (since we sample the data features
without replacement ) at least:

q .

- IIE(] -
il

d

As the number of data features, d, increases, this probability approachese?, and is thus
asymptotically independent of d. The probability thatt trials faii to select acorrect dis-
tinguished set can be bounded by P < (1 " py)t. Wecannow select an arbit rarily sinall
probability of failure, 7, and determine the numnber of trias necessary to ensure that the



probability of failure is no larger than «. This yields:

If we approximate piby e” and further usc the approximation: In(1+ «a)~ a (for small
«), then the number of trials we must examine is approximately € °In %.Not,e that this is
independent of d.Thenumber of trials that must be examined is 0(1) for constant vy, € and
g. Each trial requires O(d* *) time (for g < k), since there are (g,g)minimal matchings that
include the distinguished matching, and each trial canbe performed inlinear time in the
number of minimal matchings that are examined. We thus want g to be as large as possible,
but we must have g < k&, so we use g =k — 1 as mentioned previously inSection 3.4, and
we achieve a running time of O(d). A similar aunalysis for generate-and-test inethods also
yields a running time that is O(d). However, RUDR till requires fewer trials (by a factor of
approximately 1).

€

52 Explicit matchings

For the case of explicit, matchings, we use the assumption that some minimuin fraction, f,
of the model features appear in the data (i.e. that at least [ fn] data features belong to the
mode]). If the fraction of model features appearinginthe image is below f, weallow the
algorithm to fail. The probability that asample of g < k data features comes entirely from
the model is at least: . ;
P = flI
i 1

d

If we require the probability of notexamining asingle sample of data features entirely

from the model to be no more than v, we again have « > Ill(ll'f”‘l)l). Approximating p; by

(£)9 and using the approximation In(l1+ o)~ « yields:

d\. 1
t>—1] In—
fm 7y

Note that for each of the sets of data features that are sampled, we must consider matching
the data features against cach possible set of model features of the appropriate cardinality.
For each trial, we thus consider O(mn?) sets of model features and overall we consider O(d?)
distinguished matchings since the number of trials is O((£)?) for constant yand f. Now, for
each distinguished matching, we exar nine the O((md)’ 9) minimal matchings that include
the distinguished matching and since the pose analysis step can be perfornied in linear time,
the total time that is required is O(m* ‘d‘) for g < k. Once again, we want g to be aslarge
as possible, which is g=F% — 1, aud this yields aud O(7/talk) algorithin.

A similar analysis for generate-and-test methods yields a computational complexity of
O(md** "), if each of the O(md)additional feature matchesis tested for cach distinguished
matching. For many problems, this can be improved if we are only concerned with the
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number Of model features tnar are matched by an image feature. However, this does not
allow the exclusion of the case where multiple mode] features match asingleimage feature,
which RUDR can achieve without increasing the complexity.

5.3 Intelligent feature selection

If some method exists to select features intelligently, we can incorporate it into RUDR, by
using this method to select. distinguished matchings that are more likely to yield good results.
An example is the use of perceptual grouping techniques toselect distinguished matches that
are likely to belong to the same object [21]. Such methods can be used both to reduce the
complexity of algorithins inthe RUDR paradigm and to reduce thelikelihood that a large
matching is detected that does not. correspond to an instance of the model being sought<.

6 Detailed application example

This section walks through the application of R UDR to an example problem, the detection
of paralel linesinanimage,and includes discussion of thealgorithimdesign aud implemen-
tation stages of theapplication and consideration of the practical issues involvedin such an
application.

The first step inapplying the RUDR paradigm to a particular problem is to determine
the model andthetype of data features that willbe used. Ior the detection of parallel
lines, our model is simply aparameterized form of a pair of parallel lines. We use the! (p, 0)
paramecterization for the lower line (i.e. p=ua cos@ -+ ysinf),along with a parameter, d,
describing the perpendicular distance to the second line. Wc could usc essentially any set of
two-dimensional points as our data. We focus, however, 011 the edges detected in a digita
image and we choose to USe oriented edge points @S OUr data. since alocal orientation (such
as the gradient) is available from most edge detectors. (We use a version of the Canny edge
detector [5] to gencrate the data)

Next, we must consider the number of data features necessary Lo constrain our mode].
Inthe noiseless case, two oriented points overconst rain the position of a pair of parallel
lines (assuming oue point lies on each line), while one point is clearly insufticient. Our
minimal matchings thus consist of pairs of points. Since this overconst rains the model, we
can eliminate many pairs of points prior to the pose analysis step, a8 U0 model position is
consistent with them.

Our strategy IS now to randomly sammple single points from the edge map of animage
to be the distinguished set (or simmply the distinguished point,in this case). For each such
sampled point, we consider pairing it with each other possible point and determine which
pairs could feasibly belongto a pair of parallel lines. Ior the ones that could, we perform
some pose space analysis to deterwine if there is a sufticient number to output, a pair of
parallel lines in the image. Note that we must not only perform this pose space analysis
to determine the potential location of the other line, wemnust also maintain a count of the
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number of points parallel with the distinguis hed point, to ensure that both lines are present
in the image.

Now, how should we perform our pose space analysis for each distinguish ed point? Here,
we choose to use a bounded error criterion. 1f we know (or can estimate) the distribution
of errors, the error bounds can be chosen by taking those that capture a certain percentile
(say 95%) of al errors, or they can be chosen empirically. We have empirically chosen
error bounds of 1.0 pixelin location and {5 radians in orientation. We cannow project the
model position (if any) consistent with a particular pair of oriented points onto the manifold
consistent the distinguished pointinthe errorless case. Since the distinguished point fully
constrains one of the parallellines (in the errorless case), this manifold isa curve in the
three-dimensional parameter space that can be parameterized by the distance! from the line
given by the distinguished point. Note that this distance may be negative, since we do not
know which of the lines, if any, the distinguished point lies on.

‘lo perform this projection for any pair of pointsthat are examined, we consider the set
of orientations that are consistent with both of thepointsup tothe error boundaries. Each
orientation in this set yields a distance between the pair of parallel lines. We obtain a rail.ge
of such distances by examining the minimun and maximuin consistent orientation. Note
that if theset of consistent orientations contains the orientation of thesegment connecting
the points, the lower bound on this distance is the distance between the points. ‘1’0 this
range we must also addthe error possible inthe position of the points. This final rauge is
our projection of theposespace that is consistent with the pair of points onto the curve in
the parameter space yielded by the distinguished point.

We use these projections to count the number of points that are consistent with parallel
lines whose distances from the line given by the distinguished point are between discrete
intervals. We chose the intervals to have a width of one pixel. An array of counters of size
2d,,0.+ 1 is dlocated to store values ranging fromd,, o, t0 —d, o, Where d,,,o, 1S the maximuin
distance between any pair Of parallel lines (and can certainly be bounded by the distance
between two opposing corners of the image). Now for eachrange that is yielded by the
projections, as described above, we increment the counters that correspond to values covered
by the projection. After the distinguished point has been matched with cach additional point,
we look for peaks inthe counter array. Note that this yields a conservative technique that
provides an upper bound on the number of pixels that can belong to a model up to the
bounded error.

We also use the error bounds to determine if each additional point examined lics on
the same parallel line as the distinguished point. If both pointshave orientations that are
consistent with being perpendicular to the segment between the points (in which we must
also consider thelocalization error), then the points arc considered to be parallel up to the
localization error and the counter maintaining this count is incremented.

Finally, we must have some criterion determining which parallel lines are output,. In
our experiments, we have simply output the pair of parallel lines for which we obtain the
maximum geometric mean between the number of points lying on the same line as the
distinguished point and the numnber of points lying on a parallel line. Note that we could,
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without additional work, report al of the parallel lines that surpass some threshold with
respect, to our quality measure.

In order to improve the efficiency of the method, we employ the concept of a radius of
coherence for each point (sce [4] for a similar usage). With this technique, we assume that
only points withinsome fixed radius of the distinguished point are likely to contribute to
the model and we eliminate the remaining points from consideration in each subproblem. 111
our experiments, we have used a radius of coherence of 100 pixels.

Iligure 1 shows the results of applying this method to four exampleimages. The first three
examples show greyscale versions of scanned color images of pieces of unexploded munitions.
The last example is a thermalimage of aninert example of the same type of munitions. In
each case, the best sct of parallel lines found indicates the position of the bomb. In these
experiments, we have assuined that the best pair of parallel lines comprised at least 4% of
the data and wc alloweda probability of failure to detect the best pair of paralel lines of
1%. With these parameters, the number of trials necessary is:

In.01
e {]u(l .04)1 =13

From the analysis of scction d, we can see that the complexity of the techniques is O(n),
where n is the nuinber of edge pixels. On these edgeimages, cousisting of between 2394 and
4119 edge pixels, these techniques required betweenl.17 and 1.76 seconds per image on a
SPARCstation™"20.

We note that as the percentage of outliers increases, or number of pixels belonging to the
model decreases, the number of trials that is necessary in this application increases slowly
(i.e. with the logarithin of the fraction of pixels belonging to themodel). This assuines that
we can Set some lower bound on the fraction of pixelsthat belong to model. In practice this
IS not difficult, and this bound caii be set cither empirically Or theoretically by examining
the likelihood of finding a hypothesis that meets the! acceptance criterion due to the random
accumulation of data features.

7 Applications of RUDR

R UDR has been appliedto several additional problems. We review the immportant aspects of
these applications here and discuss additional areas where RUDR can be applied.

7.1 Extraction of geometric primitives

"The Hough transform is a well known technique to extract curves and surfaces from data by
mapping sets of data features into manifoldsin the parameter space and then searching for
peaks in the parameter space. Theapplicationof the RUDR t o this problem improves the
efliciency of the techniques, allows the localization error to be propagated accurately, and
reduces the amount of memory that is required [22].
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Figure 1: Parallel line detection examples. (a) Original image. (b) Edges detected in image.
(c) Parallel lines detected overlaid on original image.



Consider the case of detecting curves from feature points in two-dimensional image data.
If we wish todetect curves with p parameters, then we use distinguished inatchings consisting
of p—1 feature points, since, in general, p points are required to solve for the curve parameters.
Each distinguished matching maps to a one-dimensional manifold (a curve) in the parameter
space, if the points are errorless aud in general position. Methods have been developed to
map minima matchings with bounded errors into segients of this curve for the case of lines
and circles [22]. If wethen look for sections on the curve where many of these segments
overlap, this yields a conservative algorithm that finds al cases where the! curve fits the
poiuts up to the error criterion, but mmay aso fiud cases where some of the points are not
quite fit up to the error criterion. This method allows each subproblem (corresponding to
a particular distinguished matching)to be solved cfficiently aud propagates the localization
error without introducing many false positives. O(d) time and space is required for curve
detection with these techniques, where d is the number of points present in the image.

Figure 2 shows the results of using the R UDR paradigin to detect circles in a binary
image of an engineering drawing. All of the large circles are found whenthe circles reported
are required to comprise at least 4% of theimage. When this fraction is reduced to 0.8%,
not only are the pairs of dashed circles that are perceptually salient found, but also several
circles that arc not perceptually salient. These additional circles that are fouud satisfy
the acceptance criterion, so this is not a failure of the algorithm. Such insalient circles
are difficult to ecliminate without the usc of additionalinformation. In this example, the
implementation fouud only oue circle at the locations where concentric dashed circles were
very close together. The circle fouud consists of the top half of one of the circles and the
bottom half of the other. This is due both to their proximity aud imperfectionsin the circles.

The robustness of this technique for line detection has been compared against other
met hodsin a large nmmber of synthetic images. Four methods were compared:

1. The RUDR paradigm w ith propagated localizat ion error.
2. The RUDR paradigm without propagated localization error.

3. A method mapping pairs of points into the parameter space, but without problem
decomposition.

4. The standard Hough transform.

Iligure 3 shows the results. I'or each method, the probability of detecting the single correct
line segment present in the image is plotted versus the probability of finding afalse positive
(curved distracters werc added to the images) for varying levels of the threshold used to
determine which lines are detected.

The best performance is ach ieved by the R UDR paradigim wit h propagation of localiza-
tion error into the parameter space. Interestingly, the RUDR paradigin fares poorly when
localization error isnot propagated carefully. It thus appears crucia when using the RUDR
paradigm to propagate the localizationinto the parameter spare. I‘urther details cau be
foundin [19].



() (d)

Figure 2: Circle detection using RUDR. (@) Eugineering drawing. (b) Circles found that
comprised 4% of the image. (¢) Perceptually salient circles found that comprised 0.8% of
theimage. (cl) Insalient circles found that comprised 0.8% of the image.
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Figure 3: Receiver operating characteristic (ROC) curves for line detection generated using
synthetic data.

7.2 Robust regression

Here we consider the application of RUDR to the problem of finding the least-median-
of-squares (LLMS) regression line. In LMS regression, the fit of the model that minimizes the
median residual error is sought. We thus do not usc a bounded error criterion for this case.
We should report only the single best fit according the median residual criterion.

The most commonly considered problem is that of fitting aline to points in the plane.
We apply RUDR to this problem by considering a series of distinguished pointsin the data.
Each trial examines a single distinguished point (since only two are required to define a line).
For each trial, we determine theline that is optimal with respect to the median residual, but
with the constraint that tile line must pass through the distiniguished point.

It can be shown that the solution to this constrained problem has a median residual that
iISno more than the suin of the optimal median residual aud the distance of the distinguished
point from the optimal 1.MS regression line [18]. Now, at least half of the data points must lie
no farther from the optimal regression line thau the optimal median residual (by definition).
Each trial thus has a probability of at least 0.5 of obtaining a solution with a residual no
worse than twice the optimal median residual. The use of randomization implies that we need
to perform only a coustant number of trials to achieve a good solution with high probability.

Each subproblem (corresponding to a distinguished point) canbe solved using a special-
ized method bawd 011 parametric search techniques[18]. This allows cach subproblem to
be solved exactly in O(nlog? n)time or using numerical techniques in O(n log n)time for a
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Figure 4 The RUDR paradigm canbe used for robust, regression.

fixed precision solution. These complexities are lower than those for the best known exact
agorithms for this problem and these algorithins yield bounds with high probability 1311 the
guality of the solution, unlike previous approximation algorithms. These techniques can also
be extended tohigher dimensions, with an increased computational complexity.

Iigure 4 shows two examples where RUDR was used to performm approximate least-
llleflial-(>f-squares regression. 111 these examples, there were 300 inliers and 100 outliers,
both from two-dimensional Gaussian distributions. A very good approximation to the 300
inliers IS obtained in both cases. Our benchimarks show that this technique can process
100,000 data pointsin under aminute on a SPARCstation™20.

7.3 Object recognition

The application of the RUDR paradigin to object recognition has been exploredin [20, 23].
The usc of RUDR yields an algorithin with O(md*) computational complexity, wherem is
the number of model features, d is the nuiber of data feat ures, and k is the minimal number
of feature matches necessary to constrain the position of the model up to afinite ambiguity
inthe case of errorless features ingeneral position. This is the lowest complexity that, has
bccu achieved to perforin general object recognition using the geometry of the data features,
without additional information.

The method used in [20, 23] to solve each subproblem is a multi-dinensional histogram-
ming procedure that allows clusters to be determined efliciently in the space of possible model
positions using littlememory. This results in an approximation algorithi, so the matchings
that are found, arc! not necessarily those that meet the defined acceptance criterion. Breuel's
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Figure 5: Recognition of occluded two-dimensional objects. (8) The corners detected in the
image. (b) The best hypotheses found for the occluded objects with the edges drawn in.

adaptive subdivision of transformation space method (3] or Cass’s transformation constraint
analysis [6]canbe used to solve the subproblems when geometrically precise results are
necessary.

Figure 5 shows an example where the R UDR paradigm was used to recogunize occluded
two-dimensional figures by matching feature points. The partial occlusion of the objects
and the distracting features from other objects did not prevent the method from recognizing
the objects of interest. l'igure 6 shows an example of the recognition of a three-dimensional
object where self-occlusioll is present.

7.4 Motion segmentation

RUDR can be used with any technique for determining structure and motion from corre-
sponding data features in multiple itnages (see [10] for a review of such techniques)to perform
motion segmentat ion. In this problein we are given sets of data features in. multiple images.
For now, we assume that we know the feature correspoudences between images (e.g. from a
tracking mechanisiu), but we do not know which sets of features belong to coherent objects.

Let us say that we have an algorithm to determine structure and motion using k& feature
correspondences in ¢ images and that there are ¢ features for which we know the correspon-
dences between the images. We examine distinguished matchings of size k — 1 in the RUDR
paradigm (i.e. k —1 sets of feature correspondences hetween the images). Each subproblem
is solved by determining the hypothetical structure and motion of each minimal matching
(k sets of feature correspondences) containing the distinguished matching and then deter-
mining how many of the minimalmatchings yield cousistent st ructures for the distinguished
set, and ot ions that are consistent with themn belonging to a single object. This IS repeated
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Figure 6: Recognition of a three-dimensional object. (a) Corners detected in the image. (b)
Best hypothesis found (with edges drawnin).

for enough distinguished matchings to find al rigidly moving objects consisting of some
minimum fraction of al image features.

Our analysis for implicit mat.chingsimpliest,hat,wemusl‘examincapproximate]ye”ln%
trials to find objects whose fraction Of the total number of data feature is at least e with a
probability of failure for a particular object, no larger than . I'or fixed v, ¢, and & this is a
constant number of trials and each trial can be perforiedin O(d)time using histogramming.

This problem is much more difficult if we do not know the correspondences between
tmages. In this case, we could select adistinguished set of points from one of the images
aud consider every possible set of matches in the other images. O(d* D& 1)y distinguished
matchings would be examined. Ior each of distinguished matching, we examine O(d*) min-
imal matchings. The total running time would thus be O(d* " ). Iu practice, some ad-
ditional information or constraint should be used to reduce the number of matchings that
must be examined when the matches between images are not known.

8 Summary

'This paper has described a new algorithmic paradigm called RUDR for solving model extrac-
tion and fitting problems such as recognition and regression. This paradigm IS very general
and can be applied to a wide variety problems where amodel is fit to asct of data features
aud it is tolerant to noisy data feat ures, occlusion, and outliers.

The RUDR paradigm draws advantages from bot h the generate-a nd-test paradigm and
fromm parameter space methods based onthe Houghtransform. The key ideas are:

1. Break dowu the problem into many small SU~))IO}H)IC'ills that examine only the model

20



positions consistent withsome distinguished matching of features.

2. Use randomization techniques to limit the number of subproblemns that need to be
examined to guarantee a low probability of failure.

3. Use clustering or parameter space analysis techniques to determine large sets of the
minima matchings that include the distinguished matching that can be brought into
alignment up to some error criterion by a single model position.

This decomposition of the problem yields au equivalent formulation of the recognition
problem when perfectly accurate techniques are usedto solve the problems and it allows
the subproblems to be solved efficiently with accurate error propagation, 1The additional use
of randomization yields substantial gains in efficiency, offset, by asmall probability that a
matching that meets the acceptance criterion could be missed.

The use of this paradigimn yields two prinary advantages over previous generate-and-test
or Hough-based methods. First, the efficiency of these techniques is superior to previous
methods to solve this class of recognition and matching problems and the memory required
by these techniques is low. Second, methods by which the localization error of data features
can be propagated accurately without reporting matches that do not mmeet the acceptance
criterion are possible through the use of these techniques. In addition, these techniques
can be easily parallelized by mapping the subproblems that are cousidered onto the set of
processors that are available.
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