Using Formal Methods and Object-Oriented Analysis
to Reverse Engineer Shuttle Software*

Betty H. ¢. Cheng! 1~2:tit Auernheimenrt
Michigan State University CaliforniaState [University, Fresno
Department of Computer Science Department of Computer Science
Iast Lansing, Michigan 48 S24-1027 Fresno, California 93740-0109
U.S A. U.s A.

Abstract

Correctness is an important issue in safety-critical software control systems. Unfortunately,
failures in critical segments of software for medical equipment, conununications, and defense are
familiar to the public. Such incidents motivate the use of software development techniques that reduce
errors and detect defects. The henefits of applying formal methods in requirer nents-driven software
development (forward engineeri ng) are well-documented; forinal notations are precise, verifiable, and
facilitate automated processing. This paper describes the application of formal methods and object-
oriented modeling to reverse enginecring, in which forial specifications are developed for existing,
or legacy, code. Inthisproject, several layers of formalspecifications were constructed for a portion
of the NASA Space Shuttle Digital Auto Pilot (D AP), a software module that is usedto control
the position of the spacecraft through appropriate jet firings. The reverse enginecering process was
facilitate by the Object Modeling Technigue (OM1'), an informal software development approach
that uses graphical notations to describe software r(cl~lir(llI('tits.

1 Introduction

Correctness is necessary in safety-critical software control systems [1]. Critical software failures in
medical equipment, communication networks, and defense systems are familiar to the public. The large
number of software malfunctions regularly reported to the software engineering commuunity [2], new
statutes concerning liability for suchi failures, andarecent National Research Council Aeronautics and
Space lFngineering hoard Report [3], additionally motivate the use of software development techniques
that reduce errors and detect defects.

The benefits of using formal methods in requirements-driven software development (forward engi-
neering) are well-documented [4]. A formalinethod is characterized by a formal specification language

and aset of rules that governthe manipulation of expressionsin that language.

*The work described in this paper was carried out at the Jet Propulsion laboratory, California Instit ute of Technology,
and was sponsored by the National Aeronautics and Space Administration. Additionally, theauthors’ work 011 this project
was supported by NASA/ASEER Suminmer Faculty fellowships. A preliminary version of this paper was presented at the
NASA/Goddard Software Enginecring Workshop, Greenbelt, Marylaud, December, 1993.

P"Phis author is aleg supported in part by NSF grant CC R-9209873 and CCR-9407318.

Yhis author gratefully acknowledges the Software Engineering Institute at Carnegic Mellon University for support as
a Visiting Scientist, Spring 1994.

One way to take advantage of the benefits of formal methods in legacy systems is to reverse engineer
the existing program code into formal specifications [.5, 6]. The resulting formal specifications can then
be used as the basis for change requests and the foundation for subsequent verification and validation [7].
Common reverse engineering methods currently used by software maintenance engineers are observation
(for example, test case analysis)andexamination of source code. These techniques are often tedious
and error-prone. Consideringthe high cost of re-implementation and the need to preserve critical
functionality, reverse enginecring of code into formal specifications offers an alternative to traditional
ad hoc approaches to maintaining safety-critical systems.

A highly visible example of a legacy system is the software for the NASA Space Shuttle, which was
conceived intheearly 1970s and has been operational for over ten years. One component of the Shuttle
soft ware is the flight software that provides guidance, navigation, and control for the Space Shuttle
while it is in orbit. The navigation function determines where the shuttle is, the guidance function
determines where it should go next, and the control function determines how to implement the next
move.

Presently, the Space Shuttle flight software project has a well-defined process for managing require-
ments evaluation. This process is responsible for ensuring that requirements generated by an engineer
are consistent? implementable, and will solve the problem at hand. However, this process dots not
include a well-dcfirld set of analytical methods and techniques [7, 8]. When a change is needed, a
detailed description of the reasons for the change, known as a changc request (CR), must be constructed
before the system can be re-engineered to include the changes. Next, the requirements analyst performs
anin-depthanalysis of the CR, guided by a list of generic error categories, followed by an inspection of
tile CR by several representatives of the sc)fttvale?)re)jt’et, including the author of the CR, requirements
analyst, developer, verifier, and so on. When al inspections have been conducted for a CR and all
issues (potential errors) have been resell’ed, a CR is ready forimplementation. At this point,a bascline
for the project, a milestone that describes the current system with the accepted changes, is created and
scheduled for implementation.

The analysis step Of the CR process involves studying, understanding, and analyzing the contents of
a CR. Three major deficiencies in this process have beenidentified by requirements analysts [8]. First,
there isno specific methodology for conducting the analysis Of the CR. Second, there are no specific
completion criteria to indicate when suflicient information has been obtained for the CR. ‘J bird, there
is no specific structural mechanismfor documenting the results of the analysis process. Morecover, since
there isuo structured approach for documenting the analysis, the understanding of the CR developed

by the requirements analyst is not formally recorded for future use.

T'his paper describes a project that applies formal methiods and object-oriented analysis to a subsys-
tem of the D AP of the Shuttle, known as the Phase _Plane. This module determines whether jet firings
are needed to achieve and hold an attitude (position relative to a sp ecific frame of reference)specified
by the crew. The objective of this project is to provide formal specifications of the requirements and
functionality of the system that can be used to facilitate automated verification and validation of future
changes and to facilitate re-engincering tasks. This project explored the use of formal specifications
to derive requirements that aremore detailed and precise than an English paragraph, and less obscure
t han optimized source code. We developed several layers of formal specifications that capture t he details
of therequirements of the Phase .Planemodule. Inorder to facilitate the construction of the layers
of specifications, we constructed a pictorial description of the subsystem using the Object Modeling
Techniqgue (OMT) [9], aninformal software development approach that uses graphical notations to
describe software requirements.

The remainder of the paper is organized as follows. Scction 2 describes the Phase 1'lane project,
including sample specifications and a discussion of the object-oriented analysis. Scction3 contains a
summary of the process that we used to reverse engineer the Phase Plane subsystem. This section also
includes lessons learned from this project and the benefits and the limitations of our approach. Finally,

conclusions and future investigations are described in Section 4.

2 Project Description

Due to the criticality and the volume of flight systemsoftware, recent flight system projects are
incorporating formal methods into the software development process [1, 4]. Inorder to apply formal
methods to legacy flight software, however, reverse enginecring is needed. The Phase Plane project is
associated with alarger multi-NASA site project to apply formal methods to a portion of the flight
control software for the NASA Space Shuttle [7, 8].Thecriteria that ledto the selection of Phase Plane
included finding a module whose requirements were difficult to understand and which will likely be the
target of future critical change requests.

The development of the high-level formalspecifications was divided into two major tasks. First, we
acquired a concise description of the original requirements of the module. Much of this information
was obtained from a functional requirements document, consisting largely of wiring diagrams similar
to those used for circuit design, the (astronaut) crew training manual, source code, informal design

notes, and discussions with Shuttle software personnel. We used the resulting description to develop

an “as- built” (implem entation- biased) formal specification, capturing the funct ionality depicted in the
wiring diagrams.

Second, inorder to obtain a more abstract specification and eliminate the implementation bias
present in the as-built layer, we developed object modeling diagrams (OMT) [9] to represent the
integral information from the low-level specifications. These diagrams facilitated the identification
of abstractions that we introduced intothe lliglicl-level specifications. This process of developing alevel
of formalspecification, followed by the construction of the corresponding OMT diagrams, cnabled the
identification of the high-level, critical requirements of the Phase _Plane module. Sample specifications

and OMT" diagrams are described below.

2.1 Phase Plane

The Reaction Control System (RCS) Digital Auto Pilot systein (DAP) achieves desired positions via
necessary movements through jet firings. Figure I gives a pictorial representation of translation (z,y,
and 2 coordinates of the vehicle)and attitude (rotational position of the vehicleinterms of roll, pitch,

and yaw) as they relate to the position of the Shuttle.

fr jj— roll
Y iteh C/ TQ?)

Figure 1: Shuttle T ranslational and Rotational Axes

Inorder to maintainthe Shuttle at a specific attitude, the crew specifies two values: attitude deadband
and rate deadband. Attitude deadband refers to how much drift (positive or negative) will be tolerated
inany axis before jets are fired t 0 correct t he error. Rate deadband refers to the allowable rate changes
of the attitude (positive or negative) before jet firings are required to null the error. Figure 2 gives a
high-level view of the DAP; the Phase Plane component compares information from the State Estimator

that describes current attitude values, taking into consideration spacecraft dynamics (e.g., fuel usage

and inertia) and the crew supplied values. Depending on the amount of error correction necessary, the
Phase_Plane component requests jet firings, where the Jet-Select component determines which jet(s)

to fire (the topic of the larger multi-NASA site project).

DIGITAL AUTO PILOT (DAP)

Desired { |
state | | State
Phase Plane Jet Selection | Spacecraft
| Logic Logic L Dynamics o
| |
| Estimated |
| state
|
I |
: State |
| Estimator 1
! i
b - - — - s e a

igure 2: Context for the Phase Plane module

Pigure 3 gives a simplified graphical representation of the phase plane. A phase plane is represented
as a graph plotting spacecraft rate errors against a t itude errors for one rotational axis. In an
attitude hold situation deadbanding occurs (in dicated by dashed lines), which means that the error
plot eycles arou nd the zero error point with jets firing cach time the limits of the “box™ are exceeded.
Fach “()” indicates points that the Shuttle is changing system state with respect to thruster firings.
The shaded coast regions depict situations where the Shuttle needs no corrective action. The remaining
regions are known as hysteresis regions, whereexternalfactors, such as positive (negative) acceleration
drift, propellant usage, inertia, time lags between firing commands, and sensor noise, are taken into
consideration in order to preclude unnecessary jet firings.

The requirer nents for the Phase Plane module are desc ribed in a functional specification that includes
a simplified wiring diagram (sec Figure 4), which identifies the inputand output values, as well as several
tables that contain equations from control theory to calculate the boundaries of the phase plane and
its regions. For historical reasons, the functional descriptions use notation commonly used for circuit
design, even though the system being described is software-based. The solid lines represent data flows
and dashed lines represent control. In Figure 4, the dashed line indicates that the enable flag must be

set by the crew in order to enable the auto pilot mode.

States during Deadbanding

NO jets fire Since the rate error Is positive, the attitude
error will grow in a positive direction

+ rate error Jets fire to nullify the positive rotational rate

Jets stop firing when the deadband hne is crossed, but a little
negative rate error 1s inevitable

No jets fire With a negative rate esror, the attitude error will
also drift negatively.

fi i .
+ rate deadband Jets fire to nullify negative rate error.

Jets slop firing but residual posttive rate error causes attitude
error to go positive again and the cycle repeals

N _ + attitude
N - deadband
@ @
§ -~ =9
y » + attitude error

|
©y

@O0 0 00

I o gy = o e ()

- attitude _—" S
deadband X

S
- rate deadband N Coast Region

E] Hysteresis Region

Iigure 3: Graphical depiction of the phase plane, with coastand hysteresis regions

— —a Deadbanding Path

2.2 Formal Specifications

Oune aspect of formal methods for software development is the use of a formal specification language,
a rigorous notation to precisely define the functionality and requirements of the system. There exists
many types of formalspecifications, but we can categorize them into two major types: model-oriented
and property-orient cd. Model-oriented specifications define system’s behavior directly by constructing
amodel of a systemintermsof mathematical structures, such as tuples, functions, sets, or sequences.
Examples include VDM and 7 for sequential systemsand CSP and Petri Nets for concurrent and
distributed systems [10]. Property-oriented specifications defi ne a system’s behavior indirectly by
stating a set of properties (usually in terms of axioms) that the system must satisfy [1 O]. Twosub-
categories are ariomatic speeifications typically expressed in teris of pre- and postconditionsin first -
order predicate logic and algcbraic specifications that use axioms to specify properties, where axioms
arc in cquation format. The PVS (P1-ototype Verification Systems) formal specification tools [11]

(e.g. syntax checker and theorem prover) were used for this reverse engineering project. PV5 is

6

enable

|

previous thruster commands |

\

|

I

rate error |

\

|

. on |
attitude error Control Logic o | thruster commands

L g L
for /

deadband limits Phase Plane OFF

rate limits

Figure 4: Simplified wiring diagram for the Phase Plane module

a property-oriented specification language, where a specification comprises a collect ion of theories.
Fachtheory consists of a signalure for the type names and locally declared constants, as well as tile
axioms, definitional andthecoremns associated with the signature. In addition to its property-oriented
attributes, which enable the straightforward construction of and reasoning shout specifications that
describe behavior and desired (required) properties, we chosethe }'17 f'language for its modularity and
the availability of tools, such as syntax-andtype-checkers.

In order to obtain a specification of the high-level requirements from the existing documentation and
source code, we constructed several layers of PV.S specifications, where each layer is more abstract than
the preceding layer. Specification of a system through increasingly detailed levels of abstraction is a
well-established method [10, 12]. Reverse engineering the Phase Plane project involved a mixture of
a bottom-up with a top-down approach. We developed the specifications inthe following order: low-,
high-, and mid-level. High-level natural language descriptions of this portion of the Shuttle DAP were
available, as wassource code. Giventherange of details avail able from the two types of documentation
(prose versus code), we decided to start with the Jow-level specifications to ensure that we capturedan
accurate description of the current functionality. Next, we used the high-level description s from the crew
training manual to construct several OMT diagrams, al of which was used to assist inthe identification

and specification of high-level requirements. Finally, in order to bridge the information gap between the

low-level, implement ation-specific and the Ili~li-level specifications, we constructedaset of Ini(l-level
specifications. The OMT diagrams introduced abstraction into the low-level specifications, and the
Iligll-level specifications identified critical propertiesapplicableto the overall component;the combined

information provided the constraints for the Ili(l-level specifications.

2.2.1 Low-level Specifications

We developed the low-level formal specification of Phase Plane from the existing source code, the crew
training manual, aud the low-level wiring diagrams. Thisspecification mirrored the functionality of
the existing system, butdidnot offer an abstract view of the module’s functional requirements. The
optimized source code consisted of several calculations for determining the regions within the phase
plane. In Figure 3, we have provided a high-level depiction of the regions within the phase plane,
where, in actuality, the coast and hysteresis regions each have more fine-grained partitions with a total
of five regions as determined by fourteen boundaries (labeled s1-s14). The boundary calculations made
extensive use of several constantsstoredina table, which represent initialization values for agiven flight.
The code also dictated how control actions were calculated depending on which region the shuttle was
located. Inorder to calculate the controlactions, values of variables that serve as the interface between
the Phase_Plane and other components withinthe D AP were used. Example values include error rate
limits, deadband values, current rate error, current position, and the previous jet firing commands. For
brevity, we do not include the complete low-level specifications here, butthe specifications may be found

in the appendix.

2.2.2 High-Level Specifications

Next, we developed a high-level “black-box™ specification, which did not include implementation details.
At thislevel, it was straightforward for us to state abst tact properties that any soft ware implementing
Phase Planemust possess. The high-level specification describes properties that characterize the
Shuttle’s position in teris of attitude and rate deadband values: if the Shuttle travels outside the
specified regions, then the jets need to be fired to bring the Shuttle hack into tile phase plane region.
We defined a few predicates to describe general properties of the Shuttle, where Boolean predicates are
denoted by a “?” suffix, andthe types of the predicate arguments are enclosed in square brackets. First,
the is-de adbanded? predicate determines whether the Shuttle is ina dead banding state, where there
are four arguments to the predicate corresponding to the attitude dead band, rate deadband, current

attitude crror, and current rate error represented by their respective types.

is_diemdbbaddd@? : pred[attitude_deadband_type ,rate_deadband_ type,
attitude_error_type,rate_error_typel

Next, two predicates are defined 1o check whether rate and at titude errors are in a region where jets
need t o befired to decrease rate error (generat ¢ positive rate error).

decrease_ rate_ error? : predlattitude_deadband_ty pe,rate_deadband_type,
attitude _error_type, rate- error_ type]

increase_ rate_ error? : pred[attitude_deadband_t ype ,rate_deadband_ type,
[.. at t it ude_deadband_type ,rate_deadband_t ypel __

Figure 5 contains an abbreviated version of the top-level specifications. In this case, wiring_ phase_ plane
refersto the 10 W-ICVCl specifications. The referenced states are those depicted in Figure 3.

The following Iligli-level axiom, based onthe specification for tire six states, relatesthe attitude to
the rate deadbands, as well as the rate and attitude errors. Specifically, the axiom asserts the invariant
that if the Shuttle is inthe dead band regions, then there is no need to fire jets to increase or decrease

the rate error.

AXI OM FORALL
(att_db: att itude_deadband_ type) , (rate_db:rate_deadband_type),
(att_err:attitude_error_type), (rate-err: rate_ error_type):
is_deadbanded? (att_db, rate_db,att_err, rate-err) <=>
NOT (decrease-rat e_error?(att_db, rate_ db,att_err, rate-err) OR
increase_ rate_error?(att_db,rate_db,att_err,rate_err)

)

2.2.3 Mid-Level Specifications

Finally, we outlined a rtlid-level formal specification that captures critical aspects of functionality
and requirements at a level that would be useful to Shuttle requirements analysts when reviewing
proposed modifications to the module. Code developed from this specification would implement the
“Phase Plane Logic” box of the low-level wiring diagram (Figure 4). Thechallenge a the Inicl-level
was to omit extrancousimplementation details, yet be precise enough to capture necessary properties
concerning minimization of fuel usage, thruster firings, and movement about the desired attitude. In
constructing the irticl-level specifications, wemade several assumptions. First, we did not consider
external acceleration disturbances. This assumption meauns that by taking advantage of symmetry, it is
sufficient to specify only the upper (nonnegativerate error) half of the Phase Plane diagram, as shown
inFigure 6. Second, t he hysteresis region ist reated as a coast region. Finally, au immplementation bias
previously imposed in the wiring diagrams to allow the crew to enable the module was removed. We
also removed the explicit assertion that the calculations will be done once for cach axis (roll, pitch, and

vaw).

9

A YA XA S RN A AANAREAN

AN RSN AR PR RN B Y NS Y

% Module: High-Level Specifications of Properties for Phase Plane Module

% The following characterize the 6 states of Shuttle when it is deadbanding

YA AN A AN AR MM A AR)
high_ level _phase_plane : THECRY
BEG N

USING wi ring_ phase_ plane % |owlevel specifications for phase plane

AR RAA VAR

YRR NPT S E YA Y

%
AT AR AR AN RN A AN S A A AR SR B ST S S AR RN ARE RA A S A AR AN A AR R EA A AN A

% No jets fire Since the rate error is positive, the attitude error will
% grow in a positive direction. (State 1)

no_jet s_positive_rate ?(att_db ,rate_db, att_err, rate _err) : bool =
i s_deadbanded? (att_db ,rate_db, att_err, rate-err) &

rate-err >0 & att_err > O
%
%“Jetsare firing to correct positive rotational rate (State 2)
%

jets_f ire_correct_pos_at titude_error? (att_db, rate_db, att_err, rate_err) :bool =
NOT (is_deadbanded? (att_db, rate_ db, att_err ,rate_err)) &
decrease-rate_ error? (att_db, rate_ db, att_err, rate_err)

%

% Jets stop firing when deadband line is crossed, but a little negative

% rate error is inevitable, (State 3)

%

jets_ stop_negat ive_rate_error? (att_db, rate_ db, att_err, rate_err) : bool =
is_deadbanded? (att. db, rate_db, att_err, rate-err) &
rate-err <0

%

% No jets fire. Wth negative rate error, the attitude error wll also

% dcift negatively. (State 4)

%

no_jets_ne gative_rate? (att_db, rate _db, at t_err, rate _err) : bool =
is-de ad banded 7(att_db ,rate_db, att_err, rate _err) &

rate-err < 0 & att_err < O
%
% Jets are firing to correct negative attitude error (State 5)
%

jets_ fire_ correct_ neg_attitude_erro r?(att_db, rate_db, att_err, rate-err) : bool =
NOT (i s_deadbanded? (att_db, rate_ db, att_err ,rate_err)) &
increase _rate_error? (att_db ,rate_db, att_err, rate-err)
%
% Jets stop firing, but residual positive rate error causes attitude
% error to go positive again and cycle starts over (State 6)
%
jets-stop_ posit ive_rate_error? (att_db, rate_ db, att_err, rate_err) : bool~
is_de adbanded? (att_db, rate_ db, att_err ,rate_err) &
rate-err >0

end high _level_phase_plane

Figure b:Sample lligll-level specifications of Phase Plane

I'igure 7 defines a few deadbanding functions to take advantage of the symmetry and y represents
the vertical axis (absolute value of rateerror)anda is the horizontal (attitude error)axis. The

symmetry property enables us to generalize the calculations to thoseinthe upper half of the deadband

10

+ rate €rror

Rate_ Deadband t Y
A\

Lower_Rate_Deadband

Lower_Coast_Limit Upper_Attittude_ Limit

+ attitude error
7 = X

Lower_Attitude_Limit
m Coast Region
D Hysteresis Region

Pigure 6: Upper Hall of Phase Plane

region. The adjust_for_symmetry function accounts for symmetry of the phase plane and returns
the new thruster command given the current rate crror and thruster command. The calculations for
uprer _attitude_limit and lower _attitude_limit are a generalization of. a portionof tile low-level
specifications. These limits determine the bou nds of the hysteresis region s, and, a5 mentioned previously,
are a function of the jet firings.

The tail of the coast region is defined by the rate_deadband above and the lower-rate_ deadband
JK'10W. The following specification gives the lower_ rate_ deadband as arcaland asserts that the

lower rate_deadband is a most the rate_deadband.

R_;w&;r _rate_deadband: real
_rate deadband_rel ationship: AXIOM |ower_ rate_ deadband <= rate -headband

The lower (left) boundary of the coast region is defined by the lower-attitude-limit (a function
declared below) and attitude -headband. ‘T'hespecification asserts only that the lower_ coast_ limit

is at most the lower-attitude-limit.

lower_c oast_limit : real
coast -IMit _relationship: AXIOM | ower _ coast _limit <= [ower-at titude_limit

The primary function control_ action returns a thruster command. Thruster hysteresis can be
used to minimize thruster firings due to delays, sensor noise, 01" Movement between State transition

boundaries. Iigure 8 gives the specification for calculating the thruster commands. First, it must be

I

%
% Calculate coordinates for plotting attitude and rate errors
%

y: absolute_ rate-e rror_type = abs(rate_error)

x: real = sign(rate_ error)*attitude_error

% Because all calculations are done in the upper half of the deadband
% region, the calculated thruster command may need to be reversed.

adj ust _for_symmetry(t : thrust er_command_type,
re: rate-error-type) : thrust er_command_type =
IF (t = zero-thrust) OR (sign (re) >= 0
THEN t
% re was negative, so thruster commands nust be reversed
ELSE IF t = positive-thrust
THEN negative _thrust
% t was negative_ thrust
ELSE posit ive_thrust
ENDI F
ENDI F
%
% Calcul ate boundary of hysteresis region based on a function of jet firings
%
upper-attitude-linit: real -sqrly) /(2#thrust or impulse) + attitude _deadband
lower_ attitude_linit : real = -sqr(y)/(2% thruster-inpulse) - attitude_deadband

Figure 7: Variables and deadbanding functions to adjust for symmetry in phase plane

determined if the spacecraft is outside the deadband arcaand thrusters should be fired “downward”.
Second. it mustbe determined whether the spacecraftis outside the deadband area and thrusters should
be fired“upward”. Third, if the spacecraft is withinthe “coast” zone,then do notfire hrusters. lf al

the shove cases do not apply, then incorporate thruster hysteresis.

thruster-hysteresis : thrust er_command_type = zero-thrust

control _action: thrust er_command_type =
IF (y > rate_ headband) DR (x > upper_ attitude-limt)
THEN adj ust _for_symmetry (negative_ thrust , rate _error)
ELSE IF (y < lower_ rate_deadband) AND (X < lower_ coast _limit)
THEN adj ust _for_symmetry (positive-thrust , rate _error)
ELSE IF (y <= rate_ headband)
AND (lower_ rate_ deadband <= y)
AND (x <= lower- attitude_ limt)
OR (x <= lower-attitude-linit)
AND (lower-coast_ limit <= X)
AND (| ower- rate_ deadband <= y)
THEN zero_ thrust
ELSE thruster-hysteresis
ENDI F
ENDIF
ENDI F

Figure 8: Specification of Function to Calculate Thrust Commands

12

2.3 Construction of OMT Diagramms

[1) the early stagy’'s of software development, including object-oriented approaches, diagrams are fre-
quently used to describe requirements and guide development. The OMT [9] notation combines three
complementary diagramming notations in order to document system requirements: object models,
dynamic models, and functional models. An objectmodel describes the architecture of an overall system
interms of the elements (objects) of a system and identifies allowable relationships among objects. As
a result, the object model constrains the set of possible states that the system may enter. A dynamic
model describes valid transitions between system states and indicates the conditions under which a
state change may occur. Dynamic models are described in terins of state transition diagrams. A
Junctional model is a data flow diagram that describes the computations to be performed by the system.
In a complementary fashion, these three types of diagrams are used to model tile properties of the
system, including flow of control, flow of data, patterns of dependency, time sequence, and name-space
relationships. The OMT approach is appealing since it offers multiple views of software requirements,
and since a single notation is not forced to describe many different perspectives of a given system, the
notation for each type of diagram is simple to use and easy to understand.

Sincethe origins] Phase_Plane software was not object-oriented, we heganthe OMT analysis withthe
source code and implemen tation-specific wiring diagram ot the Phase -Plane niodule and constructed
two levels of data flow diagrams. T'hese diagrams assisted in the abstraction process to obtain an
architectural view of the phase plane as it related to the overall 1) Al) system, thus leading to the
construction of the object models. Using the functional and object diagrams in conjunction with the
description of the deadbanding states, we created the dynamic model for the Phase _Plane module. The
dynamic model depicts the states between jet firings as the Shuttle deadbands. We generated a high-
level specification based largely on tile dynamic model. The object and the functional models offered
onc level of abstraction, which directly enabled us to develop of the next layer of formal specifications

(Ilid-level specifications describing data structures and operations on the data structures).

2.3.1 Functional Models

Data flow diagrams (DFD) facilitate a high level understanding of systems and are used in both forward
and reverse enginering. Static analysis of program code providesin forination that accurately describes
flow of data in a system. Process “bubbles” denote procedures or functions of a given system, arrows

represent data flowing from one process to another, and rectangles represent external entities.

13

The simplest Tunctional model is a conlerl diagram, 01" Level0 1)1 1); the Level 0 DFD for the
Phase-Plane module is showninl'igure 9, where the entire phase plane modute is reduced to a process
bubble, with the external input and output labeled. Thelevel 0 DI'D closely resemblesthe structure

of the wiring diagram for Phase Plane givenin lFigure 4.

previous thruster commands

External rate error \

thruster Jet Select

Phase Plane
Module

attitude error

Input

commands Module

attitude deadbands,

Variables

rate deadbands /

I'igure 9: High Level (0) DD for Phase_Plane Module

Figure 10 gives the next level DI°D | which shows the different processes that constitute the Phase Plane
module. As shownin this figure, the input variables arc usedto calculate boundaries for the phase plane.
The boundaries, the attitude and the rate deadbands, are supplied to the Phase Plane module, which
calculates thruster commands (jet firings). The th ruster commands are then supplied to the Jet_Select

module that determines which combination of jets should be used to achieve the desired thruster effect.

2.3.2 Object Models

Figure 11 depicts a lligll-level object modelfor the entire DAP, consisting of the State Estimator, phase
Plane, and the Jet Select classes, corresponding to the diagram givenin Figure 2. Fach class consists of
three parts correspond ing to the name of the class, list of attributes, and list of operations, respectively.
The diamond symbol denotes aggregation, where the class above the diamond is said to consist of the
three classes below the diamond. If either attributes or operations are not known (or do not exist) for

agiven class, then the corresponding area is shaded. The Phase Plane class uses the class Crew Supplied

11

previous thruster commands

rate error \
External \/\
BAiinA
D u

. Generate
Calculate Boundaries K
attitude error Control Actions
Input for f) i ;
Phase Plane or Different Regions o

Phase Plane
Variables
attitude deadbands
a4

a4
V4 /7

| thruster

rate deadbands commands

Jet Select

Module

Figure 10: Level 1 DFD for Phase Plane Module

Information, whichrepresents the deadband limits that are used inthe calculation of the phase plane
boundaries.

Figure 11also contains the object diagra m for the Phase Plane class, with attributes rate error, attitude
error, and rotation axvis. T'he operation for this class is calculate thrust commands,based 011 the difference
between the current rate and attitude error values and those respective limits supplied by the crew.
The filled circle attached to the Phase Plane class, indicates that the 1) AP contains three phase plane
components, one to calculate diflerent thrust commands for each of the specific- rotational axes: roll,
pitch, and yaw. ‘1 here aretwocomponentsf{or each Phase Plane object, Coast Region and Hysteresis
Region. Inthe coast region,only the values of the attitude andrate errors are used to determin e whether
the Shuttle is still within the deadband limits. In the hysteresis region, however, additional information,

such as fuel usage, sensor noise, and other spacecraft dynamics, is used to calculate thrust commands.

2.3.3 Dynamic Models

This section gives the dynamic models for the phase plane, which describes the states in which the DAP
cant be with respect to the Phase-Plane component. Also included are the transitions that take the

1) AP from one state 1o another. A pictorial diagram of the position of the Shuttle is given in Figure 3.

15

DAP

-

Turn on
Turn off

S

[I l 3
State Estimator ‘ Jet Select Phase Plane C::}';r:;fir;'riled
Current Position List of Jets E&:itteufigolzrrror Uses Rate Deadband
Spacecraft Dynamics Rotation Axis Lower Aftitiude Limit
\‘\‘ Fire Jets Calculate thrust Upper Attitude Limit .
&\\\\\\\\\\\\\ Stop Firing Jets commands \\\\\\\\\\\\\\\&

Coast Region Hysteresis Region

Fuel Usage
Sensor Noise
Spacecraft Dynamics

.

-

IFigure 11: Object model for DAP

Since the Phase Plane module is an event-based system, the state transition diagram is straightforward
to Collst’ (let.

Iigure 12 gives a state transition diagram of the states through which the Shuttle transitions while
it is deadbanding. The state transitions are in the form of jets terminate (begin) firing and the Shuttle
drifting into (out of) the deadband region.

Note that Figure 3 depicts the clockwise traversal of the states in which the Shuttle cycles through the
deadband limits. It is also possible for the Shuttle to traverse the cycle in a counterclockwise fashion,
in which case. the arrows in Figure 12 would be reversed.

Finally,a very high-level view of the states inwhich tilt' Slllttlc) call I~eisgivell ill Figure 13.Included
inthe diagramare the actions or conditions that cause the Shuttle to transition fromone state to the
next: jet firings and drift. The rectangle containing “Phase Plan ¢” andthe labeled arrows pointing to

the states indicate that the state transitions describe the Phase_Plane module.

16

Firing Jets to

correct negative " . .
positive attitude drift

fire jets acceleration

Positive Constant

Accelerating rate Negative Rate

stop firing stop firing

Constant

Negative

Positive Rate Accelerating rate

Firing Jets to

negative attitude drift correct positive fire jets

acceleration

Pigure 12: States representing the clockwise deadbanding of the Shuttle

is deadbanded
In Deadband Region

Phase Plane Module fire jets

outside Deadband Region
is not deadbanded

Pigure 13: High-level states for Orbiter with respect to the Phase Plane module

3 Summary and Evaluation of Reverse Engineering Process

This section summarizes the reverse engineering process and discusses the lessons learned. The benefits
to the overall project gained from the reverse engineering results are described. Finally, the limitations

and problem areas of this approach are discussed.

17

3.1 Process Summary

The Phase-Plane module consisted of app roximately 200 lines of highly optimized code. In order to
reverse engineer Phase Plane and underst and its context, wehad o analyze approximately five times
that amount. While a precise cost analysis was not performed for this project, an estimate of the
cost of theanalysis and construction of formal specifications and accompanying OMT diagrams was
approximately two person months. This cost includes the time needed to learn PVS and how to use
its tools, acquire supporting documentation, gain a minimalunderstanding of control theory, and refine
several times the specifications and diagrams. Combining the cost information from the Jet Select
reverse engineering project, it does appear that the costs are within reason and are roughly comparable
to the current cost of requirements analysis [7]. When considering highly critical subsystems the cost
is not prohibitively expensive.

The results from this reverse engincering project have provided several lessons f or future reverse
engincering projects. Iirst,inorderto obtain high-level requirements for existing software, it is difficult
to obtain the specifications (formal or informal) in a single step. Instead, several layers of specificat ions
shouldbe developed, starting withthe as-built specification. By closely mirroring the programming
struciure of the existing soft ware, this specification provides traceability through the different levels of
spec’ications, .

A summary of the overall process used to reverse engineer Phase Plane is given in Figure 14.

3.2 Beneiits to the Software Development Process

Formal specification languages and their corresponding reasoning systems provide a framework for
integrating disparate sources of projectinformation to describe a system a many levels of detail. The
project information may be documented in a variety of formats, come from different sources (often
physically distributed), andsubjected to varying levels of formalreview. Yor this particular project,
information was obtained from impler nent ation-specific wiring diagrams, definitions and instructions
from a crew training manual, source code, informal design notes, and discuss jons with Shuttle software
personnel. We analyzed and distilled the informationinto specifications and OM'T' modeling diagrams.
These products will increase the capability for fut ure analysis of the Phase_Plane component. ~'list is,
because the requirements information are now descri bed in a formal notation (annotated with easy to
understand diagrams), automatedanalysis and validation are possible, which will greatly facilitate future
approvals of chauge requests. In addition, the VS proof system provided an automated mechanism

for checking tile completencss and consistency of the specilications.

18

o ldentify components of software to be analyzed
« Gather supporting documentation, including functional requirements, source code,
desigll-level documentation,and user-nlauuak (as available).

Define what the *hard constraints” of the specification are. What documentation
shou Id be used as the source for describing the critical requirements of the

system? For reverse engineering projects, typically, the source code and functional
requirements document is used to determine critical requirements.

Create “as-built” layer of specifications. This layer of specification should directly

o

mirror the functionality observed from the source code. I'his mirroring eflect will
provide traceability from the final layers of specifications to the source code.

« In order to introduce abstraction, create multiple levels of DFDsand begin the
object-oric][td (00) analysis. TheQO analysis isusedto crecatcan architectural
view of the system, which isapplicable even if the original system was not developed
with object-oriclitatioll.

« Using high-level documentation (e.g. user manual) to identify the higl[-level system
requirements, which should then be pictorially represented in terms of the dynamic
model (state transition diagram).

« Based on the state transition diagrams, create liigll-level specifications.

« Refine the object-models of the system using in formation from the DFDs, code, and
lligll-level documentation.

« Construct the 111i(l1-1evel specifications by developing properties that provide
the linkage between the implement ation-specific information from the low-level
specifications and the required properties described in the Iligll-level specifications.

¢ After constructing the specifications, use proof tools to check for consistency
between specification layers.

Pigure 14 General process for reverse engineering using formal methods and object-oriented analysis

Third, the results of this project demonstrate that beuefits of object-oriented analysis can be exploited
for reverse-engineering as well as forward engineering projects. Specifically, object-oriented analysis
assists in the understanding of large, complex systems. Furthermore, an object-oriented perspective
facilitates future modifications by providing the requirements analyst and the developer with a high-
level, abstract view of system components.

Finally, a p rocess consisting of the construction of a level of formalgpecifications, followed by a set
of corresponding diagrams facilitates the developinent of several layers of specifications. The diagrams
introduce abstractions that can be used to guide the construction of the nextlevel of specifications.
Furthermor e, the three complementa ry notations in the OMT approach enable the specifier to represent

different components of the systemnusing the I)rst-suited type of diagram.

19

3.3 Limitations to this Approach

While there are se veral benefits 1o using an integrated approach consisting o [formal gpecifications and
OM'T diagrams,several limitations exist. Currently,inorder to perform consistency and completeness
checks of the PV specifications for a specific component or subsystem, theories that describe related
components may need to be constructed. Inour case, we had the advantage that ateam had constructed
PVS specifications for the Jet Select component. Also, the specifications have focused thus far on
functional properties. Infuture investigations, we will study the amenability of ’V.Sto non-functional
properties.

Scecond, the specification and diagram construction process i s not automated, however, once tile
specifications are created, they canbe analyzed and manipulated using automated tools. This lim-
itation is due largely to the current software development practice. First, system requirements are
typically described indocuments that may containambiguous language. Second, as software ages and
development teams change, information concerning specific decisions during the analysis and design
processes may become more diflicult to find. Third, different conventions may be used by different
participating parties to describe software systems. Therefore, it is difficult to develop tools to interpret
and integrate information from such disparate and wide ranging information. There exist, however,
research projects currently investigating several of these issues with the intention of automatiug as
much of the reverse engineering process as possible [5, 6, 13].

Finally, we found that those projects that involve significant domain-specific information or specialized
areas of expertise, such as the use of control theory inthe Phase Plane project, require additional effort
to capture the special information in the specifications and its corresponding documentation. This
effort could be in the form of contacting the original authors, expertsin the specialty area, or learning
the necessary knowledge from archived sources, such as text} »ooks. However, once the appropriate
information is capturedin the Ie{lllilt'llic'tits specifications, future maintenance tasks will greatly benefit

from such documented knowledge.

4 Conclusions and Future Investigations

Using formal specifications and object-oriented analysis to describe the software that implements the
Phase _Plane module of the Space Shuttle 1) AP has demonstrated that these complementary analysis
and development techniques can be used for existing, industrial applications. The different levels of
specifications, withincreasing abstraction, supplemented by tile OMT diagrams provided a means for

integrating different types of information regarding the Phase _Plane module from disparate sources.

20

Having access to the formalspecifications and diagrams will facilitate tile verification that the original
requirements or properties are not viola ted by any fut ure chianges to the software. Inaddition to
facilit sting verification tasks, the formalspecifications can be used as the basis for any automated
processing of the requirements, including checks for consistency and completeness. Interaction with the
requirements analyst and otherinembers of the original development team for the project strongly
support the conclusion that the specilication construction process is useful to the overall software
development and maintenance processes of legacy (safety-critical) systems [8].

Future investigations will continue to refine the mid-leveland 1ligll-level specifications and develop
theorems to relate the levels of specifications. We will continue to investigate the use of automated tech-
niques to reverse engineer specifications from code using a derivationalapproach [5]. Technical reports
and other papers relevant to this project may be found by browsing the world-wide web site for tile Soft-

ware Engineering Research Group at Michigan State University, http: //web. cps .msu. edu/"chengb/serg.html.

5 Acknowledgements

Several people have provided valuable information and assistance during the course of the project.
Speciiically, we would like to thank Rick Covington, David Hamilton, John Kelly, Philip McKinley, and
John Rushby.

Reference herein to any specific commercial product, process, or service by trade, name, trademark,
manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Govern-

ment or the Jet Propulsion Laboratory, California Inst it ute of Technology.

References

[1] 3. Rushby, “Formal methods and the certification of critical systemns,” Technical Report SRI-CSL.-93-07, SRI
International, Computer Science Laboratory, 333 Ravenswood Ave., Menlo Park, CA 94025-3493, Novemnber
1993. Available via anonymous ftp from ftp.csl.sri.com.

[2] P.G. Neumann and contributors, “Risks to the public,” in Software Fngineering Notes, ACM Special Interest
Group on Software Engineering, 1993.

[3] Acronautics and Space Engineering Board National Research Council, An Assessment of Space Shuttle Flight
Software Development Practices. National Academy Press; 1993,

[4 S. Gerhart, D. Craigen, and T. Ralston, “Lxperience with Formal Methods in Critical Systemns,” IEEE
Software,vol.1 1, January 1994.

[5] G. C. Gannod and B. 1l. C. Cheng, “Facilitating the maintenance of safety-critical systems,” Int. J. of
Software Engineering and Knowledge Fnginecring, vol. 4, no.2,pp. 183204, 1994.

[6] M.Ward, “Abstracting a specification from code.” Journal of Software Maintenance: Research and Practice,
vol.H, pp. 101- 122,1993.

21

[7]1 J. C. Kelly, R. GG. Covington, and). Hamilton, “Results of a formal methods demonstration project,” in
Proc. of WESCON, (Anaheim, California), pp. 62 66, September 1994,

[8] Jet Propulsion Laboratory, Johnson Space Center, and Langley Rescarch Center, “Formal Methods
Demonstration Project for Space Applications: Phase I Case Study: ST'S Orbit DAY Jet Select .* 1)-1 1432,
Jet Propulsion Laboratory, Pasadena, California,) ecember 1993,

(9] 3. Rumbaugh, M. Blaha, W. Premerlani, '. Eddy, and W. Lorensen, Object-Oriented Modeling and Design.
Englewood Clifls, New Jersey: Prentice Hall, 1991.

[10] J. M.Wing, “A Specifier’s Introduction to Formal Methods | 11r1r1; Computer,vol. 23, pp.8 '24, September
1990.

[11] N.Shankar, S. Owre,and J. Rushby, “The PVS specification language and tools,” technical report, Computer
Science Laboratory, 333 Ravenswood Ave., Menlo Park, ('A 94025-3493, 1993. Available viaanonymous ftp
from ftp. ¢s1. sri . corn.

[12] C. B. Jones, Systematic Software Development Using VDM. Prentice Hall International Series in Computer
Science, Prentice Hall International (UK) Ltd., second ed., 1990.

[13] P. 1. Breuer and K. Lano, “Creating specifications from code: Reverse-engineering techniques,” Journal of
Software Maintenance: Research and Practice, vol. 3, pp. 145 162, 1991.

A Description of Variables

This section contains descriptions of variables referenced in the body of the paper.

22

Name

attitude e rror
by pass

deadband
deltav_minimp

force_fire
phase_planc_accel

primary_vernier_s

RCS

rot_jet _cmd
rate_error
rate_limit
undesired_accel

omega_e_desired
rot _jet cmd

Description
1) (its
Body angle error
open-loop control, by axis, (1=open
loop)
magnitude of deadbands
magnitudes of changes in vehicle
angula r rate due to 80ms RCSfiring
command
rate damping flag
magnitude of average control acceler-
ation avail able for each axis, scaled for
phase plaue use
flag indicating that primary jets arc
being used for control
RCS(ReactionControl System) mode
indicator
rotation command from previous cycle
body angular rate error
magnitudes of rate error limits
total undesired body angular
acceleration
Outputs

‘desired angularratedata

For primary: command to fire plus
or minus jets or no jets, For vernier:
command to fire plus or minus jets, no
jets, or weighted “preference” for off-
axis cornmands.

B Low Level Formal Specifications

This section contains the “as-1Huilt” specifications, where there is a direct correspondence to the DFD
diagrams. Also included arethespecifications describing the calculation for the boundaries (sl-s 14)
of the diflerent regions of the phase plane. ligure 15 gives the Level 2 DI'D for the Phase Plane,
where the control actions for five regions are calculated, the boundary values are explicitly calculated
at this level. Notice that Figure 10 has one child diagram for the processla beled “region2 " Region 2
corresponds to the DI'D shown in Figure 16. The control logic for Region 2is much more complicated
and corresponds to a secries of nested alternative statements. Region 2 is decomposed into three more
regions, where the input values are made up of houndary values determined by 511, external input. This
module generates a value for the thruster command (rot_jet_cind). Figure 16 further refines Region 2

to three more detailed regions.

23

Calculate
Controf for
Region 1

Calculate
Control for
Region 2

External Input
Variables

thruster
commands

Calculate

Boundaries
(s1-s14)

Calculate
Control for
Region 3

Calculate
Control for
Region 4-5

Figure 7 Level 2 DD for Phase Plane, detailing calculations of con rol actions for five regions

Py A AN Y YA A Y YA FYA AN YA A A A YA YN AR A A S A AN

YAAAAAAAA

% %
% Mdule : Phase Pl ane Y
% %
% Author: Betty H.C. Cheng 1A
% Brent Auernheimer Y
% %
% Created On: Tue June 22, 1993 %
% %
% Last Modified By: Brent Auer nhei mer %
% %
% Last Mdified On: Fri July 23, 1993 %
% %
YA AN AN AN A A A A NSNS A A AN A A AN AN A AN AN A A A AN A YA AN AN A AN A YA YA YA N A
%

% This theory is a specification for regions as defined in Table 4.2.2 .2.2.1
% in PVS for the Phase Plane conponent.

%

%

%

% STS 83-0009D

% 01-21

% Dated: February 13, 1991

%

%

types : THEORY EXPORTI NG ALL BEG N

%

ANA NN AN YN SN EEN PR AR S AN YA AAAN AN SN R Y E 4 Y)
% %
% TYPE DECLARATI ONS %

24

Calculate control
for Region CS

Calculate
Boundary
Values

Calculate control

Commands

for Region CS

External Input
Variables

Calculate control
for Region CS

Figure 16: Level 3 1)1'1) for Phase Plane

VAN NN A AN Y S YA AN A AN SRR NAR A

rotation: TYPE = {roll , pitch, yaw

scalar _direct ion: TYPE = {x: real |-1 <= x & x <= 1} CONTAIN ING O
scale _fact O: TYPE = {x:real| O <= x & X <= 1} CONTAINING O
rate_err or_type : TYPE = [rotation -> real] Y% units are deg/s
attitude _error_type: TYPE = [rotation -> real] Y% units are degrees
dead band_type : TYPE = [rotation -> real] % magnitudes of

% attitude deadbands
desired _angular_rate : TYPE = {z: reall -5 <=z & z <= 5} CONTAINING O
scalar _rotation_d irection:
TYPE = [rotation -> scalar-direction]
undesired _ang_accel_type :
TYPE = [rotation -> real]
phase_ plane_ accel_type:TYPE = [rotation -> real]
deltav_minimp_type : TYPE = [rotation -> real] % magnitudes of changes
% in vehicle ang. rate due
% to 80 ms RCS firing conmmand
force_f ire_type : TYPE = [rotation -> booll % rate danping flag
%(from Rot-disc)
rate -error_ limit _type: TYPE = [rotation -> posreall
tuple_type : TYPE = [scalar_ direction,
desired_ angular_ rate, bool]

ENO types

i_loads: THEORY EXPORTING ALL BEG N

YA AN A SN A S AN VAN YR A A AN S A YANAAANAR
% %
% CONSTANT DECLARATIONS %
% %

AANE PR AR YA SN S SRR N IRARRA RN AN SR E AN MRS A AN A
| MPORTI NG t ypes

% The following are fromthe I-LOAD Table (4.2.2.2.2-5)

wfrate: scale _fact O % Scale factor for off-axis vernier preference
whigh: real % upper target rate error for TVC crossfeed

wlow: real Y% lower target rate error for TVC crossfeed
lrl_tvc:real % TVC lower rate linit fromI-load table

kledge : real % don’t know what this is - see page 4-183
END i_loads

%

null s_and_undefineds : THEDRY EXPORTING ALL BEG N

% notused, null and undefined values used in the specification
notused: real % used in definition of s4

null real % null value

undef i ned: real % null value

END nulls_ and_undefineds

%

exte rnal) _inputs : THEDRY EXPORTING ALL BEG N
IMPORTING types

P AN AA AT A VRNV A S AN SN b b A AR A N TR A S AN N AR AA L
% External inputs

AR AR A YA NANA

prev_rot,. jet_cmd:
scalar_r otation_di rect iOn

bypass : bool
u_d: undesired. _ang_accel_type
u_c: phase_ pl ane_ accel_type
db : deadband_type
force_fire: force_fire_type
res . bool
omega_e ! rate _error_type
theta_e : attitude _error_type
rl: rate _error_limit_type % magnitudes of rate error linits
primary _vernier_sw: bool
omega_min : deltav_minimp_type % (local nane) msg. of changes in

% vehicle ang. rate due to 80 ms
% RCS firing command

END external _inputs

%

utility _functions: THEORY EXPORTING ALL BUT non_neg_real BEG N
sign(x: real): integer IF X >= O THEN 1 ELSE -1 ENDIF
abs(x: real): real = If x <0 THEN -x ELSE x ENDIF
non_neg_real : TYPE = {r: real | r >= O} CONTAI NING O
sqrt : [non_neg_rea1—> non_neg_rea]]

sqrt : AXIOM FORALL (x,y: non_n eg_real) : x*x =y IMLIES x “sqrt (y)

END utility _functions

26

%

x_and_y: THEORY EXPORTING ALL BEG N
| MPORTI NG types, external _inputs, utility-functions

% xI and x2 are local variables used in Figure 4,2,2 .2.2-2

xI (r: rotation): real = sign(omega_e(r)) * theta_e(r)
x2(r: rotation) : real = abs(omega_e(r))

% yt and y2 are local variables used in Figure 4.2.2 .2.2-3

yi(r: rotation): real = sign(u_d(r)) * theta_e(r)
y2(r: rotation) : real = sign(u_d(r))*omega_e(r)
END x_and_y

%

switching_lines: THEORY EXPORTING ALL BUT se, u_cp, k1 , ¢ BEGN
IMPORTING types, external _inputs, utility-functions, i_loads,
nulls _and_undefineds, x_and_y

AN SA RIS RN E N ¥ H Y
% Specification of
YANAAANANNA NN NN

EEA RN A AR NN E N S ok A
(Table 4.2.2.2.2-3) Y%
ANNAANAN YAAR

ANAEAS
i tchi li

% se is defined in the note at the bottom of Table 4.2.2 .2.2-1
.
%

se(r: rotation): real = sign(omega_e(r))

% u_cp, kX1, and ¢ are defined in the note at the bottomof Table 4 .2,2,2 2-3
%

a_cp(r:rotas ion) @ real = u_c(r)-sign (onega_ e(r) J)*u_d(r)
ki 'real = IF primary _vernier_sw THEN kledge ELSE O ENDIF

c(r:rotat ion): real =
| F abs(prev_ro t_jet _cmd(r)) /"1 THEN 125/100 ELSE 1 ENDIF

% note that the argunents to si need to be either x2 or y2

L)

%

s1 (s: [rotation -> real] , r: rotation): real = (s(r) *s(r))/(2% u_cp(r))+db(r)

52 (S [rotation -> real] , r: rotation): real =
(c(r) *s(r) *s(r))/(2* u_cp(r)) - (12/10)#db(r) - k1

53(1: rotation) : real = rl (r)

s4(s: rotation) : real =
IF not primary _vernier_sw THEN 8/10* rl1(r) ELSE notused ENDI F

s5(1: rotation) : real =
I'F not rcs
THEN 1rl_tvc
ELSIF not primary _vernier_sw THEN (6/10)*rl(r)
ELSIF rl(r)-2%omega_min (r) >= (2/100) THEN rl(r)-2#%omega_min (r)
ELSE (2/100)
ENDIF

%nosé in the requirements

%the-1 and +1 are explicit to reflect "K' in the requirenents

%

s7 (I: rotation): real =
IF y2(r) >= O THEN ~1 * (sign (y2(r))*y2 (r)*y2(r))/2*u_cp(r) -db(r)
ELSE (sign (y2(r))*y2 (r)+y2(r))/2*u_cp(r) -db(r)
ENDIF

% s8 is the negation of s3

"

%

s8(r: rotation) : real = ~-rl(r)

% no 59 in the requirenents
s10(r: rotation) : real = (c(r) *y2(r)*y2(r))/(2*u_cp(r)) + (12/10)+db(r) + k1

%
% the requirenents for si1 inply a two step specification
%
s11_partl (r: rotation) : real =
IF (((-12 /10)*db(r)-k1 <= y1(r)) & (ylI(r) < -(i/2)*db(r))) OR (not rcs)
THEN O
ELSIF (-(1/2)#*db(r) <= y1(r) & (yl(r) <=s10(r))) & rcs
THEN -sqrt(2#*abs (u_d(r))*(y1 (r) + (i/2) *db(r)))+omega_min(r)
ELSE undefi ned
ENDI F

s11 (r: rotation): real =
IF sti_part1(r) > 0 THEN O
ELSIF sti_part1(r) < -rl(r) + omega_min(r)
THEN -r] (r) + Orega_ rein(r)
ELSE undefined %7777
ENDI F

%nov s12 or 513 in the requirenents

s14(r- rotatio.) : real “(y2(r)*y2(r))/(2* u_cp(r))+db(r)
¢4 D sw.cching lines

L

dAis: «~.ance _hvsteve _|ogic: THEORY BEG N
IMPOR.1dG types, Utility _functi ons, x_and_y, switch ing_lines,
external _inputs

IYANAANSARRAAAS LURBIRL LR LR W RRBIRIRI TR

% These three function calcul ates disturbance regions defined in %
% Table 4.2.2 .2.°2-2 These values are used to define Region 2 Y%

% as defined in Table 4.2.2.2,2-1, and its output are val ues %
% for rot_jet_cmd y
" "

o L Y B S ﬁ‘.%‘/..%.‘!.'l

PAANA YA AR AN AN
% Region €S Y%
PAAAAA A NAAAAA
region_cs(r: rotation) : real =
IF rcs THEN sign(u_d(r))e.wfrate
* ({811 (r) - y2(r))/(rl(xr) + s11 (r)))
ELSE O ENDI F

YAAS A SRR A AAAA
% Region HS1 Y%
AN YNNI AN AN A
region_ hsi (r: rotation) : real =
I|F prev_rot_jet_cmd(r) = -sign (u_d(r)) THEN nul|
ELSIF NOT rcs THEN O
ELSIF force_ fire(r) THEN -sign (u_d(r))
ELSE -sign (u-d(r)) * wfrate
*((y I(r) - s11r)}/(xl (r) - s11(r)))

AN

28

% Region HS2 %
PAAAANAAANA AN
region _hs2(r: rotation) : real =
IF prev_rot_jet_cmd(r) = sign(u_d(r)) THEN nul |
ELSIF NOT rcs THEN O
ELSIF force_ fire(r) THEN sign(u_d(r))
ELSE sign(u_d(r)) * wfrate
* ((s11 (r) - y2(r)/(rl (r) + s11 (r)))
ENDI¥

YANASAAANANN YRS NAA AN A A AN RN E AN NN AN S A YA AP
Y %
% Main control |ogic for determning disturbance hysteresis regions)
% %
PANAARRRAARA RV AR A NAARA SNy S B R R AR I A AR NN AR N AN AN EEN KRN SRR PR A
disturbance _hysteresis_p_p_ regions (r:rotation) :real =
IF (s2(x2, r) <= yi(r)
& y1 (r) <=s7(r)
& y2(r) >= 0
& y2(r) <=s3(r))
R (s14(r) <= y1(r)
& yi(r) <= s10(r)
& y2(r) >= s8(r)
& y2(r) <= s1i(r))
THEN region_ cs(r)

ELSIF
(s7(x) <= yi(r)
& y1(r) <= s1(x2, r)
& y2(r) >= O
& y2(r} <= s3(r))
OR (s7(r) <=yl (r)
& yi1(r) <= s10(1)
Y 42{r) >= sil (1)
& yu(r) <= 0)
THEN region_ hs1 (r)

ELSIF
s7(r) <= y1 (v)

2 y1(r) <= s14(r)
& y2(r) >= s8(r)
& y2(r) <= s11(r)

THEN region_hs2(r)

ELSE nul |

ENO F

END disturbance_ hysteresis_ logic

control _ actions-by-region : THEORY BEG N
IMPORTING types, external _inputs, switch ing_lines, disturbance -hysteresis _logic

A AN

YAAAA AN AAA

% Main function for control logic for phase plane calculations: %
% yields three values: (rot _jet_cmd(r), wed(r), force fire(r)) %

% A
% This function specifies Table 4.2.2.2.2-1. %
% %

LYY A A AN Y A AN AN SR VAR S N Y AR AN AN AN A4 S SAN NN AR A N E T A AN Y RN A
control_actions (r: rotation) : tuple_type =
| F bypass THEN (prev_rot_j et_cmd(r) , 0, force_ fire(r))

YASAAANAANAAA

29

% Region 1 Y%
AN YA AN AR
ELSIF xI(r) > si(x2,r) OR x2(r) > s3(r) THEN
IF xl(r) <= s3(r)
THEN (-sign (omega_ e(r)) , -se(r) * wio w, false)
ELSE (-sign (omega_ e(r)) , se(r) * whigh, false)
ENDI F
AAAAA AN A AN
% Region 2 %
AAAANAAAANAA
ELSIF s2(x2, r) <= Xi(r)
&xl(r) <=s1(x2,r)
& x2(r) <= s3(r)

% disturbance_ hysteresis-logic function specifies rot_jet_cmd va'lue
% wed = 0

THEN (disturbance_hy steresis_p_p_regions (r) , 0, false)
NSNS S YA AR YA YA
% Regions 3 5 %
PAAAN AN NSNS AN AN YA

ELSIF xl(r) < s2(x2,r)

YA AN AAA AN

% Region 3 Y%

YNNI N AAAA A

THEN | F x2(r) < s5(r) THEN (sign (omega_e(r)) , se(r) * wlon false)

AN AN A AN A AN YA AN

% Regions 4, 57

AN AN AN AN AN AA

ELSIF s5(r) <= x2(r) THEN
AN AN AN AN YA Y R AR YA A
% Region 4, 5 (case a) ¥
AR A AN A A A AR A AT A AN AN A
IF x2(r) <= s3(r) THEN
IF primary _vernier_sw THEN (O ,se(r) * wlow false)
YAANA Y YA AN YA

WRARRAAY

% Region 4 (case b)Y
AN NAAA NN YSAAA A AN YA
ELSIF s4(r) <= x2(r) THEN
|F prev_rot_jet_cmd (r) = -se(r)

THEN (prev_rot_jet_cmd (r) , 0, false)
ELSE (se(r) * wirate * ((((8 / 10) * rl1(r))
- x2(r)) /I (2 /7 10) * rl (r)), O false)

AN AN A AN A YA
% Region case b) %
AN AANA YA AAA YA NS S
ELSE % x2(r) < s4(r)
IF prev_rot_j et_cmd(r) = se(r)
THEN (prev_rot_jet_cmd (r) , 0, false)
ELSE (se(r) * wirate * (((8 / 10) * rl(r)
- x2(r))/ (2 /1 10) * rl (r)), O false)

ENDIF
ENDIF
ELSE (prev_rot_j et_cmd(r) , 0, false)
ENDIF
ELSE (prev_rot_jet_cmd (r) , 0, false)
ENDIF
ELSE (prev_rot_j et_cmd(r) , 0, false)

ENDI F

ENO control _actions_by_region

30

