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Abstract

Let 6Z be a measure of the relative stability of
a stable dynamical system E defined over the n-
dimensional Euclidean space. Let ~A(~) be a mea-
sure of the computational efficiency of a particular
algorithm A which verifies the stability property of
Z by computing a certificate of stability P. We
demonstrate the existence of a particular measure
6X and an algorithm A such that, 62 r~(x)  = O(n).
In addition, we show that & determines the size of
the certificate P. These results provide the foun-
dation for an algorithmic theory of stability and
robustness.

1 Introduction

1.1

The purpose of the paper is to present the steps
that have been taken towards an algorithm the-
ory of stability and robustness. 10’11’12  The algorith-
mic theory has its roots in the robustness analysis
of dynamical systems on one hand, and computa-
tional complexity of the optimization problems on
the other. 15 The results in the present paper sub-
stantiate, an further motivate, our perspective on
the deep relationship between these two areaa of
research.

“Technical Staff, Guidance and Control Analysis
Group, Automation and Control Section; Email: mcs-
bahi(lhajez.jpl.  naaa.goq  Tel: +1-818-354-S626.

Copyright @ 1997 by the American Institute of Aeronautics
and Astronautics, Inc. The U.S. Government has a royalty-
free license to exercise all rights under the copyright claimed
herein for governmental purposes. All other rights are re-
served by the copyright owner.

In control and system theory we use computa-
tion to study the stability issues of the dynamical
systems, but in order to come up with the com-
putational methods, we often use stability results
(for example to guarantee reasonable convergence
behavior). In effect we have been led to investigate
the behavior of one dynamical system by examining
the stationary point of the other.

Consider for example the stability analysis of the
matrix difference equation,

Xk+l  = Axk, A E R“’”. (1.1)

In order to study the stability properties of (1.1),
we study the solution of the Lyapunov inequalities,

X > o AXA’ – X <0. (1.2)

Let us call the solution to (1.2), if it exists, ~, and
refer to it as the certificate of stability. In order
to obtain a fessible  point for (1.2), let us employ
a variant of the interior point methods (ipms),7’13
not because ipms are the best methods for solving
inequalities of the form (1.2), but due to their gen-
eral nature which makes them applicable to much
larger classes of inequality systems.

Given (1.2) we consider the optimization prob-
lem,

inf t (1.3)

AXA’ - X < tl, (1.4)

X>o. (1.5)

It should be clear that for a large enough value to
for t, the above optimization problem is at least
feasible. Our algorithm can be constructed based
on the following idea: starting from a feasible pair
(to, Po), at every step reduce the value of t without
leaving the feasible region (by appropriate center-
ing, etc. ), and stop the algorithm when you reach
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a negative value for t. This idea parallels that of
a variant of the ipms called the barrier method;
by carefully choosing the desired reduction in the
value oft and an appropriate way of staying away
from the boundary of the feasible region, we can in
fact prove very nice theoretical complexity bounds
for checking the stability of the system (1.1): given
that A is stable this method is guaranteed to out-
put the certificate of stability ~ (approximately) in
a reasonable time.

We notice that they way we go about construct-
ing an algorithm for solving (1.2) is independent
of the actual instance of the problem, that is, its
“flowchart” does not depend on a particular matrix
A. On the other hand, as long as this flowchart
involves any kind of branching (statements of the
form: if z >0 then start all over again), the run-
ning time of the algorithm depends on the partic-
ular instance of the problem- the running time of
the algorithm depends on the properties of the par-
ticular input matrix  A. Algorithmic Stability The-
ory is concerned with the computational efficiency
of the algorithms which are used to study systems
and control problems, expressed in terms of the fun-
damental quantities in control theory, for example
stability margins. What is rather surprising is that
this correspondence can be established in a very
concrete and elegant framework.” For example, we
show that not only the robustness measures find
their way in the complexity analysis of a particu-
lar class of algorithms for solving the LMIs,4  but
also the size of the certificate is a function of these
quantities. This phenomena transcends beyond the
stability analysis in terms of the Lyapunov inequal-
ities; in fact these parameters appear in the compu-
tational efficiency estimates for checking the posi-
t ive real and bounded, realness of transfer matri-
ces, putting the corresponding results at the center
stage of the modern robust control theory.

The organization of the paper is as follows. In
the next section we initially consider the Lyapunov
equation, and demonstrate that the product of the
running time of the conjugate gradient method and
a particular variant of the interior point methods
(ipms)  on one hand, and the corresponding robust-
ness measure for linear systems on the other, are
inversely proportional. We then to proceed to show
the importance that the robustness measures play
in defining the solution set of the Lyapunov inequal-
ity. The result which extends the above observa-
tions to the more general problem of checking the

positive realness of a transfer matrix are then pre-
sented. The paper is concluded with a brief after-
thought on the implications of the results. Some
of the proofs are omitted for brevity; the interested
reader is referred to the two manuscripts .lO1l  2

A few words on the notation before we present
our main results. For two symmetric matrices
A = A’ and B = B’, A > B (A z B) indicates that
A – B is positive definite (positive semi-definite, re-
spectively). rd ~, designates the running time of
the algorithm A which verifies the stability prop-
erties of the dynamical system Z. The notation
f(n)  = O(g(n))  indicates that there exist positive
constants c and m such that O ~ f(n) < cg(n) for
all n z m; herm{A}  denotes the hermitian part of
the matrix A, ~(A+A’).  For a given transfer matrix
H(jro),  H“ (jw) denotes its conjugate transpose.

2 Conjugate Gradients ‘
and Stability Analysis

2 . 1

We now provide some basic facts regarding the nu-
merical algorithm which is at the cornerstone of the
main theorem of this section, namely the conjugate
gradient method (cgm),

The cgm is devised to solve a given system of
linear equation

Ax = b, (2.1)

where A E Rnxn is a symmetric positive definite
matrix, and b E Rn. The cgm proceeds to solve the
linear system (2. 1) for its solution Z*, by consider-
ing it as the minimization problem,

mjn ~z’Az  – b’z

Given the pair (A, b) and the initial point Xo, the
method produces the sequence {~i}i21,  according
the following rules:s

1. k= O;do:=–go=b-Azo

2 .  &k=– gkdk/d~Adk  = g~gk/d~A9k

~. xk~l =  Zk -t- CYkdk
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~. dk+l =  ‘f/k+l  +  flkdk

6. Go to 2,

where gk := Axk – b. The cgm can be viewed as an
optimal process, where “optimality”  is with respect
to the following interesting property: The point Zi
generated by the conjugate gradient method satis-
fies

where  ][yl]A  := (y’Ay)l/2  for all y ~ Rn, Pi is t h e
set of polynomials p of degree at most i, such that
P(O) = 1, and eo = x“ – Zo.

A direct consequence of the optimality relation
(2.2) is that if A haa k ~ n distinct eigenvalues,
then the cgm terminates in k steps, since the mini-
mal polynomial #J of A (the minimum degree poly-
nomial such that @(A) = O) would be of degree k.
In particular, in view of the Cayley-Hamilton the-
orem the cgm terminates in at most n steps.5

Let us order the eigenvalues  of the matrix A as
05 A15A25 . . . ~ &. Another consequence of
the optimality property (2.2) (via the Chebyshev
iteration and polynomials) is that,2’14

where T i is the Chebyshev  polynomial of the first
kind,

and

1 + /A1/&

The second equality from the right in (2.3) follows
from an important property of the Chebyshev  poly-
nomials.

Define p := ~~ to be the relative condition
number of d. Then it can be shown that,

Thus, in order to guarantee that for O < c < 1,
11X* - ~~llA/11~* - ZollA $ t, one must have

and thereby,

2’ = o(log2  ;p)

For the case that the matrix A is not positive
definite, and A’A is not singular, one can consider
solving A’Ax  = A’b, and the above statements still
hold with A being replaced by A’A.

2.2

We now consider the efficiency of the conjugate gra-
dient method in connection with solving the linear
system arising from the Lyapunov equation.

The problem considered by Lyapunov is as fol-
lows: Given a matrix A E Rnxn,  determine whether
z = O is the globally asymptotically stable equilib-
rium point of xl:

21:  ~=Az. (2.4)

In particular, one is interested to know whether the
trajectories of Ill goes back to the origin, if El is
disturbed by any non-zero initial condition. This

property on the other hand, is equivalent to A being
Hurwitz,  i ,e., all eigenvalues  of A have negative real
parts.5

As it is well known Lyapunov proved that the ori-
gin is the globally asymptotically stable equilibrium
point of xl if and only if, given a matrix Q > 0,
there exists a matrix P >0 such that,g

A’P+ PA = -Q (2,5)

Suppose that the matrix A is in fact Hurwitz, and
consider solving (2.5) using Kronecker products, as
first proposed by Bellman.3  Our goal is to demon-
strate that the running time of the conjugate gradi-
ent method for approximately solving the Lyapunov
equation conveys an estimate ojthe relative stability
of A.

Let us rewrite (2.5) as

B (vet P) = -vet Q (2.6)

where
l– P-l i
(—,+ P-J 5; B:= I@ A’+A’@IGRn2xn’.
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Each eigenvalue  of B is the sum of a pair of eigen-
values of A.

In order to use the cgm, we consider solving the
system of linear equation

B’B(vec  P) = –B’(vet Q).

Since the origin is not in the spectrum of B’B (A
is assumed to be Hurwitz),  starting with an initial
matrix Po, if

i = fl(plog~)

then the cgm produces the matrix Pi such that,

11P*  -  P,ll~,~  < 611P*  -  Pol[~,~

where,

Q .—.— .A~p.X (~)/A~i~ (-)

= ~maX(B)/~min  (B) = llBl]/Umin(B~2.7)

Since ~min(B) ~ ~l(herm(–B))  = lAlmin(A  + A’),

p < llB1l/Jlmin(A+  A’).

Let us define

8Z1 := lAlmin(A  + A’)/llBll

Hence if i = $1(1/6~1),  t h e n  11P* – f’illBJB  <

cllP* — POIIBIB.  Thereby, in order to obtain an c-
approximation of the certificate of stability P* (in
the B’B norm), the termination time of the cgm
~cgm(z, ), is at least of the order of the magnitude
of l/c$z,.  Denote by ~cgm(~l  ) the time it takes the
cgm to approximately solve the Lyapunov equation
associated with 21. One thus has

~cgm@l ) ~zl = o(l).

A closer look at the quantity 621 reveals that it can
be viewed as a robustness measure for the system
.X1, since,

62, = l,A]min(A + A’)/[lBll  = lA1/llBll

where

A := {inf A E R : A + AZ is not Hurwitz}.

Consequently we have proved the following
rem.

(2.8)

the~

Theorem 2.1 Given the system Xl, there is an al-
gorithm d and a stability robustness measure 6X1
such that,

‘hT@,) –– 0(1).

We now state a result which demonstrate the role
that robustness measures play in providing a bound
for the certificate of stability.

Given a matrix A c Rnxn such that (1.2) is fea-
sible, define

such that A + A does not lead to a feasible system
(1.2). Let

6A := 1

Iog(#E+  +) “
(2.9)

For obvious reasons, let us call 6A the robustness
parameter of the matrix A. One then has the fol-
lowing correspondence between the size of the cer-
tificate of stability and robustness parameter 6A.

Theorem 2.2 The certificate of stability for a
given matrix A, X, satisjies,

11X11 = 0(;), (2.10)

provided that 6A >0.

3 Interior Point Methods
and Stability Analysis

3 . 1

This section is devoted to the
to the relationship between the

results pertaining
computational ef-

ficiency of the in;erior  point method;  and the sta-
bility properties of dynamical systems. We initially
state and prove this connection in terms of the Lya-
punov inequalities, and then proceed to state the
similar results for the positive real systems.

3.1.1 Stability

In order to establish the stability of the origin for
the system xl defined by the matrix A e R“ ‘n,

xl : X=AX (3.11)
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one can check the feasibility of the following system
of linear matrix inequalities (L MIs):

LI : A’P+PA<O (3.12)

P > o (3.13)

Let us for the moment forget that these matrix in-
equalities can somehow be solved via a system of
linear equations (Section 2). We approach the prob-
lem of finding a feasible point of the set defined by
(3.12)-(3.13) via the interior point methods. This
will provide us with an opportunity to, rather infor-
mally, review the interior point methods (ipms),  as
well as presenting the idea which shall be general-
ized in the subsequent section. The material on the
ipms which follow have been presented in a more
general setting.13>15

In order to find a feasible point of (3.12)-(3.13),
one can consider instead the following optimization
problem,

L2 : inf t (3.14)

S t . A’P+ PA < t(A’P+ PA + 1)(3.15)

P > o (3.16)

t~o (3.17)

where the matrix P is chosen to be positive definite,
e.g., P = I. One might wonder why ~ is introduced
in (3.15). The reason is that by doing so, a feasible

point of 12 is readily available: ( Po, to) = (~, 1),
Our task is now to initiate the algorithm from (~, 1)

with the objective value of 1, and try to somehow
reduce the objective value to zero (which would be
the case if and only if 21 is stable), without leaving
the feasible region of C2. This is exactly what an
interior point method does (more specifically, we
have in mind the barrier method).

Few comments, and a reformulation of L2 pre-
cedes our description of the barrier method. Sup-
pose that we were to solve the following optimiza-
tion problem:

L3 : inf t (3.18)

s. t. A’P + PA < tI (3.19)

P > o (3.20)

IIPII <1 (3.21)

–l<t<2 (3.22)

I.et tinf and t,.P denote the value of the infimum
and the supremum of the objective functional on
the respective region (e.g., tinf  = O in ZZ if Xl is

stable). The value oft inf in 43 clearly is a measure
of relative stability; intuitively, the more negative
one can choose t, the more “stable” xl is, The lower
bound for t and the norm constraint on P are chosen
for normalization purposes; otherwise the problem
would be unbounded, if feasible. The choice of the
upper bound for t would be justifies shortly.

It is not clear however how a feasible point for Z3
can be chosen to initiate the algorithm from. We
thus consider instead a combination of L2 and L3:

L: inf t (3.23)

s. t. A’P + PA < i(A’~ + PA + 1~3.24)

P > o (3.25)

IIP[[  <1 (3.26)

–l<t<2 (3.27)

with P >0 and [1~]1 < 1. The initial point (~, 1)
is now readily available as an initial point. Again,
the value of tinf  for Z somehow conveys information
regarding the relative stability of 21,  an observation
which shall  be made more precise shortly.

Let us denote the feasible region of Z by 3C. Note
tha t  Fc ~ SR~xn x R and that it is an open and
convex set. It turns out that associated with the set
7C, there is a functional b : interior 7C ~ R, which
acts as a “self-concordant barrier.” The term “self
concordant” refers to certain properties of the gra-
dient and the Hessian of the functional b evaluated
at points in Xc; for the purpose of our presentation,
we shall bypass the exact definition and direct the
readers’ attention to the references given above for
the ipm theory.

There are two important points however that
need to be emphasized regarding the functional
b. First ,  i f  {Z~}k21 ~ 3C i s  a  s equence  tha t
approaches the boundary of ~c, b(zk)  ~ w as
k - co. Second, there is a parameter K associ-
ated with b which determines the computational ef-
ficiency of the interior point method for minimizing
(or maximizing) a linear functional over 7C,  the so-
called self-concordant parameter. For brevity, we
shall simply write down the self-concordant barrier
for XC and its associated self-concordant parameter
h’. Subsequently, we provide a description of the al-
gorithm for solving Z using b, and its efficiency in
terms of the self-concordant parameter of b.

Let b : FL b R be defined as:

b(P, t) = –1210gdet P
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–1210gdet(-A’P  – PA + t(A’~

+~A + Z)) – 1210g(l - IIP112)

–1210g(t  + 1) – 1210g(2  - t).

Note that indeed when (Pk, tk) ~ boundary

(3.28)

of FC ,
b(Pk, tk) ~ w. The associated self-concordant pa-
rameter for the functional b (3.28) turns out to be,

K := <12n+  12n + 48 = O(A). (3.29)

We are now ready to describe the interior point
method for solving L. Starting from the initial
point ( Po, to) = (~, 1), and parameter p = po, (1)
Let k = O, (2) solve the unconstraint optimization
problem

min@(P~,  tk, p~)

w h e r e  qP~, tk, ~k) := Pkt +  b(pk, tk), (3) let
p~+l  = (1 + ~)p~, (4) let k = k + 1; Go to 2.
Of course Step 2 cannot be solved exactly; a lot of
research has been devoted to come up with a stop-
ping criterion for this step which is sufficient for
proving nice theoretical efficiency of the complete
algorithm. One such criterion, rather interestingly,
is to take “one” Newton step (with a “nice” initial
point), and then increase pk accordingly (the so-
called short step method). Intuitively, as k ~ 00,
pk - co, and the sequence of minimal values of
@(Pk, ik, pk) will approach i!inf .

The resulting complexity bound stated below is
the upshot of the interior point approach.

Theorem 3.1 15 For solving L, starting with
(P, 1) wing

O(K log(K + ;)) (3.30)

iterations, the above bam”er  method computes
(P*, t*) E FL, and t* is known to satisfy

t* -  
ti~f

SC
t – ti~f

(3.31)
Sup

i.e., after O(K log(K  + ~)), a (relative)  c-optimal
point is found by the barrier method.

Theorem 3.1 has few implications which are not dif-
ficult to realize.15

1. Starting with (~, 1), given an c >0, the barrier
method produces the pair ( Pi} t i), known to
satisfy

(P~,ti)  E ~~, t~ ‘ti”~  <t, (3.32)

if,

t
i = $2(1{  Iog(l{  + ‘“p ~ ‘inf  ) )  ( 3 . 3 3 )

2. If tinf  < a < t.up, after

O(K log(K + ““p – ‘ inf

min{t~up - 0 , 0 -  tinf]))(3”34)

iterations, for which the last pair is (P, i), is
guaranteed to satisfy (P, t) c 7L  and t = cr.

The second ramification above will now be em-
ployed to shed light on the efficiency of the interior
point method for determining the stability of El.

Consider solving L using the interior point
method described above. To check the stability of
21 it is necessary and sufficient to stop the algo-
rithm after the i-th iteration, when ti = O. Accord-
ing to (2) this is guaranteed after

~1 = O ( K  log(K +  ‘SUP  –  ~inf )) ( 3 . 3 5 )
min{tsup,  ‘tinf}

i.e., ml is the termination time of the barrier
method for checking the stability of 21.

11 and start the interior point methodLet P=5
described earlier from (~, 1). Thus t.”p z 1 a n d
trivial ly t,up < 2, Note that t inf < 0, since if
t inf >0 and the pair (tinfj P*) is the solution to f,,
then for O < c <1, (dinf , cP*) is also a solution to
L, which is a contradiction.

Referring to (3.35), we observe that ~, is essen-
tially a function of K which is itself a function of n
only, and a combination of t~up and tinf.

Given a Hurwitz matrix A, ]et a := inf*  ~
such that A + A is not Hurwitz. Define

62, :=
1

log(fi+ +)

Since –1 < tinf <0, for small c >

A’P + PA < (tin~ - c)(A’~ +

(3.36)

o,

PA+ 1) (3,37)
P >0 ( 3 . 3 8 )

IIPII <1 (3.39)

is inconsistent, Thus,
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S (l~infl  +  c)(IIA[[  +  1) (3.41)
allAll

+ IIAII  + 1
~ Itinfl  + C (3.42)

+ i!inf ~
-IIAII

IIA1l  + 1°
(3.43)

since i?inf ~ O.

Consequently, since O ~ ‘ti~r ~ t,uP <2,

3
m, = O ( K  log(K  + —

-, f))In

= O(K log(K + :))
Thereby we have established the following theorem.

Theorem 3.2

m16x1 = O(K) = 0(/Fl). (3.44)

Theorem 3.2 establishes a natural, but very inter-
esting relationship between robustness properties
of 21 and the efficiency of ipms for determining
whether 21 is stable. More specifically, given that
(3.44) holds, fixing n and using the ipm for these
lution  of the Lyapunov equation, information per-
taining to the relative stability of the correspond-
ing system is somehow revealed! This observation
has consequences which go far beyond the stability
analysis of xl.

3.1.2 Positive Realness

Consider the linear time invariant system X2:

22: x= Ax+Bu (3.45)

y= Cx+Du (3.46)

such that the quadruple (A, B, C, D) is the minimal
realization of the transfer matrix

H(s) = C(S1 - A)-l B + D

in which case we write H - (A, B, C, D). We shall
assume that the pairs (A, B) and (A, C) are respec-
tively, controllable and observable. The matrix A
is also assumed to be Hurwitz. For further refer-
e n c e  let A E Rnxn,  B ~ Rnxm, C c Rmxn  a n d
D E Rm ‘“ and without loss of generality assume
that m < n. Given an initial condition Z. and a

control function q which maps y to u, the equa-
tions (3.45)-(3.46) define a trajectory for the feed-
back system 22.

Given that H - (A, B, C, D) and assuming that
A is Hurwitz, the transfer matrix H is called (gener-
alized) strongly positive real (GSPR)  if there exists
c >0 such that

H(jw) +  ~*(jW) >  CI Vw

where H* ( jw) denotes the conjugate transpose of
the transfer matrix H(jw). The (generalized) Posi-
tive Real (GPR)  Lemma states that H(s) is G S P R
and stable if and only if the following system of
linear matrix inequalities is feasible,l  ,16

‘erm’(~ M 0’<0 ‘347)
P >0. ( 3 . 4 8 )

Let us define two robustnessAme~ures  for a GSPR

system. Denote by E :=
( )C D “ ‘ow let’

cr := i~fllA1l/llEll (3.49)

such that there does not exist a matrix P that sat-
isfies the following set of linear matrix inequalities,

‘erm’( ~ ~~ )(E+A)’<o ‘350)
P > o , (3.51)

and let

6H := l/bg(/v+  :). (3.52)

The quantity 6& is a measure of the relative pertur-
bation that a stable GSPR system Ez can tolerate,
and remain stable and GSPR. The perturbation A,
can for example be the result of the uncertainty
in the modeling of the plant, or due to the finite
accuracy of the computer arithmetic (which for ex-
ample, is used to check the GSPR property of the
system).

The robustness measure for a GPR systems just
introduced is related in an interesting way to
the computational eficiency of the barrier method
(when applied to solve the system of LMIs resulting
from the GPR Lemma).

Theorem 3.3 10 Given the system 22, there  is a n
algorithm A such that for the robustness measures
6fi,  and 6$,,
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Similar to the case of the Lyapunov inequality,
the robustness parameter effects, in a very precise
manner, the size of the certificate of positive real-
ness.

Theorem 3.4 The certificate of positive realness
for a GSPR system, P, satisfies,

provided that 6H >0,

which are used in system analysis provide a very
natural and intuitive way to understand the interac-
tion between systems and optimization algorithms.
At a deeper level however, it is indeed fascinating
to see that the connection between efficiency and
robustness can be stated in such a concise manner,
as the results of this paper indicate.

(3.53)
Acknowledgment

The precise relationship which were presented
above between the computational efficiency of cer-
tain numerical algorithms on one hand, and the
robustness measures for dynamical systems on the
other, can in principle be used to give an algorith-
mic definition of the relative stability. In particular,
one can define robustness in terms of purely algo-
rithmic consideration to the effect that,

the degree of the relative stability of a sta-
ble system is the inverse of the time it
takes to check its stability via the interior
point methods.

The objection to this approach would be that the
stability properties of a system should in principle
be coordinate free, and thus, should not depend on
a particular algorithm. Nevertheless, since at the
present time, we are far from obtaining optimal al-
gorithms for solving stability problems (e.g., linear
matrix inequalities), a machine independent theory
of stability is far from being realized, Moreover, in
order to check the stability of a dynamical system,
an algorithm has to be introduced (on some partic-
ular model of computation), and thereby one can
argue that, stability properties can be viewed with
the running time of that algorithm as our frame of
reference. The contribution of the paper is thus to
demonstrate that the above approach can indeed be
adopted for certain important problems in system
anal ysis.

4 Conclusion

The relationship between the parameters 6A and
611 and the complexity estimates of the algorithms
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