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Abstract

Parameter projection techniques play very impor-
tant roles in adaptive control. In this paper, two
scaled parameter projection techniques with respect
to nonsmooth convex parameter sets are developed.
The two projection techniques are then used in
adaptive %-control problems to derive the adap-
tive control laws.

1 Introduction

New technological development in space engineer-
ing and science requires sophisticated control sys-
terns with both high performance and reliability.
How to achieve the required performance and relia-
bility against various uncertainties haa been a very
challenging issue for control system design in recent
years. Adaptive and robust control techniques are
considered as useful methods to achieve this goal.
Generally speaking, adaptive control is effectivein
dealing with parametric uncertainty, while the ro-
bust control schemes are good at handling dynamic
uncertainty. However, oftentimes, control systems
have both types of uncertainty; therefore, an inte-
grated treatment in control system design is neces-
sary.

In this paper, we consider adaptive robust control
design for an uncertain system with both paramet-
ric and dynamic uncertainties, which results in an
adaptive system with H-performance. As the
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Hoo-performance has a close relation with dissi-
pativity, a dissipation theoretic approach is used
in dealing with the adaptive H-control problem.
Dissipation theoretic technique as a generalization
of Lyapunov method [13] for adaptive control yields
a simple adaptive control law which can signifi-
cantly reduce implementation cost. However, the
methods generally do not guarantee boundedneaa
and convergence of parameters. Though the pa
rameter convergence is not the objective of adaptive
control, the boundedness of the estimated param-
eter should be guaranteed in the adaptive control
law. One of the methods to guarantee the bounded-
ness is to use the parameter projection techniques.

In applications, the unknown parameters of the pa-
rameterized systems are usually in a bounded set.
In this paper, it is assumed that alowable parame-
ter sets are compact and convex, but not necessarily
smooth, e.g., a cube in the parameter space. Dur-
ing the adaptation, one of the requirements is that
the parameter-adjustment mechanism of an adap-
tive control system keep the adjusted parameters
in the parameter sets so as not to invalidate the
solvability conditions. Here, both vector anti direct
parameter projection techniques are used to achieve
this goal. The vector projection, which was origi-
nally introduced as a gradient projection method to
generate the feasible directions in constrained opti-
mization [11], is probably the most extensively used
projection technique in adaptive parameter estima-
tion and adaptive control [4, 16, 15,5, 7]. How-
ever, in these cases, the projections are considered
only for smooth sets. The vector projection is gen-
cralized t0o a more general setting such that the
non-smooth parameter sets are allowed. The direct
parameter projection is relatively new in adaptive
cont ro! (another version appeared in [2]). It will be
seen that this technique is suitable for the adaptive
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control problems where integral performance spec-
ifications arc involved, in particular adaptive 7&-
control problem, The two projections not only play
avery important role in adaptive control problems,
but also are of intereat in their own right,

This paper is a generalization of the work re-
ported in [9]. Other work related to the adap-
tive Heo-control includes [2, 23, 12, 17]. In this
paper, the emphasis is the development of gen-
eral projection techniques for nonsmooth sets and
their applications in adaptive Hw.-control; the ex-
istence of adaptive H.-controllers are character-
ized in terms of solutions of parameter-dependent
Hamilton-Jacobi inequalities, and adaptive con-
trollers are constructed from the solutions and the
projection techniques. This paper is thus divided
into two parts. In Section 2, the general pro-
jection techniques are developed; both direct and
direct parameter projections techniques are rigor-
ously treated with respect to compact, convex, but
possibly nonsmooth parameter sets. In Section 3,
an adaptive H-control problem is stated; the solu-
tions for the adaptive Hqo-control problem are de-
rived for the case when the original storage func-
tions are independent of the parameters. Both vec-
tor and direct parameter projection techniques are
used in the derivation of adaptive control laws.

2 Parameter Projection Tech-
nigues

In this section, vector and direct parameter (scal ed)
projections using the techniques from nonsmooth
analysis and viability theory [1, 18jare presented.
Both projection techniques will play a very impor-
tant role in the adaptive Hso-control design. The
special non-scaled projection techniques were con-
sidered in [9].

2.1 Invariance and Contingent Cone

Consider a differential equation:
&= f(z,t) (1)

where f : R'X R"=R"is continuous in x and
mcasurable int. Suppose for al o€ R', the differ-
ential equation has a unique solution starting from
z(0) = o defined for teR*. A set X c R" isa
invariant set of (1), if for all o€ X, its solution
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will stay in the set X for al ¢. It is known that if
X isan invariant set, so is its closure X.

Given a compact set K ¢ R, we next examine
the invariance for the differential equation (1). The
invariance is characterized in terms of contingent
cones [1]. The contingent cone to K is well defined
as a set-valued map T,: K — X:

di(z + hv) <

S0 (2)

Tk(z) := {v| l;.rzarlf

where dk(z) := inf.ex ||z — z|]. For allz € K,
the value T,(z) is a closed cone. If K is convex,
then T (z) is a tangent cone. Here, we are con-
cerned with only the convex sets,

Suppose K is convex and O € Int(K). The
Minkowski function of K is defined as (see, e.g.,

[11])
Uk(z) = inf{Ae R: z€ AK};

Givenr > O, we define the set K, as
K,:={zeR": ¥kg(z) <r}.

Then K = K,, The Minkowski functions of convex
sets are convex, but not differentiable in general
[11]. The contingent cone to a convex set is a lower
semi-continuous set-valued map on K with closed
convex value [1]. The following lemma provides a
more explicit representation of contingent cones to
convex sets [18].

Lemma 2.1 If K 1s convex, then

Tk(z)={y: A >0:z+ty € K}.

Another useful notion related to a convex set is
its normal cone. If K ¢ R™ is convex, then we can
define its normal cone as follows:

Nk(z)={z€ R*:yT2 <0, Vye€ Tk(z)}
Therefore, Nk (z) = {0} if = € Int(K).

From the above characterizations, we give the fol-
lowing propositions.

Proposition 2.2 Consider a linear invertible map
Q: R"—=R". Suppose K is a convex compact set
in R, Xx € K; let M = QK which s also con-
ver compact, and y = Qz. Then the Minkowski
junctions, contingent cones, and nornal cones sat-
isfy Ym(y) = Uk(z), Tm(y) = QTk(z), and
Nm(y) = Q7' Ni(z).
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Proposition 2.3 Given a conver compact set K C
R" itis an invariant set of differential equation (1)
if and only if for all z€ K,

f (z, t) € Tk(z) ©)

forallte R+.

Therefore, the invariance of a set can be character-
ized by its contingent cone. Given a convex and
compact set K ¢ R®, the solutions to differential
equation (1) are not necessarily always constrained
inside the set K. However, in adaptive control prob-
lems, we usually require some parameters, which
are governed by differential equations, stay inside
given sets during the evolution (see Sections 5 and
6), and some properties till remain. In the follow-
ing two subsections, we will introduce two projec-
tion methods to achieve this goal.

2.2 Direct Parameter Projection

Consider a convex and compact set K ¢ R*. The
projection g (z) of a point z € R" onto K is de-
fined as follows:

Q) - ; - o — \TO(x —
N3(@) " argmip llo ~ zllgi= /(z - 2)7Q(= (z4))
The above projection is well-defined, since K ¢ R™
is convex and compact; in addition, g () is con-
tinuous. We first have the following characteriza-
tions.

Proposition 2.4 Given a convezr compact set K C
R“. Take x € R"; the following statements are
equivalent:

(i) €€ K is such that<= II¥(z);
(i) (z - £)TQ(z0 - £) 0.
(iii) © — £ € Q" Nk ().

Proof [(i) ¢ (ii)] From the definition,
£ =Y (z) = arg irg;() ||Q1/2(1: - z)” .

From Theorem 1 in [11, p.69}, the above inequal-
ity holds if and only if

(@2 ~ Q)T(QY%x - Q%) < 0,

which is exactly (ii).

[(ii) & (iii)] From Lemma 2.1 and the definition
of normal cones (see also [18, Proposition 2G}),

Q~Y2Nk(€) = Nk (Q'/2€)
= {QY%u|vTQ(z0 - £) < 0,Yzo€ K}. (5)
From Proposition 2.2,
Nk (Q'%€) = Q72N (6),

Q7 Nk (&) {v|vTQ(z0 -<) <0,Yzo€ K}.
Therefore, (ii) holdsif and only if
z - £ € Q7' Nk(€).

In the following, we have the following property
of the direct projection.

Proposition 2.5 Let a convez compact set K C
R“. Then for any absolutely continuous function
x: R— R", its projection:

£(2) := TR (z(t))

is also absolutely continuous.

Proof As Q is invertible, it is sufficient to show
that the map Q2N : R*—R™ is Lipschitz. In
fact, we will show that for al z,y € R,
o' ng (@) - @’ 1) < @] e -l
Indeed,
Qe )

2
MR (z) - MRG) + (= - MR (=) ~ @ TR

|8 - g+ @ - 1) - - ngen], +

-2(z - N (2))TQ(NE (y) - NN (x))-
2(y - N () TQUIY () — NZ(v))

> |08 - 08|,

- | n&(=) - @'*nd(y)|
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where the inequality follows from the above propo-
sition (ii), e.g.,

(z - NE(@)TQUIE(Y) - N (z)) <0

The direct parameter projection hss the following
property which is useful in the adaptive Hqo-control
problem.

Theorem 2.6 Given the conver and compact K.
Then for any absolute continuous junction z :
R+ —R"™ with z(0) € K, and the projection.’ f(t)=
Hﬁ (z(t)), the following inequality holds:

T
J (€(®) - z9)TQUE) - #()dt <0 (7)

fordl 2 eKand T 2 0.

Proof Notice that the left-hand side of (7) is well
defined from the previous proposition. Thus, given
z* € K and T > 0, we have

I[T .
€® —2)TQER) —i(t))at
v

= (6(t) — =N TQ(E() - =) I3+
T
N ACCREORZD
= (&(T) - TN TQET) - =*)+
T
=] o ~senrosma
where the last equality holds as £(0) = z(O) € K.
Asé&(t) = M9(z(t)) for t € [0, T], Proposition 2.4
(iii) gives
z(t) - &(t) € QI Nk(€(t)) ©)
foralt € [To, T}
Also from Proposition 2.4 (ii), one has the following:
&(T) - z(T))TQE(T) - =°)
=(z(T) - &T)) TQ(z" - £(T)) < O.
On the other hand, if £(t) € K is differentiable at
te (7", T), there exists a positive sequence {h, }
with hp,—0 asn—oo such that £(t+h,) € K; denote

o = S Pn) €0

4

then d,(t)—€(t) as n—oo. Since &(t) + hnpda(t) =
£(t + hn) € K, dn(t) € T(§(t)) by Lemma 2.1.
Therefore, &(t) =limpeo dn(t) € Tk (E(t)) as
Tx(€(t)) isaclosed cone. Thus, (8) as well as the
definition of normal cone implies

(E(t) - z(8))TQét) = —((t) - &(t))TQE(t) 2 0.
for al t €[To, T]. Therefore,

.(T(f(t) - ) TQUE(t) - 2(2))at
“

T
= (&(T)-=(T))TQ(&(T)~=")- /0 (€(t)-=(2))TQE(t)dt < 0

In the above proof, we have also proved the fol-
lowing useful result.

Corollary 2.7 Let £€: Rt—R"™ be an absolutely
continuous function. Give a compact and convex
st K € RY; if€(t) € K for ant € R“, then

£(t) € T (£(t))
for almost all t € R".

2.3 Vector Projection

Vector projection technique is introduced for con-
strained optimization (see, e.g., [11]). It isan in-
direct parameter projection technique. It has been
widely used in the adaptive parameter estimation
and adaptive control (seee.g., [4, 16, 5]).

Consider a convex and compact set K ¢ R* and its
Minkowski function ¥k - Given a positive definite
scaling matrix Q, we first define the scaled projec-
tion of a vector v € R'at a point z€ R on the
contingent cone Tk (z) asfollows:

v if zeInt(K)orv €Tk, (z);
ra(z,v) =4 0 if ve Q Nk, (z);
V'Qw,w, otherwise.
(9)

where r = Yk (z) and

W. = arg max{vTQu|w € Tk, (z), lwlig = 1}.
We have the following theorem.
Theorem 2.8 Given a conver and compact set

K C R", the projection is defined by (9), then we
have the following assertions:
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(i) 78 (z,v) € Tk(z) forallz € K and v € R".
(is) 7r,Q<(z, v)

(iii) (z - z*) TQ(n&(z,v) —v) < 0 for z* € K,
z€K,andveR".

(iv) Consider the system (1) under the above pro-
jection:

Q <livllg forallz€ K and v € R*.

x =m3(z, f(z, t)); (l0)

then the set K is an invariant set for the projected
system.

Proof Given z € K and y€ R".

(i) If z € Int(K), then Tk(z) = R*, son&(z,v) =
ve Tk(z); if veTk(z), then ® (z,v) =vE
Tk(z); if v€Q !Nk, () = {w -V Ow <0,Vve
Tk, ()}, then 7g(z,v) = 0 € Ti(x). We only
need to show the last case with ¥(z) > 1. In fact,
as Wo € Tk, (z) and vTQug > O, then W,Q( (z,u) =
(vT Quo)wo € Tk, (2)-

(ii) As the inequality is satisfied trivially in the first
two cases, we only need to show the case when
wﬁ (2, v) = vTQwowp. Indeed,

||1r§(x,v)”0 = ||vTQwowo||Q
= ||vTQuo| < llvllg llwollg -llvllg .

(iii) If z € Int(K) or v € Tk (z), then 7R (z,v) = v,
0 (z—2°) TQ(nR(z, V) - v) = O. Now we consider
the other cases.

Notice that, for all 2 € K, as z + (z* — z) =
z€ K, then z* —zeTk(z) by Lenma 2.1. So
if veQ 'Nk(z), then Qv € Nk(z), and by the
definition of normal cone,

(r - z‘)TQ("fE(x. v)-v) = (z*-2)TQu 0.

Next, let’s consider the remaining case: mg(z,v) =
vT Quowo. We first show the following:

Q(v @% V)) € Nk(z).

From the definition of the projection,

W. = arg max{(Q/2v)T(Q /?uw)|

QV*w € QY?Tk, (z), Q*w = 1 }

Therefore,
T QuoQ 2o = (Q'/21)T(Q?wo) (Q*/>wo)

=ar min /2y, _ 2z
glEQ"’TK(I) Qv
or
VOw . w, = i : .
Q oo arng/zzoénQI'r}’Tx(:) ”‘U zO"Q

By the use of Proposition 2.4, we have
(v - vTQuowo)TQ(z - vTQuowg) <0 (11)

for all z € Tk(z). On the other hand, as Tk(z) isa
COnVeX cone, so for all u € Tk (z), u + vT Quowo €
Tk (z); so (11) implies

(v - vT Quowo) TQu

= ("—vTQwowo)TQ("'l"UTQwowo—UTQwowo) <0.

Therefore, Q(u — vTQuowp) € Nk (z) as claimed.
Again by the definition of normal cone,

(z-2*)TQ(rR(z, v)—y) = (z*—2)TQ(y—75(z, v)) < 0.

(iv) As K is convex, then its Minkowski func-
tion ¥k is convex, so it is absolutely continuous.
Now for any absolutely continuous function z(t)
that is a solution of (10) with z(0)e K, then
n(t) := Yk (z(t)) is also absolutely continuous. It is
sufficient to show z(t) € K. Indeed, if it is not true,
then there exists T >0, such that z(T) € R"\K;
so ¥k (z(T')) >0. suppose To < Tissuch that

To= inf{t > O: z(t) € R"\K}

Therefore, z(To)€e K as K is compact, so
¥k (z(0)) < 1. Let t€ (To, T) be a point on R’
where both #(t) and 28 (#(t)) exist, then there

exists €(h) with lima—o'td= 0 such that
z(t + h) = z(t) + hi(t) + e(h).

Then
i(e) = lim, Wi (z(t) + hi(t) ;— e(h)) Wi (z(£))
- D) L5 )R (1)

Notice that 2 (z(t)) € Nk. (z(t)) where r =
Wk (z(t)); by the same argument as (i), we can show
72 (z, f(z, 1)) € T, (*(t)). Thus,

. 0¥k Q

n(t) - O—T(m(t))ﬂx(m, f(z, 1) <o0.
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almost everywhere on (To, T]. Thus,

0 < Yk(z(T)) ¥k(z(To)) ~ n(T) n(To)

T
/ A(t)dt <0,

6
which is a cent radict ion. Therefore, K is an invari-
ant set.

Notice that in the above theorem, (iv) is not the
conclusion of (i), as we don’'t assume the solutions
of (10) are unique for z(O) € K (see Proposition
2.3). In the proof of (iv), the projection property
of a vector outside K is used which is also true
if the projection (2.8) of a vector is defined onto
the exterior contingent cones instead of Tk, (z) with
r > 1 (see [1, Definition 5.1. 1]). (iii) is a useful
property for the adaptive control design.

It is aso noticed that the right-hand side of (10) is
not necessarily continuous, even if f is continuous.
In [16], with some relaxation, the authors define
a projection which is Lipachitzian and guaranteea
the projected system to have an invariant set larger
than the parameter set.

3 Adaptive Hy-Control

3.1 Adaptive H-Control Problem
and Dissipativity

In this section, we will consider the adaptive atten-
uation of disturbances for nonlinear systems with
emphasis on the application of projection tech-
niques. The uncertain nonlinear system G(O) to
be considered is governed by the following parame-
terized dynamical equation:

i = f(z,8) + 9z, Ow . go(z,0)u

z = h(z) + ky (z)w + ko(z)u

y = hoz) + ka(@w + ka(z)u
(12

where 6 is ar-dimensiona vector of unknown con-
stant parameters with 8 €© € R™. In the adaptive
cent rol problem, we will consider the parameter-
dependence in the following fashion:

f(z,0)" fo(z) + D_6ifil3)

i=1
r

9i(7,8) ~gjo(r) + Z&gﬁ(z), j 1,2

jax]

6

It is assumed that fi, gsiz; € C° f£i(0)
O,h(0) = O, and REI 7 (x)ki(z) > 0 for
allx € R*; z,w, u, 7, and y are state, exogenous
disturbance, control input, regulated output, and
measured output with dimensions =, p, p2,q, and
n + P1, respectively.

The objective of the adaptive Heo-controller design
is to attenuate the impact z of the exogenous distur-
bance w and the error induced by the initial guess of
the parameter. The magnitudes of signals z, w and
z are measured by their £2-norms. The adaptive
controllers to be sought have the following form.

K. P ¢y )
[ u= ey
where p € R'is the estimation of the real param-
eter 8,4 € Co, and p = é(p, y,u) is the parameter
update law. For fixed p, u=x(p)y is a /0 map
fromy to u; it is taken as a (possibly modified) gain-
scheduled controller in the sequel. An adaptive?&
control system is illustrated in Figure 1. The pre-
ciae statement of the adaptive control problem is

given next.

(13)

2 — e 3}
G(0)
[— | —
Yy U
b s —
E P E

Figure 1. Adaptive H-Control System

Definition 3.1 (Adaptive H.-Control Prob-
lem) Suppose € > 01is given. The adaptive Hoo-
control design is to seek a controller (18) such that
the resulting closed loop systern with x(0) = O sat-
isfies

T T 2
/ ]|z(t)||2dtS\1 lw(e))|” dt+(p(0) — )T Q(p(0)-8)
’ (14
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JorallT € R+, w € £2[0,00), p(0) €O, and O €6.

The performance can be interpreted as the attenu-
ation of exogenous disturbance and the error of the
initial parameter guess. Note that in this statement
the initial state is assumed to be at the origin. If
the initial state is unknown, the performance can
be modified accordingly.

In the following, we consider full-information feed-
back, in which csse both x and w are available to
the control input u. Moreover, we make the follow-
ing assumptions to simplify the process.

Assumption 3.2 Consider the system (12).

[A1] The parameter st © w convez and compact,
and O € Int(6).

(A8 y = E,l

[AS] ki(z) = O and kI(z) [ h(z)k2(z) | =
[0 I] forallzeR™

Assumption [A2] just restates the full information
problem. [A3] is a standard assumption in the?&
control problem [3, 8] in most of the derivationain
the following.

Remark 3.3 It will be seen that for the parameter-
dependent system (12) with above assumptions, &f
the multiplier 9,(z, O) of the disturbance w w in-
dependent of @, then only the state information, in
stead of full information, is needed to construct the
adaptive ?&-control law.

It is known that if the parameter € is known, then
the Heo-control problem has a state-feedback so-
lution if there exists a non-negative function V :
R"x ©—R* which is positive definite with respect
to z such that the following parameter dependent
Hamilton-Jacobi inequality is satisfied for all 6 € 6:

ov 10V
—(x,0)f(z,6) + 19z

oz
ovT
_92(1) 0)9;(1‘, 0)) )

(110)(91(1'0)9’11‘(1‘78)'}'

(x,68) + AT (z)h(x) <0
(15)
and the parameter-dependent Ho-controller is

r

1 ovT
u= —592(:5’0)-5'1—(110)' (16)

7

Moreover, the closed loop system with the above
controller is dissipative with respect to the supply
rate |lw||® - ||zJ|?, and the function V is a storage
function for the closed-loop system satisfying the
dissipation inequality:

V(z,0) < llwl® ~ |1z)* . (17)
However, if the parameter is unknown before the
system is in operation, we need to design an adap
tive mechanism to estimate the parameter on-line
and use the estimated parameter to adjust the nec-
essary control action; in which case, the controller

u = ¥(z, w,p)

is used instead, where 9 is the state feedback (or
its modification) defined in (16), pisan estimation
of 8, and its update law has the following general
form:
P o z,w,u)

To guarantee the Hoo-performance (14) for the
closed system, we need to show that the adaptive
(closed-loop) system is dissipative with respect to
the supply rate Jw]|® - ||z||; it is enough to find a
storage function We : R X R"—R* for each 6 €6,
such that the following dissipation inequality is sat-
isfied:

W (z(T),p(T)) - We(2(0),p(0))

< IT("‘”WHZ ~ 20 1)de.

Its differential version is satisfied if W is differen-
tiable:

oW,
oz
‘aa’z’ (z,p)¢(p, T, w, ¥(z,w,p)) < |lw||® - 11%11".

(18)
for each €6 and (z, P) € R x R. Next, we
will explicitly construct storage functions such that
(18) is satisfied. From the discussion in Section 2.2,
suppose the Hamilton-Jacobi inequality (3.1) hasa
solution V(z, 0), a possible choice for the storage
function isV (=, p) where the unknown parameter
is replaced by its estimation p. However, it does not
reflect the parameter estimation nature for the up
date law. On the other hand, the parameter enters
the system in an affine fashion. Therefore, a mean-
ingful choice of the storage function of the adap
tive control system is the onc with an additional
quadratic p-term:

We(z, p) = V(z,p) + (p - )TQ(p -0)

(I:p)(f (:1:,0) + gl(mfe)w + 92(2:’ 0)1/)(1:» w’p))

+

(19)
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Note that this ideawas first introduced to construct
Lyapunov functions for stable adaptive systems
[13], and haa been used in many adaptive control
problems [6, 16, 23, 7]. For the sake of simplicity,
we will assume that the function vV : R® x 8—R*
satisfying the the above Hamilton-Jacobi inequality
be continuously differentiable with respect to both
arguments. Detailed solutions to the adaptive ?&-
control problem with full information feedback in
different cases when V is independent of the pa-
rameter is presented next.

3.2 Solutions to Adaptive He-
Control Problem

In this section, we mainly consider the case
where there exists a positive definite function V :
R"-R* which isindependent of 8 such that it sat-
isfies the Hamilton-Jacobi inequality (3.1), i.e.,

& @1(@.0) + 132 @) 01(.0)6 (z,0)+

~g2(z,0)9; (2, 0))———(z) + hT(z)h(z) < 0. (20)
fordl € e.

Let W : R™ x 6—R.* be a positive definite function
defined as

W(z,p)=V(Z) +(p - )"Q(p - 8).

where Q is the positive definite matrix defined in
the definition. Take W as a storage function candi-
date of the adaptive Hoo-control system. Then

W(z,p) = V(z) + 2(p - )"Qp

(21)

= 2 2)(f (@, 0)+01(2, O)uw+ 0a(,6)0) +2(p—0) Qp
:?—K(m)(f(:r,p) + gi(z, p)w + 92(x, p)u)+

+ Z{——(xxo. P)(fi(z) + gui(z)w + gai(x)u)}

f2=]

+2(p - 0)TQp
Notice that if p € 0, then from the assumption
(3.2), then
——(r) f(z,p) < ( (z)(gl(z p) g (z,p)+

AT
~g(z, 1) (@, p) 9.3—;—(1) + KT ()h(z)

Replace the above inequality and use the comple-
tion of sguare, one has

W(z,p) < lw(®)ll® - ||z(2))
u(t) + "92 (X, p) (z))‘
T
w(t) - %yl"(w,p)?a_‘;"(x) +2(p—0)TQ(i>—<I>(r.wv“))s

(22)
where @ : R* x RP1 X RP?2 R is defined as

$()(/1(@) + u(@)w + gn(a)u)

32 (@)(f2(z) + gra(z)w + goa(z)u)

&(z, w, u) = -;-Q“

&Y (z)(fr(z) + ir(z)w + gar(z)u) J
(23)

From (22), one has that if p€®© and u =

407 (z, p) = (2), then

W (z,p) < llw(®)|”-112(t) I1*+2 (p—6) TQ(p—&(z, W. ),
(24)

Now integrate both sides of (24) from O to T and

notice W(z(T'), p(T)) = O and z(0) = O, we have

T
J ()| dt < /o "lw(@®)l|? dt+(p(0)—6)T Q(p(0) —6)+

rys
+2\£ (o(t) - 6)TQU(E) - B(z(t), W(t), u(t)))dt
!
< l lw(t)? dt + (p(0) - O)TQP(0) - 6)

0)TQ(B(t) - B(=z(t), W(t), u(t)))dt.

o
+2  (p(t) -
v (25)

Therefore, if we can find a parameter update law
for p such that

T
\g (P) = 0)TQU(E) - B(x(t), w(t),u(t)))dt< 0

and
p(t) €0, Vte R+,

then the adaptive Ho-control problem is solved.
Fortunately, we can use the projection techniques
developed in Section 3 to achieve the above require-
ments.

Theorem 3.4 (Adaptive Heo-Control with
Vector Projection) Consider the parameter-

dependent system (12). Suppose there ezists a non-
negative function V . R™ —R* such that for each
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0 €6, (3.2) is satisfied. Then given a positive def-
inite matriz Q € R' *, the adaptive HMeo-control
problem has a solution. And an adaptive control
law is given by

{ P =1r3(p,<[>(.1:, w, :&g{(z,p)%‘;—r(z))
u= —497 (z,p) ()

where @ is defined by (23) and 7 is the scaled
vector projection with respect to the set ©.

(26)

Proof Consider the adaptive control law (26).
From Theorem 2.8, one has that the given parame-
ter update law:

p= 73, &(z, w,u)),
insures p(t) € and

(P - 0)TQF - &z, w,u))

Proof Consider the adaptive control law (27).
Suppose p(t) for t € [0, oo)is generated by the re-
sulting update law:

7 = &z, w,u),

and

p() = T (x(1));
then from Theorem 2.6, one has p(t) € © and for
allT € R+,

[ 60 07Qe0 - 2(a(t), we), ue)e
0

]
= ] o0 -omew - rena<o

Now apply the adaptive control law (27), we have
the relation (3.2), which implies

T T
=(p-0)TQ(S(p, ®(z, w,u)) - &(z, W, U)) <O, ‘l lz()1* dt < J) e (2)1I? dt+(p(0)-6)TQ(p(0) -6),

which implies
/0 {(B(t) - B)TQE() - B(z(t), w(t), u(t))dt < 0

for al T€ R+. Now apply the adaptive control
law (26), we have t_rlm_e relation (3.2), which implies

[ s < ] ol de+600)-0720(01-6)

foral Te R+.

The direct parameter projection method can be
also applied.

Theorem 3.5 (Adaptive He-Control With
Direct Parameter Projection) Consider the
parameter-dependent system (12). Suppose there
erists a non-negative function V : R*—=R* such
that for each 8 €O, (3.2) is satisfied. Then the
adaptive ?&-control problem has a solution with a
positive definite matrix Q € R™*". And an adaptive
control law is given by

. T
T = ‘D(Qz’w, —%gg(zvp)gé‘%(x))
pP= ne(") r
{ v=—497(z,0)%(2)
where ® is defined by (28) and I3 is the scaled

direct parameter projection with respect to the set
€.

(27)

9

for al T € R+.

Remark 3.6 It is interesting to compare Theo-
rem 9.5 with the sufficient condition result for
the minimaz adaptive problem in [2]. Asin the
above theorem, the sufficient condition in [2] for
the minimaz adaptive control problem to have so-
Uition is that there exists a non-negative function
V : R*—R* independent of the parameter such
that the Hamilton-Jacobi inequality (3.2) is satis-
fied; and the control action u s also obtained by the
parameter projection. However, the implications of
the function V(2) in the two papers are different. In
this paper, V(2 is just the storage function of the
parameterized Hoo -control system, but not the re-
sulting adaptive Ho -control system, In /2/, V(X) is
the storage function of the resulting minimaz adap-
tive control system, i.e., an upper bound of the value
junction. The adaptive controller in this paper is
simpler than that given in [2]. However, the use and
implications of parameter projection in 2] and this
paper are different. The scaling rnatriz of parame-
ter projection in 2/ is dependent on state, while the
projection in this paper is constant in this sense.

In conclusion, it is noted that the direct parameter
projection guarantees that the adaptive control law
(27) is continuous, while the adaptive control law
(26) using vector projectionis not. The latter con-
trol law can be made continuous using the vector
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projection defined by (9) under some smoothness
assumption,
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