Techniques for Unifying Disparate Elements in an EOS Instrument’s
Product Generation System Development Environment.

Alex Murray
Bjorn Eng
Craig Leff

Arnold Schwarz

Cdifornia Institute of Technology/Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109-8099
June 31997

ABSTRACT

The Advanced Spaceborne Therma Emission and Reflection Radiometer (ASTER) is designed to provide a high resolution
map of the Earth in both visible, near-infrared, and thermal spectral regions of the electromagnetic spectrum. The ASTER
Science Team has developed several standard data product algorithms, including atmospheric correction algorithms, a
temperature and emissivit y separation algorithm, and others. While these are being implemented primarily in C, significant
portions of the system are implemented in Sequential Query Language (SQL), because one component of the system is a
large lookup table, used for atmospheric correction and implemented using a relational database system. Unix shell scripts,
and other scripting languages such as Perl are used heavily in both the operational system and in testing. In addition, the
requirements and methods imposed on the development environment by the need to integrate with the Earth Observing
System’'s Data Information System create many instances of ancillary and data files which contain complex information
which must be correctly interpreted by many software and script elements of the system.

Problems of maintainability arise when system elements written in these different languages make use of the same
information, as for example when the value in a field in the relational database must be interpreted consistently in both SQL
scripts and by C code. Similar problems occur when the information in a data file must be interpreted consistently by in
several components of software. Moreover, there is little or no support in SQL or any of the scripting languages for the use
of software engineering principles and methodologies - such as modularity and information hiding - taken for granted in
programming languages, such as C, and their associated development environments.

In the development environment for the ASTER level H product generation system, techniques have been incorporated to
allow automated information sharing among all system elements, and to enable the use of sound software engineering
techniques in the scripting languages. This paper presents these techniques in detail. 5. KEY WORDS: 6. BRIEF
BIOGRAPHY:: Alex Murray has been at the Jet propulsion Laboratory (JPL) since 1991. He is a Software Engineer for the
ASTER Product Generation System, where his responsibilities include design and implementation of the CM system and
development envirorunent, as well as implementation of scientific algorithms. Previously he worked on the ground data
system for the airborne spectrometer AVIRIS. Before coming to JPL he worked for TRW Space and Defense company in
Redondo Beach, CA, where he was engaged in software engineering efforts including kernel programming, Artificial
Intelligence work, and computer security engineering. He received his B. S. and M. S. degrees in Mathematics from The
Ohio State University. -

Keywords: ASTER, Language, Macro, SQL, C

1. THE PROBLEM

The problem has two sides: one concerned with the distribution and sharing of information among different types of system

|

elements, and the other with software and script modularity and code and script reuse, The two aspects of the problem are related:
clean and minimal interfaces for information sharing are much more easily achieved in a development environment that supports
modularity and reuse. These two aspects of the problem are described in detail in the following paragraphs.

A. Information Sharing and Distribution
Exmaple 1. Process Control Files: Logical File Numbers

EOSDIS imposes several standards and methods on instrument teams' software. In order to understand these, it is necessary
to give a genera description of the processing environment envisioned in the Data Acquisition and Archive Centers
(DAACs). Each instrument team provides the DAAC with a set of executable programs, called Product Generation
Executable (PGEs). Loosely speaking, each program is associated with one or more data products made from that
instrument’ s data. When a user requests a data product, the EOSDIS automatically gathers the inputs reguired by the PGE in
order to produce the product, and runs the PGE or PGEs required to make the product. The PGEs are intended to run as
batch jobs, with as little human intervention as possible.

Because the PGEs are intended to be run as batch jobs, EOSDIS requires that they do not interact with the environment -
such as by prompting a human user for a piece of information, or by requiring an argument on the command line. The
method prescribed by EOSDIS for giving input information to the PGE is the Process Control File (PCF) - afile used to
contain al inputs the PGE needs during its run, including input and output files, and run time parameters. For each input file
that the PGE will need to read or write, the PCF must contain an entry which associates an integer, called alogical file
number, to the physical file name. Entries typicaly look similar to this:

15030| LEVEL_1_DATA.hdfl|||{ 1

When a PGE needs to access the file LEVEL _ |_DATA.hdf, it must first trandate the logical file number 15030 to a physical
file name. The software does this with a call to one of the subroutines provided by the Science Data Processing Toolkit.
The C statement to make the trangdation might look like this:

PGS_PC_GetReference(15030, & PGS file version, filename);

In this example, the SDP Toolkit call PGS_PC_GetReference() reads the PCF to find an entry with the logical 1D 15030, and
then loads the corresponding physical file name into the string variable * filename’. An important point to note is that the
logical ID -15030 in this example - must be part of the C source code - in order to change the number that the program uses
to get its level 1 data, the source code has to be edited and recompiled. And if the number should be changed in the
software, it had better be changed in the PCF as well. Conversely, if the logical file number is changed in the PCF, it must
be changed in the software, which then must be recompiled.

Now, suppose that you have many PCFS, and severa different PGES using those PCFS to access the input level 1 data, Then
suppose for some reason you have to change the logical file number - it can lead to alot of work, and can be quite error
prone (suppose for example that you forget to change the number at just one place in the source code of one PGE - suddenly
that PGE cannot open its input file).

A distribution of the ASTER Product Generation System (PGS) includes a suite of test cases for each PGE. Each test case
requires its own PCF in order to specify the inputs and outputs of the test in a repeatable way. So, the distribution contains
approximately 200 PCFs.

Example 2. Process Control Files: Run-Time Input Numbers

Another function of the PCF is to provide a mechanism by which to give run-time inputs (RTIs), or parameter values, to a
PGE. Choice of input bands to process, choice of digital elevation models, and selection of which version of a PGE to run,
are dl typical examples of RTls. ASTER PGEs take from 5 to 15 or more different RTIs. Asfor input files to a PGE, the
PCF assigns a different integer logical 1D to each RTI. The PGE must make an SDP Toolkit cal to translate the logical ID
ir}to avadue, just asfor files. The main difference isthat the * value' in question is the vaue of the RTI instead of a physical
file name.

PGE Scripts: Environment Variable Names

PGEs are often a single executable program (that is - a binary file that the operating system can load into the computer's
memory and execute), but they are aso frequently shell scripts that run one or more executable. In the ASTER PGS, there
are six different browse PGEs - each produces a browse image from a different level 2 product. Each of these PGEsisa |
shell script that sets an environment variable with a value which identifies which product is to be processed, and then invokes
the browse program executable. The browse executable reads the environment variable in order to determine which data
product to open and make a browse image (or images) out of. The name of this environment variable then, is referenced
from within the C code of the browse program, and from severa shell scripts. If for some reason the name needed to be
changed, it would require editing all of the shell scripts as well as the browse C code. It would make the modification much
easier if the name of the variable could be stored in only one place, as the value of constant, which the scripts and browse C
code could reference. Then the name could be changed automatically in all scripts and code by changing the vaue of the
constant - a single edit.

Example 3: Consistency between SQL Scripts and C Code

The ASTER PGS contains a large atmospheric correction lookup table (ref. x) which is implemented using the Sybase
RDBMS, and Sybase client software which allows a C program to send SQL statements to and from the server, and interpret
the results. The database is used not only to store the table and service queries on it, but to manage and control the
generation of the table, which involves thousands of runs of another program (called an RTC), each with a specific set of
inputs which are enumerated in a database table.

Fieldsin this table must be accessed, updated, and interpreted by C software and by SQL scripts. One exampleisthe’ status
field in the one of the tables used to control generation of the table. Thisfield is updated and interpreted by the client which
manages generation, and by several SQL scripts used to report on generation status. The value of thisfield is just a number,
but each different value has a meaning - such as “RTC Running”, “Run Completed”, “Run’s Outputs Being Inserted”, and so
on.

Suppose that 3 means “Run Completed”. The C code and al SQL scripts have to have the number 3 coded into them to
mean “Run Completed. If anew value should have to be inserted, so that 3 now has to mean “RTC Running”, all of the
SQL scripts and any C code which uses the status field have to be updated. This task might well be complicated by it being
difficult to find every place where the status field is read and interpreted. If there were instead a mechanism by which all
SQL and C code could refer to valuesin the status field by names and not by the actual underlying number, the job of
changing the meaning of individua values of the field would be greatly simplified.

B. Modularity and Code Reuse
Example 4: Environmnet Setup in Bourne Shell Scripts

On ASTER we make extensive use of Unix shell scripts - for automating installation and testing, as PGEs, and for
miscellaneous utility purposes. There are several instances in which a particular task has to be donein many placesin our
system of scripts, For example, there are a set of environment variables which must be set in a developer or user’s shell
environment in order to build or run the software. So, a developer or user’s Bourne shell setup file contain these lines:

CFG_EXEC=$CFG_BA SE/run/exec; export CFG_EXEC
CFG_CAL_LUT=$CFG_BASE/run/cal_lut; export CFG_CAL_LUT
CFG_CODE=$CFG_BASE/store; export CFG_CODE
CFG_MAKE=$CFG_BASE/store/cfg/make; export CFG_MAKE
CFG_RUN=$CFG_BASE/run; export CFG_RUN
CFG_PGS_CFG=$CFG_BASE/run/pgs_cfg; export CFG_PGS_CFG
CFG_TEST=$CFG_BASE/run/test; export CFG_TEST
CFG_TEST_IN=$CFG_BA SE/runftest/input; export CFG_TEST_IN
CFG_OUTPUT=$CFG_BASE/run/output; export CFG_OUTPUT
CFG_LOG=$CFG_BASE/runflog; export CFG_LOG

This list of Bourne shell commands must appear not only in user's setup script, but in the ASTER PGS installation script and
all test scripts (of which there are about 25). If for some reason we need to change the name of a variable, change the

definition of avariable, or add a new variable to the list, we would have to perform the same edits on these script linesin
about 30 different locations.

If these were lines of C or Fortran code that accomplished a small task that had to be done in many places, the programmer
would certainly create a subroutine and then just call the subroutine from each place in the software that needed to do that
particular task. In this way, the common piece of code needs to be maintained in only one place. We would like to be able
to do that with the list of Bourne shell commands shown above. Bourne shell syntax does provide a mechanism for defining
subroutines which may be called from severa places in a script, but the subroutine must be defined in the same file from
which it's called, This means that if the function must be done in several different scripts (each in its own filg), then the
subroutine has to be redefined in each file - and so maintained in several places.

Example 5: Differencing Files After Tests

Testing is automated with Bourne shell scriptsin the ASTER PGS. One very common task that the script must perform after
running the test itself is to difference the output file with an expected results file. Thisis done using IDL, through the use of
an IDL script which the testing script creates, and then passes to IDL. The Bourne shell commands to do this are typically
much like these commands:

echo “Differencing output file with expected results file. . .
if [-f $CFG_TEST/expected/expectedf | ; then
o echo “Unzipped expectedf exists.”
e
echo “Unzipping expected results file into $CFG_TEST/expected/”
gzip -dc $CFG_CODE/acvsftest/expectedf.gz > SCFG_TEST/expected/expectedf

[
echo “compile $CFG_EXEC/ASTER_compare.pro” >idltmp.idl
echo “compile $CFG_EXEC/HDF_Image_Extract .pro” >>idltmp.idl
echo "ASTER_compare, file1 = '$CFG_TEST/expected/expectedf,$ >>idltmp.idl
echo “file2="$ASTER_OUTPUT/output f'” >> idltmp.idl
echo “exit” >>idltmp.idl .
|;‘1[-x "typeidl | perl -p -e s/[OV/g;’| perl -p -e ‘s/.* VIV/g:™“ >]
then
idl idltmp.idl
ese
echo “Could not find idl in your path, Run iditmp.idl manually if
. possible’
[
echo "=====end cliff command output 8

There are severd test cases after which these or very similar Bourne shell commands have to be executed. Asfor the
commands which set common environment variables, It would be much more efficient to maintain these commands in one
place, and just parametrize them as needed for each invocation.

Example 6: Implementation of Test Scripts

We've mentioned that there are approximately 25 test scripts in the ASTER system. These test scripts have several things in
common:; they check command-line arguments and environment variables which control how the tests are done, then they
loop through the requested (or default) list of test case numbers, executing each test. The test scripts provide the user with
many options for controlling the execution: whether to run under a debugger and if so which one, whether to time the tests,
whether to run with TestCenter - atesting and analysis package we use, whether to actually run the tests or just print the test
case descriptions or just to the post-testing tasks such as generate IDL scripts and compare files. Thereisn’t space in the
present paper to go into the details of these functions, but it suffices to say that al these common tasks require over 300 lines
of Bourne shell script. To maintain these 300 lines in 25 different scripts would be quite a time consuming task.

Repeated Segments of SQL Code

Much SQL code is used in the APGS for creating, managing, and querying the atmospheric correction lookup table. The
current table consists of nine subtables, one each for each visible ASTER wavelength. Each of the subtables isidentical in
structure, except that names of tables contain the band number. One result of this structure is that large pieces of SQL code
have to be repeated nine times, with only the table names changed. An example follows:

create table SurfaceRadiances1 (
TopLevelIndex numeric(8,0) not null,
Aerosol Optical Depth real not null,

MolecularOpticalDepth real not null,

SolarZenithAngle real notnull, _
SurfaceRadiancelndex ~ numeric{ 10,0) identity unique not null,
RadianceValues binary)

on data_segment

go

this piece of SQL code creates a table to contain the surface radiances and associated values for an atmospheric model that
appliesto ASTER band 1. This same piece of code is repeated 8 times, to create a table for each of bands 2 through 8.
This makes for difficult code to maintain - if anvthing had to be changed in this code fragment. it would have to be changed
in the other 8 * replicated’ code fragment as well.”

It would be much more efficient to be able to maintain just a single copy of this piece of code, with the table name - e.g.
SurfaceRadiances] - patameterized so that the replication could be done in an automated way. The SQ language does not
provide away to do this.

2. THE TECHNIQUES APPLIED TOWARD A SOLUTION

In this section we explain the basis of the techniques used to solve the problems described in the previous section, beginning
with a discussion of certain features of the C language.

C Macros

In any variety of the C language, constants and macros may be defined with the * #define’ compiler directive. Typical
examples might be:

#define NUMBER OF BANDS 14
#define DB TABLCE _NAME “TOA _Radiances”
#define MAX(a,b) ((@>b) ?a: b)

Once these statements have been encountered by the C compiler, any subsequent occurrences of the symbols
NUMBER_OF_BANDS, DB_TABLE_NAME, or MAX are replaced with the value assigned the symbol by the * #define
statement. This symbol replacement is done during the C compiler’s first gass through the code, called the * preprocessing
step’ or just preprocessing. Continuing with the example, the following C code:

for (i = | < NUMBER OF _BANDS; i++) {

| sprlr:& mn'g:var "%s_%d", DB_TABLE_NAME, i);

Would look like this after preprocessing:

for(i=Q;j < 14 |++)

(((I >) - II; "o "
sprlntf(strlng var bs_%d", “TOA _Radiances”, i);

}

Note how the value of MAX isinserted into the code - the entire expression that isMAX’ s vaueisinserted, with the
arguments given MAX - ‘i’ and * 8'- inserted into the expression, Thisis a simple example of a macro - the value of MAX
could have been along series of expressions and statements, comparable in size to a subroutine. This turns out to be a very
useful feature, which well show in some detail |ater.

Another important compiler directive that is processed during preprocessing is the * #include' directive. For example:

#include <filel .h>
#include “file2.h"

During preprocessing, the contents of filel.h and then file2.h are inserted in the file in which the #include statements occur,
just asif filel.h and file2.h were actually part of the including file. This allows definitions (such as constants and macros)
and other C statements to be maintained in one place - in file 1Lh or file2.h for example - and be used in many C source files.

This feature promotes modularity and information hiding, and it is a feature taken for granted by developers of C code.
Other high-level programming languages have similar capabilities - indeed - it would be a very primitive language that did
not provide this feature.

The key feature of C compilation systems which makes the macro and file inclusion capabilities so useful for the purposes
described in this paper is that the preprocessing step can be run by itself; that is, the preprocessing step isimplemented in a
separate program, or the C compiler can be run in a mode in which it does the preprocessing step and then stops. This opens
the possibility of doing C preprocessing on arbitrary types of files - such as Process Control Files, SQL scripts, shell scripts,
and so on, The next section describes how we exploit these features of C compilation systems to solve some of the problems
described in the opening sections. Buit first we present a detailed explanation of how we use preprocessing in our build
process.

Project Makefiles

make' is a utility program which allows software developers to encode rules for building one object - usually a program
executable - out of one or more other objects - typically compiled C files (called object files). There flavors of make for all
major operating systems and types of hardware, but the present discussion centers around Unix-style make. Make provides
great flexibility in setting up rules for building various targets. The rules are defined in a sort of script file read by the make
program, called a makefile. A typical makefile might contain a rule definition something like this:

050 0

0.0:%Coc -0 -c-0$@ $<

This rule tells make how to make object files (files with extension * .0’) out of C source files (which have extension * .¢’).
The percent sign serves as a variable or wild card which can match the base name of any file. Suppose for example that
thereisa C file called xyz.c. Make will apply the rule shown above by replacing the percent sign with the string * xyz'.
Make also has specia built-in* macros’ for referring to the left- or right-hand side of the rule. The macro $<is an example
of this - it's value is whatever is on the right-hand side of the rule at application time - in this case, * xyz.c’. The built-in
macro $@ takes the value on the left-hand side, so in this example it takes the value * xyz.o’. Then the rule effectively
becomes:

: Xyz.C Xyz.C
XYyZ.0 C - :(C: -ngZ.o Xyz.c
g

The rule may be thought of as an instruction to make, namely: “to make any object file X.o out of source file Xc, execute
the command “cc -g -c -0 X.0 XcC".

Rules can be highly parametrized. The example rule shown above would more typically be written as follows:

%01 B-%5(CC) $(CFLAGS) ¢ -0 $@$<

In this syntax, the symbols CC and CFLAGS are called macros, and they can be defined either earlier in the makefile, on the
command line invoking make, or their values can come from shell environment variables of the same name. This adds
flexibility - on one platform CC might be defined as cc, and on another machine as gee - thus the same makefile works
without modification on different machines with different C compilation systems.

For the ASTER PGS, we' ve created makefiles which, in addition to the typical rules for building C and Fortran programs,
define a rich set of rules for building PCFS, shell scripts, SQL scripts, and arbitrary data files out of’ preprocessed’,
configured versions of the objects, based on the C compiler’'s preprocessing capabilit .

One such rule, for preprocessing a PCF, is approximately as follows:
% .pcf: 9
% el i< > 5@

Recall that the percent sign matches an arbitrary file root-name and the $@ matches the right-hand side of the rule. The

macro * @’ is another built-in macro which references the left-hand side of the rule. * cpp’ is the name of a C preprocessor on
certain Unix workstations. For example, we have a PCF called dst_test_10.pcf - the PCF for test case 10 of the decorrelation
stretch PGE. This PCF is configured in our CM system in its preprocessed form, with the name dst_test_10.ppcf. When
make is invoked to build the PCF, the rule effectively becomes this:

dst_test 10.pcf: dst_test 10. vocf
CPp’ dst.test. 10.ppe > dst_test_10.pef

The cpp command preprocesses the file dst_test_ 10.ppcf, putting the output to the screen. The* >’ reroutes the output of cpp
to the file dst_test_10.pcf.

The rule as shown has certain shortcomings: if dst_test_10.ppcf has #include directivesin it, and they reference a file which
is not in the current directory, cpp will not be able to find the included file. Thisis remedied by adding one or more

‘ -Idirectory’ arguments to cpp - telling cpp to search in the named directory for included files. Another feature of this
command as shown isthat it will pass through C comments unaltered, C comments are acceptable to the C compiler but they
are not allowable in PCF files or Bourne shell scripts, so they must be removed. This is done by giving cpp the -P flag. So
atruer version of theruleis:

% .pcf: %.ppcf
P e BRP 1. Jinclude $<> $@

Thiswill let cpp find included filesin the directory . finclude relative to the current working directory from which the make
command was invoked. In fact, in the ASTER development environment there are several directories in which include files
are stored, so we define a make macro - CFG_INCLUDES - which contains a list of’ -ldirectory’ arguments. We also
parametrize the command name - cpp - itself in case we need to change it, as well as the flags given to the preprocessor.
So, a till truer-to-life version of the rule is:

% pcf: 9.ppct
$?I?RECOMPILER) $(CPPFLAGS) $(CFG_INCLUDES) $< > $@

This rule embodies the basic procedure for al types of non-C files that we preprocess. We use the convention that the file
extension on the preprocessed version's filename has an extra“ p’ on the beginning of it. Thus, we define the following rules:

Target ‘ Source | Description
X.sh | xpsh | Bourne shell script I
X.csh X pesh C shell script ||
X ksh X.pksh Kern shell script "
[X.sql X.psql SQL script [
|| X.dat X.pdat arbitrary data file
|| X.MCF X.pMCF Metadata control file

The pattern of target extension vs. source extension allows the same rule to be parametrized to accommodate al file types,
as follows:

% $(EXT): %.pSEXT
%SE g(PiyllgggMPI)LER) $(CPPFLAGS) $(CFG_INCLUDES) $< > $@

There are a couple of complications which have to be solved, Recall that preprocessor directives begin with a pound sign,
“#,inthefirst column, It just happens that the pound sign is also the comment character in all types of Unix shell scripts,
such as Bourne shell and C shell, and in many types of data files, including PCF files. The following is typical to seean a
shell script:

#
ﬁThis isacomment . ..

where each pound sign isin the first column of the file. If these lines are given to the C preprocessor, errors will result as
the preprocessor tries to interpret each line beginning with a pound sign as a directive. In order to avoid this situation, the
rule, say, for PCFs, works as follows: the .ppcf is filtered to change all first-column pound signsto* _ #, except for pound
signs that introduce one of a selected subset of the valid preprocessor directives. Thisfiltered version of the fileis then fed
to the preprocessor. Then the output is placed in a second temporary file, which is then filtered to change al tokens* __#
back into just * #, producing the final output, This processing appears in the makefile rule definition as follows:

$(DEST_ DIR 1% .3 EXT): "% .PSTET)
- 3{CTG MATKEXpp_rdict sed $< >“@ .tmp
$(PRECOMPILER) -p $(8FG INCLUDES)$@ tmp I\
awk ’{1f len th > Q) print}’

d
f[q"?;(EXT = pc1 "'°0"§$& ruls* 2, “" ?C‘{?.tmpZ

sed g @ .tmp2
seEnv @L/t'rfugpz%@tmp < $@;\

This rule first runs the * seal’ program with a script - file cpp_rule 1.sed - which replaces the first-column pound signs with

‘ __# and leavestheresult in file $@ .tmp. Then the preprocessor is run on this temporary file. The output from the
precompiled is then run through the awk program just to remove blank lines (of which there can be many in output from the
preprocessor). Then the output from awk is run through sed again, this time to change the ' __#* tokens back to just pound
signs. The ' if’ statement checks whether the file being processed is a PCF - if so it runs sed on the output file to remove
any instances of a blank or tab preceding a pipe (‘1”) character - this can result from some precompilers inserting extra
blanks in the output stream, and causes an error in reading the PCF.

There is another important piece of processing performed by the two main sed commands - the ones which use sed scripts
cpp_rulel .sed and cpp_rule2.sed. The first command replaces all double-, single-, and back-quotation marks (*, *, *) with
specia aphanumeric tokens, and the second sed command changes these tokens back to the original quotation character.
This has the important effect of letting the C preprocessor perform symbol replacement on text that occurs between pairs of
any of the three types of quotation marks. Thisis done because in Unix scripting languages such as Bourne shell and C
shell, al of these types of quotation marks play a very large role and hence appear very frequently, and so C defined
constants tend to frequently appear between quotes. We want these references to defined constants to be evaluated by the
preprocessor, so we have to temporarily remove the quotation marks because the preprocessor will not evaluate any symbols
that appear bet ween quotations marks.

There is one more complication. C! include files (called * header’ files), can contain any valid C statements, not only #define
and #include statements. A typical example of such a statement is:

struct PGE_parameters }
long input_ |Ielog|cal
outr%ut file loglcal
boolean dorng_stretch

This statement defines a C structure, which is most likely used in many of the C source files that include the header file
containing it. If this structure definition turned up in a SQL script or in a PCF, it would certainly not be valid for that type
of file. But for this technique to be useful, we must be able to include C header files in PCFS and other types of files. We
solve this problem by filtering C header files to remove anything but the desired compiler directives, and then having
preprocessed scripts and data files include the filtered version. C header files have the extension * .k’ by convention. We
give the filtered version the extension ‘ .fh’. The filtering itself is done by make using the standard Unix utility programs
grep and egrep, in accordance with the following makefile rule:

% fh: %.h
rep ’A#’ $< egrep -v #Include *\h §
g I \ l\A* *$$,,’ >$@

sed-e’s, ,,g'-e's []*, .8’ -e

In this rule, the grep program searches for any pound sign occurring in the first column and prints al such lines (and only

8

such lines) to the screen. The output from grep is piped to an egrep command, which filters out #include compiler directives
and back-slash characters. This output is then sent to the sed command, which converts all tabs to blanks, and multiple
blanks to one blank. The * >’ puts the output of sed into the filtered header (‘.fh’) file. The resulting filtered header file has
only the desired compiler directives, and so may be safely included in a PCF, or a SQL or shell script.

Now we can discuss applications of these techniques to the problems presented in the opening sections of the paper.

2 APPLICATION

A. Information Sharing and Distribution
Example 1: Process Control Files: Logical File Numbers, Revisited

By maintaining our Process Control File in pre-compilable form (i.e. - asa.ppef file), we can use C constants to identify
logical file IDS, the same C constants that the C code uses when referencing the file. Here is the precompilable form of one
of the PCFS for the Brightness Temperature PGE, the file bts_test_9.ppcf:

#include <acg_BTL.fh>
#include <acg_RTI.fh>
#include <bts.fh>

#include <dif.fh>

#include <dif_filenames.h>
#include <dif_scl.fh>

#
? PRODUCT INPUT FILES
4!# $CFG_TEST_IN

BTS D STRETCH PRODUCT] dst_14_TIR. hdfl $CFG_ OUTPUTdetI | | dst_14_TIR hdfj 1
BTS Ll RADIANCE DAT.uptl rite-L1h fkdICu rite-L.13.hdf] 1

BTL LUT_FILE Brlgﬁt -Temp-LUT-V2.hdf| $C LUT o

#include <acg_PTE_prod_in_ppcih>

PRODUCT OUTPUT FILES
$ASTER_OUTPUT

BTS_BRIGHT_TEMP_OUTPUT] bright_temp_9.hdf] | | | bright_temp_9.hdf] 1

SUPPORT INPUT FILES
$CFG_CAL_LUT

SUPPORT OUTPUT FILES
$ASTER_LOG

#define STATUS LOG bts-status.log

#define REPORT_LOG bts-r]%ort log

#define USER_LOG bts-user

;?I nclude <acg_PTE_sup_out ppc1 h>

;I# USER DEFINED RUNTIME PARAMETERS

BTS_RTI_PGE_MAJOR_VERSION| PGE Major VersonLL

e

Ho—= o — -0

BTS_RTI_PGE_MINOR_VERSION| PGE Minor Version| 1
BTS_RTI_BTLUT VERSION] Brlg tness Temperature LUT| 2

#

? INTERMEDIATE INPUT

i# $ASTER_OUTPUT

? INTERMEDIATE OUTPUT
i# $ASTER_OUTPUT

? TEMPORARY 10

i# $ASTER_OUTPUT

? END

The symbols appearing in the first place, such as BTS LI_RADIANCE_DATA and BTS D_STRETCH_PRODUCT, are
defined in the header file bts.h, and the definitions are copied to the file bts.fh at make time. The include file

9

acg_PTE_prod_in_ppci.h contains many PCF entries for files used by the SDP Toolkit, such as files needed by the
gee-location tools, and Metadata Control Files (MCFs). Since these entries are common to all PCFS, it is much more

efficient to store them in one header file and include them. This one header file is updated with each new SDP Toolkit
delivery.

To produce the PCF that is actually used in the test, the user has only to type the command * make bts_test_9". If the filtered
header bts.fh is older than the file bts.h, the make produces a new version of bts.fh before processing bts_test_9.ppef to
product bts_test_9.pcf. Hereis a portion of bts_test_9.pcf:

? PRODUCT INPUT FILES
;# $CFG_TEST_IN

15035] dst_14_TIR.hdfl $CFQ?O_UTPUT£CISIIJ Hst_14_TIR.hdf] 1
15032| Cu rite-LlB.lrilt;l T[UCugnte-LlB. d

15330| Br ght-TerrE -V2.hdf] $SCFG_CAL_LUT| |1 11

10780| usatile12| $IGS_AA_DAIA ||| LOVEU 1122

When the PGE needs to access the level 1 radiance datafile, it uses the same C constant that appearsin bts_test_9.ppef -
namely BTS LI RADIANCE_DATA, as follows:

PGS_PC_GetReference(BTS_L1_RADIANCE_DATA, &PGS_file_version, filename);
In thisway the logical IDsin the C program and in the PCF ate automatically kept constant.

Example 2: Process Control Files: Run-Time Input Numbers, Revisited

In the file bts_test_9.ppcf shown above, the run-time inputs were contained in the section of the PCF that starts with the line
? USER DEFINED RUNTIME PARAMETERS
One particular run-time input entry in the PCF was the PGE’'s mgjor version:

BTS_RTI_PGE_MAJOR_VERSION| PGE Mgjor Version| 1

The symbol BTS RTI_PGE_MAJOR_VERSION is a C define constant, declared in the file bts.h (and bts.fh). The C code

uses the same named constant to ask the Toolkit for the value of the input, so consistency between C and the PCF is again
automatically maintained.

Example 3. Consistency between SQL Scripts and € Code, Revisited

In the first section the example of the * status' field in the database table which is used to controls and monitor generation of
the lookup table. To define the values for the lookup table, we put the following linesin a header file, db_gen.h:

#define UTL_DB_STAT_NOT_YET_DONE
#define UTL_DB_STAT_RTC_RUN_DONE
#define UTL_DB_STAT_COMPLETED_AOK

— 0

- 1
#define UTL_DB_STAT_PARSING_DONE 2 3

_ _ 4

#define UTL_DB_STAT_PARSING_OUTPUT 5

#tdefine UTL_DB_STAT_INSERTING 6
#define UTL_DB_STAT_RUN_FAILED 7
#idefine UTL_DB_STAT_PARSE_FAILED ‘8
#define UTL_DB_STAT_INSERT_FAILED 9
#define UTL_DB_STAT_ABANDONED_DUP 10

#define UTL_DB_STAT_RUNNING_RTC

This list of defines is used by both C code and the SQL scripts in order to ensure consistent updating and interpretation of the
status field. One of the SQL scripts defines a procedure * ipstat’ - In Process Status - for giving the user a concise snapshot
of the status of table generation. This procedure’s SQL code makes several queries based on the status field, as in the

10

following examples, where the (preprocessable) SQL code is taking counts of records with different statuses:

select @done_pri_1=
(select c&nf(*) from UTL_DB_TRANSFER_CODE_RUNS TABLE
where Status = UTL_DB_STAT_COMPLETED_AOK and Priority <=MAX_HIGH_PRI)

select @ not_run_pri_ 1=
(select count(¥) from UTL DB _TRANSFER CODE RUNS TABLE
where Status = UTL_DB STAT_NOT_YET_DONE and Priorit y <= MAX_HIGH_PRI)

This excerpt is from file db_gen_utils.psql. After running the command * make db_gen_utils’, the resulting script
db_gen_utils.sql contains these lines:

select @ done_pri_1= o
(select count(*) from J TransferCodeRuns where Status = 3 and Priority <= 500000)

select @ not_run_pri_ 1= .
(selecf count(*) from J_TransferCodeRuns where Status = O and Priority<= 500000)

Not only are the status values referenced as C constants, but the table name and priority values are as well. This makes for a
much more maintainable SQL script.

The client which runs the RTC and inserts the results into the database is a C program called db_gen. Here is an excerpt
from its source code:

*
% Find the next record to process, and send the query to the server.

*
sprilntf{JS_Pll__ command, “select RuniD from %s where Status = %d oraer oy Priority",
DB RTC RUN_DATA_FILE VIEW_S,UTL_DB_STAT_NOT_YET_DONE);

dstatus = db_if SendCornmand((*db_handle), SQL_command, &result_type);
if (dstatus = DBIF_S_SUCCEY { ,

printf(“*** Query 61 queie ror Eerllng RTC runs failed. ***\n"),

return (DB_GEN_STAT_ERROR);

The C code also uses the same defined constants for the status values, ensuring consistency with the SQL scripts.

B. Modularity and Code Reuse

Example 4: Environment Setup in Bourne Shell Scripts, Revisited

Recall from the first section the list of Bourne shell commands for setting common environment variables. In order to avoid
having to maintain these commands in many different places, we use the C preprocessor file inclusion capability to place the
commands in a header file and then just include the header file wherever it's needed. The commands need not be .
parameterized, so appear in the header file exactly as shown in the first section. The header file, set_sh_vars.h, isincluded in
many places in Bourne and Kern shell scriptsin the ASTER PGS.

Example 5: Differencing Files After Tests, Revisited

In the first section, a list of Bourne shell commands for creating an IDL script to difference outputs with expected results
files was shown. These commands do need to be parameterized with the names of the two files to compare, so they are
defined in a header file - acvs_test_macros.h - as a C preprocessor macro, as follows:

#define ACVS_HDFCOMPARE_FILES (expectedf,outputl) echo ""; echo I//l; \
echo “Differencing outputf with expected resultsfile. . .";\

(al lines shown above in Example 5 go here)

. \echo “Could not find idl in your path. Run idltmp.idl manually”; \
I

1

In the preprocessable version of one test script this macro is invoked 24 times. This means that the maintained version of the

script - the preprocessable version - has 24 lines devoted to these tasks, while the script output by make contains 17 X 24 =
408 lines. Here is one of the invocations:

ACVS_HDFCOMPARE_FILES(acvs_S_SrfRad_23 .hdf,acvs_S_SrfRad_23 .hdf)

In this invocation of the macro, the formal parameters‘ expectedf® and * outputf> both are given the value
“ acvs_S_SrfRad_23 .hdf, The macro different iates bet ween the t wo by prepending different paths to filename.

Implementation of Test Scripts

We've mentioned before that there are approximately 25 test scripts in the ASTER system, each with several features in
common. Using the file inclusion capability of the C preprocessor, we've implemented the entire test script as a
parametrizable template for atest script, This has alowed the development and test teams to create new test scripts, which
are each highly complex Bourne shell scripts, with very little effort.

The test script template is in an include file called acg_test_script.h. The template contains over 500 lines of Bourne shell
commands. This script template evauates all relevant environment variables, that is, those variables which alow the user to
change the way the tests are run, parses command line switches, checks for the presence of necessary executable and scripts,
and then creates aloop in which each in the selected list of testsisrun. The file cannot be included here for lack of space.
Here is an example of the file's usage, from file dst_test .psh:

test_message_1() {

cat <<’EOMSG’

Verify that DST will detect amissing 1B input file. _
You should see an error message indicating that the radiance input
file cannot be opened.

EOMSG

}

test message 10
cat << EOMSG 01

Perform the stretch on bands 5, 7, and 8. Because the input bands
are chosen, only one telescope is processed in this test.

The test will produce output file $CFG_OUTPUT/dst/dst_ 10_cov.hdf,

EOMSG
}

ﬁ Generate an IDL scripts to view the resullts.

test postrun 10 O {
-e "s,OUTPUT_FILE, $ASTER_OUTPUT/dst_10_cov.hdf,” \
“e“s, ORIG_DATA $CFG_TEST_IN/Cuprite-LIB.hdf," \
-e "s,EX_FILE,$CFG_TEST/expected/dst_10_X.hdf,” \
$CFG_CODE/dst/test/dst_template.idl \
> tmp_ 10.idl

Decorrelation Stretch Test C

L
]

EOMSG
date

#define PGE_NAMES dst_stretch browse_stretch.ksh

12

#define NUM_TESTS 16
#define FIRST _DATA TEST 10
#define SUBSYSTEM dst
#include <acg_test_script .h>

exit O

This script first definesthe * test_message_x’ Bourne shell functions - functions which describe the test - for each test case.
The main loop in the template header file will assume the existence of such a function for each test. dst_test .psh also defines
a function with the name * test_postrun_x’ for each test case X which produces output (i.e. runs to successful completion, as
opposed to atest in which the software is supposed to detect an error and abort). The template assumes the existence of
these functions as well.

Then the test script, dst_test.psh, prints a greeting message to the screen (the * cat’ command). Then it defines the parameters
for the test template include file: PGE_NAMES is the list of PGEs to run for each test case. In this case the decorrelation
stretch and browse PGEs are run, Then the constant NUM_TESTS is defined to control the main loop in the test template.
The constant FIRST_DATA_TEST tells the template which test case first produces output, and so for which test case the
loop should start running the * test_postrun’ functions. The SUBSY STEM constant tells the test template which
subdirectories to put output and log files in, and which prefix to use in choosing PCFS with which to run each test.

Repeated Segments of SQL Code

In the first section we presented some sample SQL code which creates a table named SurfaceRadiances1, and noted that a
very similar table had to be created for each of the other 7 visible ASTER bands. The code that generates the SQL
statements to create the table is stored in a header file, from which the following is taken:

create table SurfaceRadlanc **BAND_NUM &D
TopLevelIndex AWG_DB_TLP_IX_T PE not null,
AerosolOptlcalDe thep real not null
Molecular I~Rt1ca ep real not nuli,

SolarZenit ea not null,
SurfaceRad|anceI ndex ACG _DB_SR_TX_TYPR ‘identity uﬁlgu'é Tior i,
f?adlanceVaIues binary(ACG_DB_BYTES_PER_RADIANCE COLUMN)
on’ ACG_DB_DATA_SEGMENTI
go

The following excerpt is from the preprocessable SQL script file which includes the header file:

#idefine BAND_NUM 1
#include <acg_db_tables.h>
#define BAND_NUM 2
#include <a Ngi)db tables h>

#tdefine BA
#include <a N%)db tables h>
#tdefine BA

#include <acg_db_ tables h>
#define BAND_NUM 5
#include <a N%)db tables h>
#define BA

#include <acg_db_i tables h>
#define BA NUM 7
#include <acg_db_tables.h>
#define BA NUM 8
#include <acg_db_tables.h>
#define BAND_NUM 9
#include <acg_db_tables.h>

In this example, the value of the constant * BAND_NUM’ is evaluated and appended to the root name of the table,
* SurfaceRadiances’ to generate the names * SurfaceRadiances|’, * SurfaceRadiances2’, and so on. In this way the same code
can be essentially used nine times, but maintained in one place.

4. PRODUCTIVITY CONSIDERATIONS

In most methodologies for estimating the cost of a software development project, the statistic Lines of Source Code figures

13

prominently ([2], [3]). From this it seems like a reasonable assumption that reducing the numbers of lines of code that must
be developed and maintained reduces the cost of the development. Anocther factor that clearly affects productivity is ease of
maintenance, even on a project like the development of the ASTER PGS, which is entirely new development. Maintenance
comes into play in adapting to changing requirements and interfaces, of which we have experienced a great deal. Ease of
maintenance is related to lines of source certainly, but it is also affected by other factors such as clarity, modularity, and
number and complexity of interfaces. We are not prepared in this paper to make any firm conclusions about the effects of
the techniques described on the productivity of development, but we do think that these techniques have significantly
improved our productivity .

The following table shows counts of different types of code, and the counts of lines in PCFS versus pre-PCFs, in the current
version of the ASTER PGS. The * Code Count’ entry includes both C code and Fortran.

Type of Code Line Count

Code (C, Fortran) 137889

Pre-Script (shell) 10367

Script (shell) 15913

Pre-SQL 3754 I
SQL 4454

Pre-PCF 15858

PCF 30962

The ratio of C and Fortran code to SQL and shell script code is alittle less than 10 to 1, using the precompilable version
counts of 10367 and 3754. So whatever gains in productivity y we get as a result of reducing line counts apply to about 10%
of the entire effort. Having said that, we can still see a significant reduction in line count -6246, or 4.1% - due to the
techniques presented in this paper.

The numbers of linesin the Process Control Files (PCFs) are not taken into account, since PCFS are not code in any sense of
the word. Nonetheless, it takes quite a bit less time to create and maintain 15000 lines of PCF than it does to create and
maintain 30000 lines.

5. ACKNOWLEDGMENTS

This research described in this paper was carried out by the Jet Propulsion Laboratory, Cdlifornia Institute of Technology, under
acontract with the National Aeronautics and Space Administration.

6. REFERENCES
1. Implementation of a Very Large Atmospheric Correction Lookup Table for ASTER Using a Relational Database
Management System, Murray, A., Eng, B., Theme, K., Proceedings of SPIE Conference on Earth Observing Systems, Denver
1996.

2. Giles, Alan E., and Gregory T. Daich, “Metrics Tools,” CrossTalk, February 1995.
(http:/fwww stsc.hill. af mil/crosstalk/ 1995/feb/metrics.html)

3. Universal Metrics Tools, Gregory T. Daich and Alan E. Giles, Software Technology Support Center,
http:/fwww.stsc. hill. af.mil/crosstalk/ 1995/sep/universa. html.

14

