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Abstract - - A serially concatenated code with inter-
leaver consists of the cascade of an outer encoder, an in-
terleaver permuting the outer codeword bits, and an inner
encoder whose input words are the permuted outer code-
words. In this paper we derive design guidelines for the outer
and inner codes that maximize the in terleaver gain and the
asymp t ot ic slope of the error prob abili ty curves.
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lel and scrial con catenation of codes.

]1. INTRODUCTION

In his goal to find a class of codes whose probability of er-
ror decreased exponentially at rates less than capacity, while
decoding complexity increased only algebraically, David For-
ney [1] arrived at a solution consisting of the multilevel cod-
ing structure known as concalenaled code. It consists of
the cascade of an inner code and an outer code, which, in
Forney’'s approach, would be a relatively short inner code
(typicaly, a convolutional code) admitting simple maximum-
likelihood decoding, and a long high-rate algebraic nonbinary
Reed-Solomon outer code equipped with a powerful agebraic
error-correction algorithm, possibly using reliability informa-
tion from the inner decoder. An interleaver is sometimes
used between the two encoders to separate bursts of errors
produced by the inner decoder.

We find then, in a “classical” concatenated coding scheme,
the main ingredients that formed the basis for the invention
of “turbo codes’ [2], namely two, or more, constituent codes
(CCs) and an interleaver. In the following, we will refer
to turbo codes as parallel concatenated convolutional codes
(PCCCs).

In this paper, we consider the serial concatenation of in-
terleaved codes or serially concatenated codes (SCCs), caled
SCBC or SCCC according to the nature of CCS, that can be
block (SCBC) or convolutional codes (SCCC). For this class
of codes, analytical upper bounds to the performance of a
maximumn-likelihood (ML) decoder had been derived in [3]
and [4]. Here, we propose design guidelines leading to the
optima choice of CCs that maximize the interleaver gain
and the asymptotic. code performance.

[1. DESIGN OF SERIALLY CONCATENATED CODES WITH
INTERLEAVER

In [4] we proved that the bit error probability of SCBCs
using a uniform interleave [5] and a maximum-likelihood
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decoder can be upper bounded as
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where R, = kin is the rate of Cs, E3/No is the bit signal-to-
noise ratio, A*(w, H) isthe conditional weight enumerating
function (CWEF) of the SCBC

A%S(w, H) = ZAw s H"

where Ag“h is the number of codewords of the SCBC with
weight h associated to an input word of weight, w.

The coeflicients ASS, of the CWEF can be obtained from
those of the two CCS as
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where the superscripts C, and C; refer to the outer and inner
code, respectively.

For SCCCs (whose block diagram is shown in Fig. 1), com-
puting the upper bound to the bit error probability perfor-
mance requires the definition of an equivalent block code,
formed by the sequences of the SCCC with length N K2 that
join the zero states of both CCS. Thus, performance evalua-
tion requires the knowledge of the CWEFs AJ< and A[; of
the two CCs and then the application of (2) and (1), respec-
tively.

The bound to the bit error probability can be rewritten as
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where w2, is the minimum weight of an input sequence gen-
erating an error event of the outer code, and h,, is the min-
i mum weight of the code words of Cs.

To evaluate the CWEFs of the CCS, consider a rate R =
p/n convolutional code C with memory v, and its equivalent
(N/R, N —pvr) block code whose codewords are al sequences
of length N/R bits of the convolutional code starting from
and ending at the zero state. By definition, the code words of
the equivalent block code are concatenations of error events
of the convolutional codes. I.et
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Fig. 1. Serially concalenated (n, k, N) convolutional code.

be the weight enumerating function of sequences of the con-
volutional code that concatenate j error events with total
input weight !, where A; 4 ; is the number of sequences of
weight h, input weight 1, and number of concatenated er-
ror events j. For N much larger than the memory of the
convolutional code, the coefficient, A , of the CWLEF of the
equivalent block code can be approxm]ated by!
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where nps, the largest number of error events concatenated
in a codeword of weight h and generated by a weight 1 in-
put sequence, is a function of h and 1 that depends on the
encoder, as we will see later.

Let us return now to the block code equivalent to the
SCCC. Using previous result (4) with j=n' for the inner
code, and the analogous one for the outer code®
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and substituting them into (2), we obtain the coefficient
Aﬁ“h of the serially concatenated block code equivalent to
the SCCCin the form
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where d5 is the free distance of the outer code.
We are interested in large inter] eaver lengths, and thus use
for the binomial coefficient the asymptotic approximation
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Substitution of this approximation in (5) yields
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!Thisassumption permits neglecting the length of error events compared
to N, and assuming that the number of ways j input sequences producing

j error events can be arranged in a register of length N is (N:’/P). The

ratio N/p derives from the fact that the code has rate p/n, and thus N bits
correspond to N/p input words or, equivalently, trellis steps.

?In the following, superscripts “o” and “i” will refer to quantities per-
taining to outer and inner code, respectively.

Finally, substituting (6) into (3), gives the bil error proba
bility bound in the form
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Using expression (7) as the starting point, we will obtain
some important design considerations. The bound (7) to
the bit error probability is obtained by adding termsof the
first summation with respect to the SCCC weights h. ‘he
coefficients of the exponentials in h depend, among other pa-
rameter, on N. Forlarge N, and for a given h, the dominant
coeflicient of the exponentials in h is the one for which the
exponent of N is maximum. Define this maximumexponent
as

a(h)énul}alx{n" +nf—1-1} .

Evauating «(h) in general is not possible without specifying
the CCs. Thus, we will consider two important cases, for
which general expressions can be found.

A. The exponent of N for the minimum weight

For large values of Ep/No, the performance of the SCC
are dominated by the first term of the summation with re-
spect to h, corresponding to the minimum value h = hy,.
Remembering that, by definition, n%, and n$; are the max-
imum number of concatenated error events in codewords of
the inner and outer code of weights hy, and !, respectively,
the following inequdlities hold true:
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where [, (h, ) is the minimum weight { of codewords of the
outer code yielding a codeword of weight h,, of the inner
code, and |z] mean S’integer part of 2”.

In most cases, ln(hm) < 2d}, and hy, < 2d, so that nj, =
n%, = 1, and (8) becomes

althm)=1-1(hy)<1- dj . (9)

‘I'he result (9) shows that the exponent of N correspond-
ing to the minimum-weight of SCCC codewords is aways
negative for d$> 2, thus yielding an interleaver gain at high
Ey/No. Substltutlon of the exponent a(hn) into (7) trun-
cated to the first term of the summation with respect to h
yields
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where B, is a suitable constant.
Expression (1 O) suggests the following conclusions:

« For the values of £3/No and N where the SCCC per-
formance is dominated by its free distance dSs = hm,
increasing the interleaver length yields a gain in perfor-
In al ce.

« To increase the interleaver gain, one should choose an
outer code with large d$.

« To improve the performance with #:/No, One should
choose au inner and outer code combination such that
h., is large.

These conclusions do not depend on the structure of the

CCs, and thus they yield for both recursive and non recursive
encoder.
We evaluate thenthe largest exponent of N, defined as

M 2 m}?x{a(h)} = m?))‘({n" +nf-1-1} . (112)
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This exponent will permit to find the dominant contribution
to the bit error probability for N + cm.

B. The mazimum ezponent of N

We need to treal the cases of nonrecursive and recursive
inner encoders separately. As we will see, non recursive en-
coders and block encoders show the same behavior.

A. Block and monrecursive convolutional inner cn-
coders

Consider the inner code and its impact on the exponent of N
in (1 1). For a nonrecursive inner encoder, we have "11.\1 =1
In fact, every input sequence with weight, one generates a
finiteweight error event, so that au input sequence with
weight, ! will generate, at most, 1 error events corresponding
to the concatenation of 1 error events of input weight one.
Since the uniform interleaver generates all possible permuta-
tion of itsinput sequences, this event will certainly occur.
Thus, from (11 ) we have

apm=n4yy—1>0,

and interleaving gain is not allowed. ‘I’his conclusion holds
true for both SCCC employing nonrecursive inner encoder
and for all SCBCs, since block codes have codewords corre-
sponding to input words with weight equal to one.

For those SCCS we always have, for some h, coefficients
of the exponential in h of (7) that increase with N, and this
explains the divergence of the bound arising, for each F/No,
when the coefficients increasing with N become dominant.

B. Recursive inner encoders

In [6], we proved that, for recursive convolutional encoders,
the minimum weight of input sequences generating error
events is 2. As a consequence, au input sequence of weight, {
can generate a most | 4] error events.

Assuming that the inner encoder of the SCCC is recursive,
the maximum exponent of N in (11) becomes
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The maximization involves { and w, since n}s depends on
both quantities. In fact, remembering its definition as the
maximum number of concatenated error events of codewords
of the outer code with weight ! generated by input words of
weight w, it is straightforward to obtain
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Substituting now the last inequality (13) into (12) yields
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The maximization of the RHS of (14) is lengthy but
straightforward. ‘I’he final result is
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The value (15) of aas shows that the exponents of N in (7)
are always negative integers. ‘1'bus, for al h,the coeflicients
of the exponents in h decrease with N, and we aways have
an interleaver gain.

Denoting by di _,,, as in [5], the minimum weight, of code-
words of the inner code generated by weight-2 input se-
quences, we obtain a different weight %(aas) for even and
odd values of d5.

d“; even

For d$ even, the weight h(am) associated to the highest
exponent of N, is given by

ded: .
hapm) = —17‘1 ,
since it is the weight of au inner codeword that concatenates
d$ /2 error events with weight di_,,.
Substituting the exponent aar ‘into (7), approximated only
by the term of the summation with respect to h correspond-

ing to k= h(ap), yields
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where Bey,en iS asutatble constant.

d; odd



‘Yord§ odd, the value of h(aw) is given by
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where A isthe minimum weight of sequences of the inner
code generated by a weight 3 input sequence. in this case,
in fact, we have

M

=41
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concatenated error events, of whichnjy—1 generated by
weight 2 input sequences and one generated by a weight 3
input sequence.

Thus, substituting the exponent aa into (7) approximated
by keeping only the term of the summation with respect to
h corresponding to h = h(ap) yields
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where Boada is a suitable constant.
In both cases of df} even and odd, we can draw from (16)
and (17) a few important design considerations:

. in contrast with the case of block codes and nonrecur-
sive convolutional inner encoders, the use of a recursive
convolutional inner encoder always yields an interleave
gain. As a consequence, the first design rule states that
the inner encoder must be a convolutional recur-
sive encoder.

« The coefficient h(aas ) that multiplies the signal-to-noise
ratio F»/No in (7), increases for increasing values of
d: .. ‘1'bus, we deduce that the effective free dis-
tance of the inner code must bemaximized. Both
this and the previous design rule had been stated also
for PCCCs® [6]. As a consequence, the recursive con-
volutional encoders optimized for use in PCCCs (see
Tables in [6;7]) can be employed atogether as inner CC
in SCCCs. ,

« The interleave gain is equal to N- for even values
a9 +1
of d; and to N~ for odd values of d°. As a con-
sequence, we should choose, compatibly with the de-
sired rate K, of the SCCC, an outer code with alarge
and, possibly, odd value of the free distance.

« Astoother outer code parameters, N7 and way,sshould
be minimized. In other words, we should have the mini-
mum number of input sequences generating free distance
error events of the outer code, and their input weights
should be minimized. Since nonrecursive encoders have
error events with w = 1, and, in general, less input errors
associated with error events at free distance [8], it can
be convenient to choose as outer code anonrecur-
sive encoder with minimum N¢ and war,s. Conven-
tional nonrecursive convolutional codes found in books
(see for example [9]) are appropriate.

‘For PCCCs, however, both CCS had to comply with those design rules.

C. Examples confirming the design rules

To confirm the design rules obtained asymptotically, i.e.
for large signal-to-noise ratio and large interleaver lengths
N, we evauate the upper bound (7) to the bit error proba-
bility for two SCCCs, with different interleaver lengths, and
compare their performance with those predicted by the de-
sign guidelines.

The two SCCCs are obtained as follows: the first, SCCC1,
isa(3,1,N) SCCC using as outer code a 4-state, (2,1) nonre-
cursive, convolutional encoder, and as inner code a 4-state,
(3,2) recursive, systematic convolutional encoder. The sec-
ond, SCCC2, is a (3,1 ,N)SCCC, using as outer code a 4-
state, (2, 1) recursive, systematic convolutional encoder, and
as inner code a 4-state, (3,2) nonrecursive convolutiona en-
coder. The outer, inner, and SCCC code parameters intro-
duced in the design anaysis are listed in Table 2. In this
table, the CCS are identified through the description of Ta
ble 1.
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Fig.9. Analytical bounds for SCCC?2

In Figs. 3,2 we plot the bit error probability bounds for
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Code description G(D)
Rate I/2NR | [ 1+ D+ D% 1+D* |
1. 0 Lﬂz
Rate 2/3 R 0’ 1’ 1+04D J
Y4p DM
Rae 3 NR | 14D, 1, 14D

Table 1. Generating matrices for the constituent convolutional codes

Code Outer code Inner code
Code wp, | d% Code wy, | dy | 4

SCCC1 1/2 NR 1 5 2/3R 2 3 4
SCCC2 1/2 R 2 5 2/3 NR 1 3 4

Code SCCC

hn | a(hm) | Rlam) | om

SCCC1 5 -4 7 -3
sceez || s -4

Table Z.Design parameters 0f CC. and SCCCs for two SCCCs

SCCCs 1 and 2 of Table 2, with interleaver lengths N =
200,400,600,800,1000,2000.

Consider first SCCC 1, which employs as inner CC a recur-
sive, convolutional encoder as suggested by the design rules
and as outer encoder a nonrecursive encoder. Code SCCC1
has dj = 5 thus, from (1 5), we expect an interlcaver gain
behaving as N”. This is fully confirmed by the curves of
Fig. 2, which, for a fixed and sufficiently large signal-to-noise
ratio, show a decrease in Pe(€) of a factor 1000, when N in
creases from 200 to 2000.

Consider then code SCCC2, which differs from SCCClin
the choice of a nonrecursive inner encoder, with the same
parameters but with the crucia difference of w?, = 1. Its bit
error probability curves arc shown in Fig. 3. They confirm
the previous design predictions. We see, in fact, that for low
signal-to-noise ratios, say below 3 dB, no interleaver gain is
obtained. This is because the performance are dominated by
the exponent h (aas ), whose coeflicient increases with N. On
the other hand, for larger signal-to-noise ratios, where the
dominant contribution to P (€) is the exponent with lowest
value h,,, the interleave gain makes its appearance. From
(9), we foresee a gain behaving as N, meaning 4 orders
of magnitude for N increasing from 200 to 2000. Curves
in Fig. 3 show a smaller gain (slightly higher than 1/1000),
which is on the other hand rapidly increasing with F/No.

111. concrusions

We have presented design criteria to select constituent
codes for constructing serially concatenated codes with in-
terleaver, a concept building on classical concatenated codes
and parallel concatenated codes known as “turbo codes’.
Based on analytical upper bounds to the bit error probabil-
ity asymptotic in the interleaver length N, design guidelines
have identified the crucial parameters for the outer and inner
codes that maximize the interleaver gain and the asymptotic
slope of the error probability curves. The analysis showed
that the interleave gain, defined as the factor that decreases

the hit error probability as a function of the inter] eaver size,
can be made significally higher than for turbo codes.
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