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ANIMATION ANI) VISUALIZATION OF SPACE MISSION
DATA

William B. Green
Eric M. DeJong
Cdlifornia Institute of Technology
Jet Propulsion Laboratory
M/S 168-527
4800 Oak Grove Drive
Pasadena, CA 91109

INTRODUCTION

Caltech’s Jet Propulsion Laboratory (JPL) has been processing digital image data returned
from remote sensing instruments on spacecraft since the Mariner 4 spacecraft flew by Mars
in 1964. Many of the digital image processing techniques now used routinely in desktop
publishing and computer graphics systems were to process and enhance images returned
from space. JPL, other NASA centers, universities, and the Department of Defense made
significant contributions to the development of this technology. In the past fifteen years,
sophisticated processing capabilities have been developed to support scientific analysis of
remotely sensed imagery, The use of three-dimensional perspective rendering achieved by
merging elevation data with two-dimensional sampled imagery has become a valuable tool
for image interpretation and geological analysis. Animated sequences of rendered imagery
provide dramatic, scientifically precise “fly-over” smulations that capture the public’s
attention while providing a visual aid to scientists attempting to understand the nature and
evolution of the earth and other objects in the solar system. More. recently, capabilities
have been developed to support mission planning by integrating spacecraft models from
Computer Aided Design (CAD) systems with remotely sensed imagery to enable
visualization of mission scenarios for current and future deep space exploration missions.
This article describes the basic methods used at JPL’s Multimission Image Processing
Laboratory (MIPL.) and Digital Image Animation Laboratory (DIAL) to produce a variety of
animation and visuaization products from imagery returned by NASA spacecraft.

ACQUIRING IMAGE DATA FROM SPACE

Figure 1 shows the flow of data for a typical planetary exploration mission. Remote
sensing data from instruments on the spacecraft are returned to earth receiving stations in
digital form, and transferred to data processing facilities that acquire the data and convert
individual telemetry segments into scientific data records. The data processing paths for
NASA earth observation missions are similar. For imaging instruments, image data
records are created that contain the basic pixel data (decompressed if necessary) plus
additional information including engineering data (camera temperature, voltages, €tc.),
navigation data (spacecraft location and orientation when the image was acquired),
ephemeris data (information regarding the positions of planets, the sun, and other objects
such as the moons orbiting other planets when the image was acquired), and camera
geometry (Where was the camera pointing, what was the view angle, etc.).

FIG 1 P42075
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The engineering data is utilized to remove the camerasignature from the returned imagery
and convert the data to physical units (¢.g., brightness). The geometry data is used in
constructing various views of the surtace later in the animationprocess. The formation of
these data records is shown in the boxes labeled “realtime™ and “systematic™. Note that it
is often necessary to construct image data recordsfrom telemetry data acquired atditterent
times or at different ground receiving stations. Archival digital data products are produced
at various stages of the processing stream and preserved for long term scientific study.
Specialized enhanced products are also generated to support detailed scientific analysis, and
public information office (P1O) products are also generated tor dissemination to the press
and made available via the Internet.

BASIC IMAGE RENDERING

Once the image data has been converted to physical units, and the geometry is understood.
it is possible to generate perspective view and animation products. This was first done at
JPL in the early 1980's by ateam led by Kevin Hussey. Hussey'steam produced “1.A the
Movi€’, an animated sequence that simulated a fly-over of Southern California utilizing
multispectral image data acquired by the L.andsat earth orbiting spacecraft, The remotely
sensed imagery was rendered into perspective projections using digital elevation data sets
available for the area within a Landsat image. Figure 2illustrates the basic process. The
upper left image shows one band extracted from the Landsatimage. A segment from the
image has been selected for rendering, and the perspective viewpoint has been defined as
shown by the green and blue graphics overlay. The upper rightimage isa gray scale
representation of the elevation data available for the image segment, with the same
perspective viewpoint indicated. The elevation along the blue path in these images is
shown graphicaly in the lower left image. Once the animation producer is satisfied with
the viewpoint and perspective, the scene is rendered in 31 perspective as shown in the
lower right hand image.

FIGURE 2--P37272

The scientist or animation director sketches out a desired light path, as showninFigure 3.
The flight path is defined by a set of “key frames’. Eachkey frame is characterized by a
specific viewing geometry and viewpoint, and software interpolates betweenkey frames
defined along the flight path to render intermediate frames to produce the tinalanimation.
The animator controls the simulated speed of the flyover by specifying the number of
frames to be interpolated between each key frame. Figure 4 shows one frame from the tilm
“LA--the Movie’, showing the Rose Bowl with J}’]. in the background againstthe San
Gabriel mountains. The vertical scale isexaggerated by atactor of 2.5 10 show small scale
features.

FIGURE 3--P37269
FIGURE 4--P37267

PLANETARY AND EARTH APPLICAT 10NS

Rendering and interpolation algorithms have been improved since the eraof 1, 1--the
Movie’. In recent years, MIPL and DIAL have collaborated to produce a variety of tly
over sequences of planetary and cart him agery. Project scientists have found it ins aluable
to obtain three dimensional perspective views of remote planets and theirsatellites. Theuse
of stereo imagery generally acquired by air¢ rafthas been widespreadin the geology
community for many years. A three dimensional view ot the surface provides analysis of
surface features, the evolution ot the surtace, and the nature ot surtace disturbances thatare
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volcanic or seismic inorigin. Three-dimensional rendered animated imagery has become
usctul in planctary exploration for the same reasons,

Figure 5 shows a perspective view of Maat Mons, u large volcano on Venus. ‘The
\M%Han mission mapped the surtace of Venus using \\mlum Apertare Radar (SAR) in
the czul\ 1990°s. Elevation information was pro ided by radar on board the spacecralt,
from dlldl_\sls of stereo image coverage of the surtace. and tfrom data acquired by carlier
missions to Venus. Surface color has been incorporated into this image. based on limited
radiometric measurements obtained by a Russian lander spacecratt on Venus in the 19707s.
‘The Russian spacecraft was ultimately crushed by the atmospheric pressure, but survived
long enough to provide a limited sampling of surface color,

Fig 5--['40175

In the mid 19705, two Viking landers and two Viking orbiter spacecratt provided
thousands of images of Mars from orbit and from two separate landing sites. The orbital
imagery provided stereo coverage of significant portions of the Martian surtace. Elevation
computed from stereo imagery enabled perspective rendering and animation of portions of
the Martian surface. Figure 6 shows a single three-dimensional image produced in this
manner.

Figure 6--PIA00006

The Space Shuttle has carried synthetic aperture radar systems on three separate occasions,
obtaining high resolution radar imagery of the earth’s surtace. The third mission, referred
to as SIR-C (Shuttle Imaging Radar mission C) provided coverage of the Mammoth
Mountain arca of California in 1995. Figure 7 shows a three- dimensional perspective view
created from SIR-C SAR images acquired by the radar svstem. SAR imagery requires
different interpretation than imagery acquired by a more conventional imaging system.
Brightness ditferences in SAR imagery represent difterences in surface texture and the
orientation of surface features on the surtace. rather than the color or reflectance of the
surface. Bright features are oriented normal to the direction in which the radar signal
travels. since the radar will be retlected strongly from surfaces normal to the radar beam.
Dark features are generally more aligned with the direction of radar signal travel. Differing
textures witl also reflect the radar beam ditterently. This is illustrated in the Figure. Figure
8 shows a false color perspective projection of the same arca. Here. talse color is used as
an interpretive aid to highlight ditferences in surtace teature orientation and surface texture.
This false color rendered representation provides an extremely usetul tool tor scientitic
interpretation.

Figure 7--P43933
Figure 8--P44739

MISSTIONPLANNING

Visualization and animation are also usetul for mission planning and mission operations. It
is possible to incorporate CAD models of spacecratt with remotely sensed imagery in
anmimations to illustrate spacecratt trajectorics and data acquisition strategies. Animation
displays are also provided to explain planned mission events during thght operations to
members of the press and the public via the news medias Figure O shows one frame
catracted from an animation of the Galileo spacecratt approach to Jupiter in December
1993, The spacecraft model was rendered trom o CAD model of the spacecratt obtained
from the spacecraft design team. The star background is produced trom a standard
reterence star catalog, and the Jupiter image was acquired by the Hubble space telescope.
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The spacecraft trajectory and planet motion models were derived for the animation from
mission navigation files and command sequence files.

FIGURE 9--
SUMMARY

Visualization and animation are becoming increasingly important tools in planetary
exploration. High speed computing equipment and increasingly sophisticated software
systems are making it possible to produce the types of products shown in this article on
rapid time scales. These products are extremely useful in science analysis during flight
operations, and are beginning to play an increasingly important role in supporting future
mission planning and data acquisition strategies.
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