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Abstract. Torsional oscillations of the Earth’s liquid metallic outer core are investigated
by dividing the core into twenty imaginary equi-volume annuli coaxial with the axis of
rotation of the Earth and determining temporal fluctuations in the axial component of
angular momentum of each annulus under the assumption of iso-rotation on cylindrical

surfaces. With the available velocity fields just below the core-mantle interface as derived

from geomagnetic secular variation observations, it is possible to investigate core angular
momentum (CAM) over fifteen decades from 1840— 1990. This interval is much shorter
than the expected periods of non-axisymmetric magnetohydrody namic (MHD)
oscillations of the core—one class of shear waves at sub-seismic frequencies- but it
does exceed that of the expected period of axisymmetric MHD torsional oscillations. The
dominant period seen in the data is about 65 years. If this can be interpreted as being that
of the gravest mode of MHD torsional oscillation, then the implied value of Bp (the
average strength of the non-axial component of the poloidal part of the geomagnetic
field) is about 2 x1047T (2 gauss), roughly half the average strength of the (poloidal)
geomagnetic field in the lower reaches of the mantle and very much less than the likely
average strength of the toroidal magnetic field in the core, which may be as high as10-27T

(102 gauss). CAM fluctuations are most pronounced in the mid! fatitudes and are generaly
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out of phase with those occurring in equatorial regions. They arc roughly in phase with
decadal length-of-day (L.OD) fluctuations, especially after about 1870, with the dominant
variability period of -65 years. The largest positive correlations (0.8 when data before
1867.5 are excluded) are observed in the mid-latitudes with a maximum at zero lag and
with secondary peaks at 67 yrs and at —64 years, again implying a -65 year mode.
Propagation of CAM anomalies from the equatorial to polar regions is evident in both the
time-latitude dependence of CAM and its latitudinal correlation with length of day

fluctuations.

Introduction

Motions in the Earth’s liquid metallic outer core produce the main geomagnetic field by
self-exciting magnetohydrodynamic dynamo action (7 ). Driven by buoyancy forces due
to the action of density inhomogeneities associated with differential heating and cooling,
core motions are strongly influenced not only by Coriolis forces due to the Earth's
rotation and the geometry of the bounding surfaces but also by Lorentz forces due to the
presence of electric currents and magnetic fields within the core. The main am of the
present study is to shed further light on the dynamical processes within the Earth’s deep
interior that give rise to decadal fluctuations in the rate of rotation of the solid Earth, and
involve angular momentum transfer not only between the core and the overlying mantle
but also between different parts of the core.

Considerations of fluctuations in angular momentum within a fluid system and of
the exchange of angular momentum between the fluid system and the regions with which
it is in contact are of fundamental importance in realistic dynamical studies. as
exemplified by investigations of planetary-scale motions in atmospheres and oceans (2-
6). Strong indirect evidence of angular momentum exchange between the core and the
overlying mantle stems from general quantitative considerations made in the first realistic

attempts to interpret determinations of length of clay (1.OD) fluctuations on decadal time
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scales, for the LOD s an inverse measure of angularmomentumof the solid Earth(My).
Indeed, it has long been generally accepted that irregular LODfluctuations on such time
scales must be due largely to core motions (see e.g. (7, 8)).

It is because of the high density of the core, more than 10°times that of the
atmosphere, that these two fluid regions of the. Earth (the core and atmosphere) are able to
produce effects on the rotation of the solid Earth that are generally comparable in
magnitude. The amplitude of seasonal atmospheric variations, for example, are about a
millisecond (ins), while decadal fluctuations can be as large as 5 ms. The core acts on
longer time scales than the atmosphere, for the speed of core motions is typicaly 10-4
times that of atmospheric winds; one week for the atmosphere thus translates into about a
century for the core, so the 150 years of geomagnetic data available for the present study
can provide no more than a glimpse of what might be happening in the core. In contrast,
work on the interpretation of fluctuations in the Earth’s rotation on shorter sub-decadal
timescales in terms of dynamical processes in the atmosphere (and ocean) (2-6) is more
advanced owing, in large part, to the abundant meteorological data, which are well-
sarnpled in time and relatively well-sampled in space. The characteristic periods of the
relevant phenomena studied are generally much shorter than the data span, and data
analyses are correspondingly robust. It is possible to investigate angular momentum
transfer between different parts of the atmosphere, thereby elucidating processes of
central importance in theories of the general circulation of the atmosphere and its
interaction with the underlying planet. It is unlikely that detailed magnetic observations
from much earlier times can be obtained from existing records, so the best use has to be

made of the data sets currently available.

Angular momentum budget
Denote by Ms the axial component of the angular momentum of the solid Earth and by M”

that of the liquid core. On decadal time scales the equation
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dM __ dM (1)
dt dt

expresses angular momentum conservation to better than 10% (the residual being largely

associated with atmospheric and oceanic effects). M is given by the axial component of

ﬁfp(r,t)rx[QXrﬂz]dt 2

where p(r,1) is the mass density at a genera point P in a frame of reference with its

origin at the Earth’s center of mass and which rotates with the mantle with angular
velocity Q relative to an inertial frame and u is the Eulerian relative flow velocity, and dt
is an element of volume of the liquid core, over the whole of which the volume integral is
taken.

Thus, to conserve the angular momentum of the whole system, any fluctuations in
the total angular momentum of the liquid outer core must be accompanied by fluctuations
in the angular momentum not only of the overlying solid mantle but also of the
underlying solid inner core which, being a good electrical conductor, should be tightly
coupled by Lorentz forces to the liquid core. However, in comparison with the liquid
core, the volume of the solid inner core is small, no more than that of one of the twenty
equi-volume annuli into which we divide the core in the present study (see Figure 1). The
moment of inertia of the solid inner core is even smaller in comparison, much less than
1% of that of the outer core. Given the accuracy level of angular momentum budget
analyses, any contributions to dM, /dr associated with possible fluctuations in the motion
of the inner core can be neglected. Further justification for this assumption arises from
new seismological studies (9, /0) of the relative rotation of the inner core, as well as from

related studies stimulated by this important new development in core dynamics (/7-13).
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The LOD data used here are a sell-consistent time-series resulting from the
analysis of lunar occultations prior to 1955.5. after which a combination of astronomical
and modern geodetic techniques are utilized (/+). There is evidence based on solar
eclipses and other data (/5) that over the past 2700 years the LOD has increased at an
average rate of at 1.70 + 0.05 ms/cy. This can be attributed to two main agencies, namely
tidal braking of the Earth’'s spin (2.3 £ O. 1 ms/cy) and changes in the Earth’s polar
moment of inertia associated with “post-glacial rebound” (0.6 + O. 1 ms/cy). This trend
of 1.7 ms/cy was removed from the LOD series before comparing it with core angular
momentum M(z); results were shown to be insensitive to this trend. The residua found
when the trend revealed by eclipse observations has been removed from the LOD time
series shows some evidence of slow fluctuations, the detailed spectrum of which cannot
yet be determined owing to errors and sparsity in the data. At about 4 ms, the semi-
amplitude of these long-period variations is roughly the same as that of the LOD
fluctuations on much shorter decadal time scales as deduced from observatory data
obtained over the past century or so. These findings imply that core motions may excite a
fairly flat spectrum of LOD fluctuations over time scales ranging from decades to

centuries and longer.

Determinations of core angular momentum

Just as it is convenient to divide the atmosphere into the troposphere, stratosphere and
higher regions, and the oceans into the thermocline and lower regions, the liquid metallic
core can be divided into the “torosphere,” where the toroidal magnetic field is so strong
that Lorentz forces are comparable in magnitude with Coriolis forces (/6), and the
overlying “polosphere ” where (he toroidal magnetic field is typically no stronger than the
poloidal field, Lorentz forces being correspondingly much weaker than Coriolis forces
(1 7). Owing to the presence of the solid inner core, Coriolis forces inhibit flow across the

imaginary cylindrical surface that is tangential to the inner core at the equator and
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intersects the outer core at latitudes + 66° (see Figure 1). So it is convenient to sub-divide
the liquid core further into “polar” regions lying withinthe tangent cylinder and
“extrapolar” regions lying outside the cylinder. This scheme proves useful not only in
work on the dynamics of the Earth’s core (//,18) but also in studies of other geophysical
and astrophysical fluids, such as the various fluid layers of Jupiter and Saturn and the
convective outer layers of the Sun. Some justification for the scheme is provided by the
laboratory experiments on thermal convection in an electrically-insulating rotating fluid
upon which the scheme was originaly based (/9), and further justification comes from
the flow fields produced in numerical models of buoyancy-driven MHD flows in the
Earth’s core (12, 13). In both cases motions are more vigorous in extrapolar regions,
particularly in mid-latitudes, than they are in the comparatively quiescent polar regions.
For the purpose of the present paper, we suppose here that the Earth’s liquid
metallic outer core is bounded by concentric spherical surfaces of radii ¢ = 3480 km and

b = 1222 km (see Figure 1) and we divide the core into Q = 20 cylindrical annuli of equal
volume (20). The total axial angular momentum p, (¢; Q) associated with relative core

motions with Eulerian flow velocity u(r, ) = (u, v, w) at a genera point P with spherical

polar coordinates (r, 0,¢) is given by

M, (5:0) Eé_g(a _ p* Y{pwrsiné},. ?)

Here p = p(r,0,¢,1) is the density at P, w = w(r,0,¢,1) and the symbol {).
denotes the spatial average over the volume occupied by the g-th annulus (see Figure 1).
One of the main objectives of the present study is to determine temporal fluctuations in
u,(r; Q) for al qusing available data and to examine (he fluctuations for evidence of

torsional oscillations.

Owing to the inaccessibility of the core, direct determinations of u(r, r) and

p(r.1) are impossible. But jhethods have now been developed for making indirect

6
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estimates of the (6, ¢) components (v, w, ) of «, the Eulerian flow velocity just below the
CMB, where r =, from gcomagnetic secular variation data under various geophysically
plausible assumptions (2/). The data used in the present study cover the interval from
1840 to 1990 and were kindly provided by Dr. Andrew Jackson. By introducing the
additional assumption that variations in pw in the direction paralel to the rotation axis
are negligibly small (see e.g. (18, 22, 23)), pw can be replaced in Eq. (.?) by the known

quantity

plw.(6.(n. 1) + w,(n-eq . 4

0| —

This gives for p (r; Q) the approximate relationship

2np.c(c’ = bY)

0 ([w.(6.0.1)+w, (= 0,.1)]sin6) (5)

W, (0) =

over the surface area of the g-th annulus, covering the ranges O <¢<2mand 6, ,<6<8,
(see 20), where ( )q signifies the spatial average. Though difficult to justify rigorously on
theoretical grounds, the additional assumption of isorotation on co-axia cylindrical
surfaces has been discussed and used with remarkable success in important recent studies
by Jault and LeMouél and others of the angular momentum budget of the core-mantle

system (22, 23). Combining Eq.(5) and (2) gives

Q
M(1)=3 (10, (6)
g=1

asarough measure of the total axial angular momentum associated with relative motions

in the cm-c (cf. Eq. (/) and (22)).



June 27,1997
40)) M

Results and discussion

The total core angular momentum AM(¢) as well as the contributions from the individual
cylinders p,(1,20) are displayed in Fig. 2(a).Herewe introduce the “equivalent
millisecond unit” (emsu), defined as that amount of axial angular momentum, namely
0.60 x 1026kg m2s-!, which, if transferred to the overlying solid Earth would, if the solid
Earth were perfectly rigid, reduce the length of the day (L.LOD)by 1 ms. Two broad
maxima occur in M(t) with the highest value attained around 1900 with “full width half
max” (FWHM) of -25 years (Fig. 2a). The second smaller maximum has its peak near
1970 with FWHM of 15 years. There is considerable range of variability of the individual
bands [Fig. 2(b)] with time-averaged total CAM M (¢) (say) being negative (-0.237
emsu). The equatorial band (¢ = 20) with the largest lever arm produces the largest
contribution with time-averaged values being largely negative (i.e. p(t; 20) =—0.4 esu).
The two large peaks are clearly seen in the equatorial annuli (Fig. 2a); with the first peak
near 1885 corresponding to the plateau region near 1885 in the total CAM and the second
peak occurring near the 1975 maximum in total CAM. The other bands are highly
bimodal as well, with cylinders 16-19 having their maxima near 1885 and 1950, while
cylinders 3—-15 have maxima near 1910 and 1970. The contribution from bands 1-3 with
a short lever arm are small with the largest contribution near 1910.

The three dimensional diagram (Fig. 3) of the contributions from the individual
cylinders (M) given as a function of time permits unique insight into core dynamics. The
dominant feature is a strong -65 year oscillation that is particularly evident in the
midlatitude bands (3--1 5). Note that the maxima in the midlatitude coincide in time with
the largest geomagnetic jerks events over the time period considered, namely, 1912 and
1969 (24). Variability in cylinders 16-20 generally precedes that in the midlatitudes, with
results suggestive of angular momentum propagation from the equatorial toward

midlatitude region. On the basis of Figs.1-3 and Table 1, we divide the core into three
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regions. polar (P), midlatitude (ML) and equatorial (£Q). The polar region (where q = 1,
2,3)isa natural division giventhe dimension of the solid inner core (Fig. 1 ), whereas the
division into midlatitude (q = 4-15) and equatorial (q = 16-20) is motivated by the
characteristic behavior of these two regions. The comparison of LOD fluctuations with
total and regional M(t) (Fig. 4) shows that the decadal LOD variability is well matched
with M(r), especially after 1870. Data prior to 1870 are not as robust as the more modern
data, with a mismatch occurring during the series between 1840-1870. The maximum
correlation between M and LOD (Table 1) is 0.58 at a lag of -17.5 yrs when the full
series (1840-1990) is considered and is 0.64 with a lag of -5 yrs with the shorter series
(1 870-1 990). The M(t) data spacing is 2.5 yrs; hence, care must be taken in the
interpretation of the lag of the latter correlation. The contribution from midlatitudes
(MML) (Fig. 3 and 4) dominates M and accounts for a major portion of the L.OD decadal
variability (56.9% for the full series and 74.9% for the short series). Myy,, isin phase with
LOD, having a maximum correlation of 0.8 with the shorter series and 0.5 for the full
series (Fig. 5); secondary maxima occur at 67 and —64 years, consistent with the -65 year
periodicity.

The equatorial CAM (Mggp; cylinders 16-20) time series is bimodal, with maxima
at 1885 and 1950, and leads the Masi by -20 years (Fig. 4). The correlation of Mgp with
LOD has a principal maximum at a lead of -25 years with secondary maxima near 44 and
90 years, again consistent with a 65-year periodicity. It is the superposition of these two
groups of cylinders (ML and EQ) that gives rise to the broad LOD maximum near 1900.

The correlation of individual cylinders with LOD (Fig. 6) indicates that angular
momentum anomalies propagate from the equatorial to the polar cylinders. The total
CAM (shown in red) results from the summation of the individual cylinders with a
maximum at a 15-year lead with respect to LOD and secondaries at an 80-year lead and at
a 60-year lag (note the -65-year periodicity). The color diagram vividly displays the ~65-

ycar period with 4 maxima visible (two strong, two weak) and 4 minima. The strong

Y
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propagation patternindicates that a period of’ -60 years is required fora signal to be
transmitted from the equatorial region to the polar cylinder. Similarly. a propagation
pattern is evident in top line plots as the peaks and valleys are traced from one cylinder to
another.

The torques responsible for angular momentum transfer between the Earth’'s
atmosphere and the underlying planet are due to tractions produced by turbulent viscosity
in the oceanic and continental boundary layers and also to topographic tractions due to
normal pressure forces acting on orography. Topographic torques and boundary layer
torques produced by atmospheric motions are typically comparable in magnitude but they
have somewhat different temporal characteristics (5). Less is known about the torques at
the Earth’s core-mantle boundary (CMB), but it is generally considered that viscous
effects are probably much less important than those due to Lorentz forces associated with
electric currents in the lower reaches of the mantle, topographic torques associated with a
bumpy core mantle boundary, and gravitational effects. Uncertainties about the electrical
conductivity of the lower mantle and of the shape of the CMB and horizontal density
variations in the mantle and core make it difficult at present to establish the relative
importance of those agencies. One recent study (25) indicates that if topographic torques
are of sufficient magnitude to explain the observed decadal LOD variations, and
dominant contributions to the torque arise in the mid-latitude. This result could bear on
our finding here that mid-latitude CAM fluctuations are in phase with fluctuations in the
motion of the mantle. In addition, recent MHD results (/2,13) showing robust activities
at the mid-latitudes arc consistent with this finding.

As to the roughly 65-year period seen in the angular momentum fluctuations
presented in Figures 2 and 3, the simplest but by no means the only lines along which an
interpretation might possibly be sought is to suppose that it can be identified with the

main eigenmode of torsional MHD oscillations with Bp= 2 X 10-4T (see 26), where By IS

the average strength of the non-axial component of the poloidal magnetic field in the

10
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core. Thisis about hall the average strength of the (poloidal) magnetic field in the core
mantle, which in turn is very much less than the likely strength (- 10-°7) of the toroidal
component of the magnetic ficld within the Earth, which is effectively confined to the
core (cf. equation (C4) of26).

For the purpose of the present paper we note that torsional oscillations about the
rotation axis (27) correspond to the case when & = O in Eqg. C4. Then, Coriolis forces and
Lorentz forces associated with the toroidal magnetic field are both negligible in

comparison with Lorentz forces associated with the poloidal magnetic field, and Eq. (C4)

reduces to »® =V iThe value of B, is not known for the core; indeed the present
work might provide the best estimate of B, at present available! B, could be as large as
10-3 T, but it might be much smaller if (as is possible but not certain) lines of force of the

poloidal part of the geomagnetic field are aligned by core motions so that they are almost

paralel to the Earth’'s rotation axis nearly everywhere within the core. Taking Bp =< 4 X
10-4T we find Vp= 103 ms-1, which is a factor of 25 smaller than V;£10- ' ms-1if (asis
likely but not certain) By= 10-*T (/8). For length scales 2n/l=c, the period of oscillation
of the torsional mode c/V would be about 25 years (27, 28). This is less by a factor of
about 20 than chlnszzlthe approximate period of any global-scale non-axisymetric
magnetostrophic oscillations as given by Eq. (C4) when, for example, k=1 # O and
Vy 12Qc <<1(18).

Such an eigenmode of MHD torsional oscillation would be readily excited by the
fluctuating background of three-dimensional flow in the core if in the power spectrum of
the fluctuation there is sufficient energy to overcome attenuation due (in this case) largely
to ohmic dissipation associated with electric currents induced in the weakly-conducting
lower mantle (29, 30). It is also possible of course that the 65-year period is not at all
associated with MHD torsional oscillations in the core, and simply reflects the time scale
of some dominant instability or nonlinear mode interaction responsible for angular

momentum advection within the core. Beyond the scope of the present paper is any
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detailed discussion o! excitation and attenuation mechanisms and the role of advection
and other nonlinear processes in the dynamics of torsiona oscillations. The numerical
models of core flow and the geodynamo that have been developed recently by various
groups (see e.g. 12) could be used for such purposes in future research. Indeed, a
stringent test of any such model would be its ability to simulate the geophysical
phenomena revealed by this investigation of torsional oscillations of the Earth’s core,

which is based on observations of the geomagnetic field and of fluctuations in the Earth’s

rotation.

REFERENCES
1. J A.Jacobs (cd.), Geomagnetism (4 vols), London: Academic Press (1987-1991).
2. R.Hideand J. O. Dickey, Science 253,629 (1991).
3.  R.D. Rosen, Surveys in Geophysics, 14, 1 (1993).
4.  T. M. Eubanks, Contributions of space geodesy to geodynamics (cd. D. E. Smith
and D. L. Turcotte) (Geodynamics Series Vol. 24, Amer. Geophys.Un.) p. 1 (1993).
R. M. Ponte, R. D. Rosen and G. J. Boer, J.Climate, 7,538 (1994).
J. O. Dickey, S. L. Marcus, and R. Hide, Nature, 357,484-488, 1992.
D. Jault and J-L Le Mouél, Adv. Space Res.,13 (1 1) 221 (1993).
D. Jault, C. Gire and J.-L Le Mou¢l, Nature 333,353 (1988).

© © N o o

X. Song and P. G. Richards, Nature, 382,221 (1996).

10. W.-J. Su, A. M. Dziewonski and R. Jeanloz, Science, 274, 1883 ( 1996).

11.  J. M. Aurnou, D. Brito, and P. L. Olson, Geophys. Res. Lett., 23,3401 ( 1996).

12.  G. A. Glatzmaier and P. H. Roberts, Nature, 377, 203 (1995).

13.  G. A. Glatzmaicr and P. H. Roberts, Science, 274, 1887 ( 1996).

14.  C.Jordi, L. V. Morrison, R. D. Rosen, D. A. Salstein, and G. Rossello, Geophys. J.
Intern., 117, 811-818 (1994).



June 27,1997
400 PM

15. F. R. Stephenson and L. V. Morrison. Phil. Trans. Roy. Soc. A, 351, 165-202
(1995).

16. R. Hide, Geophys. Res. Leut., 22, 961 ( 1995).

17. LeMouél, JL., Nature, 311,734-735 ( 1984).

18. R. Hide, Phil. Trans. Roy. Soc. A259, 615 ( 1966).

19. R. Hide, Ph.D. Dissertation, Cambridge University (1953).

20.Co-axial cylindrical shells in the core.

To a first approximation, the liquid metallic outer core of the Earth occupies a region
bounded by concentric spherical surfaces of radii b and c, where b =1222 km and
¢ = 3480 km. The volume and moment of inertia of the solid inner core are respectively
much less than 10-! and 10-2 times the volume and moment of inertia of the liquid outer
core. An imaginary cylinder that is tangent to the inner sphere at the equator intersects the
outer sphere at co-latitude 6 = 6" in the northern hemisphere and n—0" in the southern

hemisphere, where
6* = sin’(b/c). (Al

The co-latitude angle 6" is about 24° for the Earth (see 11,18,19).

It is convenient to imagine the liquid core divided into an “extrapolar” liquid
region E where 0* <8 <n—-6", and two “polar” liquid regions P where O <8< 0" inthe
Northern Hemisphere (NH) and n—6 <8<n in the Southern Hemisphere (SH).

Consider a cylindrical shell in region E with bounding surfaces that intersect the outer

spherical surface at co-latitudes 6,_,and 6, in the NH (and ®—6,, and - 8, in the SH)

where 8°<6_, <6, <n?2 (see Figure 1). The volumeV, of this cylindrical shell (in

region E) is given by

4
V = 3 Tt('][(‘().\'3 0, - cos’ 0(/] (A2)

o

13
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(which follows from the so-called “apple core theorem™ thatthe volume of a spherical
apple that remains when an axisymmetric cylindrical core has been removed depends
only on the length of the cut (3/)). The corresponding combined volumes of the two
identical cylindrical shells in polar regions P (where O <6<86 andn-6 <8<m)is
given by

V =

q9

WA

nc"[cos”eq_, -cd Gq] - %nb3[0033 8, - cos’ Q,] . (A3)
Here 6,_, and 6, are the co-latitudes at which the inner and outer surfaces of the

cylindrical shell intersects the surface of the inner sphere of radius b, so that

bsinéq =csin@,, bsin@q., =csin@,_, . (A4)

Equations (A 1) to (A4) are expressions needed for the purpose of dividing up the
liquid core into Q (say) imaginary co-axial cylindrical shells of equal volume. In the case
of afull sphere (b = O) (when the P regions shrink to zero volume), the. volume of each

cylindrical shell is equal to 4nc® /3Q, so that (by Eq. (A2)) we have
8,=cos (1-g/Q)"", (AS)

where ¢ = 1, 2..., Q. and eozn/ 2. The innermost shell, which hgs zero jnner radius,

extends from 8 = Oto 6 = cos™' (I —Q")"*. The outermost shell extends from

0=¢).,=cos”' Q""" to0=06,=mn2. In the case when b = O, it is necessary to use more

complicated expressions based on equations(A3) and (A4) when calculating the

latitudinal extent of the 4th cylindrical shell. Vaues of 6, in degrees are given in Table

Al.
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q 6y q 0, q Bq q 0

] 12.56 6 28.94 11 40.95 16 54.80
2 17.52 7 31.38 12 43.43 17 58.42
3 20.99 8 33.77 13 46.01 18 62.78
4 23.80 9 36.15 14 48.72 19 68.71
5 26.43 10 38.53 15 5162 |20 90.00

21. Determinations of core motions from geomagnetic secular variation data.

Denote by B(r,0,4,t) the value of the main geomagnetic field at the general point P with
spherical polar coordinates (7.8, ) and by B=0B/ 9t the GSV (/). Determinations of B
made at and near the Earth's surface at various epochs can be used to infer ug, the
Eulerian flow velocity just below the core-mantle boundary (CMB) (see reference (32)
for review). The first of the three geophysically-reasonable key assumptions that underlie
the method used is that the electrical conductivity of the mantle and magnetic

permeability gradients there are negligibly small, so that B satisfiesV x B = O aswell as
V. B = O and can therefore be expressed as the gradient of a potential U satisfying
Laplace’s equation V2U = 0. This facilitates the downward extrapolation of the observed
field at and near the Earth’s surface in order to obtain B and B at the CMB.

The second assumption is that the electrical conductivity of the core is so high
that when dealing with fluctuations in B on time scales that are very much less than that
of the ohmic decay of magnetic fields in the core (which is several thousand years for
global-scale features) B satisfies Alfvén’s “frozen flux” theorem expressed by the

equation

oB/dr=V x(ux B). (B1)
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To this approximation. the lines of magnetic force emerging from the core are
advected by the horizontal flow (v,,w,) justbelow the CMB. Accordingly, if
B =(B,.Be, By ), the radial component B, at the CMB satisfies

JB v OB w_ OB Ju
cp B0, W 8 g 0K 132
ot * c d9 i csin® do '[ar]m (132

(.73, 34).

A third assumption is needed to secure uniqueness, and one physically-plausible
possibility is that to a first approximation the flow in the upper reaches of the core—the
“polosphere” (16)— isin geostrophic balance with the pressure field there (17, 32, 35),
which can be shown to imply that

%(‘G sin 6 cos 6)+cos 6 %%S— =0 (B3)

in the case of an incompressible fluid, for which V. u=0

Various groups of geomagnetic workers have produced maps of u, = (v,,w, ) and

investigated the errors and uncertainties encountered in practice (32, 35). These

hypothetical flow fields u; are all similar in their general appearance but there are

discrepancies between them which remain to be resolved by future research. Most

determinations of u, from GSV data make use of spherical harmonic expansions of the
variables involved. Here we follow the treatment of reference (32) where (he starting
point for the spectral expansion of u is its separation into toroidal and poloidal

components. Thus

u=up+up=Vx(ITr)+V,(rS) (B4)

16
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(where VI isthe “horizontal” gradient operator), so that
| Jr  JT
= 0, - i BS
“r [ sin (0] a¢ 69] ' ( :
u, =0 95 _1.98 (B6)
00 sin 094 )
The potentials T and S are expanded in spherical harmonics
T(6,6)= > 1Y (6,0) (B7)
Lm
S(6,¢)= Y, s/"Y" (6.9) (B9)
ILm

where the Y7* are real Schmidt quasi-normalized spherical harmonics. Thus, we can write

up =) "7, up = Zs,’" e (B9a, b)
l, i} Im
where
" =V x(¥"r),S"=rV,¥," (B 10a,b)
It follows from these expressions that the azimuthal component w, (6,+, ¢) of u,
satisfies:
w0 (0.0.0= |~ 2 (6.0) 4 57 <2 (0.0) | B11)
' I J0 sin0do

17



June 27,1997
4()) PM

from which we are able to evaluate 1, (1: Q) (see (Eq. 3)). When combined with Eq. (S)

and (6), this gives for M(t) the equation

_ 4 16
M(z)zznpxc“[ﬁthggz?} (B12)

in the absence of a solid inner core (i.e., when b = O), in agreement with an expression for

M(r) given in references (32) and (35).

22. D. Jault and J.-L Le Mouél, J. Geomag. Geoelect. 43, 111 (1991).

23. A. Jackson, J. Bloxham and D. Gubbins, in Dynamics of Earth’'s deep interior and
Earthrotation (cd. J-L Le Mouél, D. E. Smylie and T. A. Herring), Geophys.
Monog. Amer. Geophys. Un. 72,97 (1993).

24. S. R. C. Malin and B. M. Hodder, Nature, 296, 726-72S (1982).

25. R. Hide, R. W. Clayton, B. H. Hager, M. A. Spieth and C. V. Voorhies, in Relating
geophysical structures and processes. The Jeffreys Volume (cd. K. Aki and R.
Dmowska), Geophys. Monog. Amer. Geophys. Un., 76, 107-120(1993).

26. Magnetohydrodynamic oscillations of a rotating fluid.

General theoretical considerations indicate that the Earth’s liquid outer core can in

principle support a wide range of transverse (“shear”) oscillations at subseismic

frequencies, with periods ranging from less than a day to centuries. The restoring forces

involved are (a) gyroscopic (Coriolis) forces associated with the Earth’s rotation, (b)

ponderomotive (Lorentz) forces associated with the geomagnetic field, and (c) buoyancy

(Archimedes) forces due to the action of gravity on density inhomogeneities in any

bottom-heavy regions, where the potential density decreases upward. Generated by

internal instabilities and/or external forcing, the oscillations would be modified by

background flows and nonlincar interactions of various kinds.



June 27,1997
4 09 PM

Coriolis forces render core motions highly anisotropic, with certain properties that
arcroughly independent of direction parallel to the rotation axis. One particularly
important class of slow non-axisymmetric oscillations, characterized by near
“magnetostrophic balance” between Coriolis and Lorentz restoring forces associated
largely with the roroidal part of the geomagnetic field, is probably manifested in the main
features of the geomagnetic secular variation (GSV) on time scales of centuries (/8. 36).
The restoring forces associated with any axisymmetric torsional oscillations about the
rotation axis would be provided solely by Lorentz forces associated with azimuthal
displacements of the poloidal part of the geomagnetic field (27, 28), giving much shorter
oscillation periods, namely decades rather than centuries.

Insight into oscillations of a continuous medium can be obtained by first
considering the simplest-imaginable elementary small-amplitude plane waves in a
medium of infinite extent with uniform background properties when dissipative effects
can be neglected. For oscillations of the Earth’s core at subseismic frequencies (i.e. with
periods greater than about an hour), these are disturbances of the form cos (@t —x-r) of
an effectively incompressible inviscid liquid of zero electrical resistivity immersed in a
steady and uniform magnetic field B, when the whole system rotates with steady angular
velocity Q relative to an inertial frame. Here ¢ denotes time, @ the angular frequency of
the oscillation, r is the vector position of a general point P in the rotating frame with
Cartesian coordinates (X, y, z), and x = (k,l,m) is the vector wave number of the
oscillation. The phase and group velocities of the wave arc
(0/k, /1, 0¥m) and (0w /dk, dw/dl, dw/dm) respectively.

Denote by u the constant magnetic permeability of the liquid, by p its mean

density, and by

V=B, /up)'- (cl)

10
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the constant so-called “Alfvén™ velocity, a quantity of fundamental importance in MI ID.
Denote by g the background gravitational field (including centripetal effects)and suppose

for simplicity thatthe vector

N=(g-Vp,/p) g/l (€2)
is constant, where the background density is p + p,(r) with g x Vp, = O. The magnitude
of N is the so-called Brunt-Viisila frequency, which is real when the system is bottom
heavy (i.e., g-Vp,> O), zero in the neutral case when (g. Vp, = O), and imaginary in the
unstable situation when the system is top-heavy (i.e. g. Vp,< O). The assumption of
incompressibility effectively filters out longitudinal (compressional) waves, leaving only
transverse (shear) waves in which particle displacements have no component parallel to

the wave fronts. The dispersion relationship between ® and kisgiven by:

(o4~m2(2(o%,+co;7‘v +o)f—2)+u)%,((o%,+u)§2):0 (C3)

(37), where 0} =(V-x)’, (L);= (N x K) / € and @}, = (2 - x)*/x?, which givesw = O
(i.e, no tranverse waves) when @y = Oy = 0O = O.

Geophysical fluid dynamicists are concerned with a rich variety of waves
corresponding to various limiting cases of Eq. (C3). Thus, when 2Q# ObutN=V =0
we have the elementary pure “(elastoid) inertial” waves (38); when N # O but V =2Q = O,
we have “internal (gravity)” waves (39); and when V# O but 2€2 = N = O, we have the
“MHD (Alfvén)” waves (40). Certain classes of hybrid waves arise not only when
2Q# O, N#0, V=0 (37), but also when 2Q# O and N = O but V = O, the case of
“inertia-gravity” waves (38); when h’ # O andV # O but 2Q2 = O, the case of “MH -
gravity” waves; and whenV # O and 22 # O but N = O, the case of “MHD-inertial” waves
(41). And in the case of a semi-inlInitc rather than an infinite medium many types of edge

waves are also possible, for imaginary components of x normal to the boundary of the

20
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medium then become admissible. These edge waves include the well-known Kelvin
waves (.79) which, with the related inertia-gravity waves, are important in dynamical
oceanography and meteorology. as well ascertain MHD edge waves (42) that are
possible in rotating stratified fluids when V # 0,2Q# O and N = O.

Further insight into the processes involved is derivable from studies of the
dispersion relationships and other properties of plane waves, such as particle trajectories,
polarization, etc., but complications arise when dealing with actual geophysical systems.
The finite dimensions of the fluid medium have to be taken into account in cases when
they cannot be treated as large in comparison with the scales of the eigenmodes of
oscillation. Thus, related to the “MHD-inertial” plane waves whose dispersion
relationship is given by Eq. (3) with N = O are the so-called “MHD-planetary” waves (I8,
43, 44, 45) with properties affected by the presence of (nearly) spherical boundaries, as in
the case of the Earth’s core. An approximate dispersion relationship for such waves is

given by
2 2 2 2 _
O + ako/(k*+ %)~ (Vpk +Vpl)* = O (C4)

(18), where V; = B, /(up)!/2and VP = B, /(up)!/? if By is a measure of the strength of
the azimuthal (toroidal) magnetic field in the core and Bp that of the strength of the non-
axial component of the meridiona (poloidal) field, and k and / are the east-west and
south-north wave numbers. For disturbances that are largely confined to the “polar”
regions (see Figure 1 ) where the latitude exceeds 66° (at which the cylinder tangent at the
equator to the outer boundary of the solid inner core meets the outer boundary of the
liquid core), the quantity o= 2€2/c where c is the outer radius of the liquid cm-e and Q2 is
the basic angular speed of rotation of the system. On the other hand, for disturbances that

are largely confined to the “extrapolar™ regions which occupy more than 90% of the

whole core, the quantity a=<—<Y¢ (4).
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Legends for Diagrams and Tables

Figure 1. Illustrating the division of the Earth’s liquid outer core into ¢ =20 annular

regions of equal volume numbered q = O, 1, 2, 3...20 and bounded on the equatorward
side by the co-latitude 6, in the Northern Hemisphere and ©—6, in the Southern

Hemisphere, where values of 8, are shown in Table A 1, see (20).

Figure 2. (a) Temporal fluctuations in p, (;Q2),q= 0O, 1, 2, 3.. Q = 20, the angular
momentum of each annul us, from 1840 to 1990 (thin lines) and of M(z), the total angular

momentum (thick line) (see Eg. 5 and 6 and Figure 2(b)); (b) The dependence on q of the
temporal mean value of p (¢; (), the core angular momentum, from 1840 to 1980 (thick

broken line) and of the range of temporal fluctuations (thin broken lines).

Figure 3. Three-dimensiona representation of core angular momentum of 20 co-axial
equi-volume cylindrical shells as a function of cylinder number and time (Hovmoller

diagram). Note the dominant -65-year fluctuation and its latitude dependence.

Figure 4. Comparison of length of day (1.OD) and core angular momentum (CAM). A
slope of 1.7 ms/century has been removed from the LOD data to allow for the effects of
post-glacial rebound and the secular acceleration of the moon and a 10-year smoothed
series are shown from each of the series. The total CAM (M) is shown as well as three

regions (cylinders 1-3, 4--15, 16-20). Note the large correlation between LOD and

midlatitude region (belts 4-15).

Figure 5. The correlation of grouped cylinders ( 1-3, 4-15, 16-20) of CAM with LOD as
a function of lagof the CAM with respect to the LOD. The top curve (a) is based on the
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full series ( 1840-1990), and (he bottom curve (b) on the shorter series ( 1867.5-1990)

where the correlation is higher.

Figure 6. Correlation of LOD (length of day) with the CAM (core angular momentum) as
a function of the lag of the CAM with respect to the length of day. The effect of the
individual bands are shown in black and by the color graphics; the total CAM effect is
depicted by the red line.

Table 1. Statistical data relating to Figure 3.

Table Al. Values of 6,,, indegrees, wherem =0, 1, 2, 3..., n (= 20), based on equations
(A3)-(A5) (see 20).



CAM/CAMtoTAL CAM,/LLOD
Correlation Max Lag (years) | % Variance | Correlation [ Maximum | Lag (years) | % variance
Belts | Lag=0 | Corrclation at max Explained l.ag=0 [ Correlation at max Explained
Correlation Correlation
! 16 .33 15 2 .20 22 -2.5 4
2 32 48 12.5 1.6 32 .36 -2.5 25
3 48 61 7.5 2.8 42 44 -2.5 3.9
4 .62 74 7.5 3.8 .50 52 -2.5 5.0
5 73 .83 7.5 4.8 .55 .58 -2.5 5.8
6 .79 .86 5 5.6 .56 .58 -2.5 6.4
7 81 .86 5 6.3 54 .56 -2.5 6.7
8 8l .83 25 6.7 ol .53 -2.5 6.8
9 .80 81 25 7.0 A7 49 -2.5 6.6
10 .79 .79 25 7.0 42 45 -2.5 6.0
11 .78 .78 0 6.8 .38 41 -5 5.2
12 .79 .79 0 6.4 32 40 -10 4.2
13 8l 81 0 5.9 .25 41 -125 2.9
14 .84 .84 0 5.2 .16 48 -20 14
15 81 81 0 4.4 -.02 61 -20 -2
16 .66 .66 0 3.7 -21 .67 -22.5 -19
17 46 .56 -15 3.2 -.33 .66 -25 -3.6
18 .36 .58 -15 3.2 -37 .65 -25 -5.2
19 .39 .62 -15 4.3 -.36 .67 -25 -6.3
20 .59 .69 -7.5 11.28 -17 .64 -22.5 -5.4
1-3 .38 53 10 4.6 .36 .38 -2.5 6.9
4-15 .88 .88 2.5 69.8 A7 49 -7.5 56.9
16-20 .56 .69 -1.5 25.6 -31 74 -25 -22.5
Totd 1.0 1.0 0 100 26 58 -175 41.3

Full CAM Series




CAM/LOD

Correlat ion Max Lag (years) | % Variance | Correlation | Maximum | Lag (years) | % variance
Belts Lag=0 | Corrclation at max Explained | l.ag=o0 | Corrclation at max Explained
Correlation Correlation
1 46 74 175 8 27 35 -75 6
2 57 80 15 3.9 40 43 25 3.2
3 65 84 125 5.3 51 52 25 5.0
4 71 .87 75 6.1 61 61 0.0 6.3
5 75 .89 75 6.5 .69 .69 0.0 7.2
6 75 .86 75 6.6 75 75 0.0 7.9
7 72 79 5 6.5 77 77 0.0 8.3
8 .68 72 5 6.2 77 77 0.0 8.4
9 .63 .65 25 5.7 75 75 0.0 8.2
10 58 59 25 5.2 72 72 0.0 7.6
11 55 55 0.0 45 .70 .70 0.0 6.8
12 55 55 0.0 3.9 .68 .68 0.0 5.7
13 58 58 0.0 3.2 .66 .66 0.0 4.4
14 64 64 0.0 2.7 57 58 -25 2.9
15 57 57 0.0 2.3 25 52 -1o. 1.2
16 38 54 -15. 2.2 -.08 51 =20, -6
17 30 59 -15. 2.7 -.22 56 =20, 2.3
18 33 .65 -15. 3.9 .27 61 225 -3.8
19 43 75 -15. 6.6 -27 67 225 -4.9
20 58 76 -75 15.2 -12 57 225 -3.7
1-3 .60 81 15 10.0 44 46 25 8.8
4-15 76 78 25 59.4 .80 .80 0.0 74.9
16-20 51 77 -15 30.6 -21 67 -22.5 -15.3
Total 1.0 1.0 0. 100 57 64 -5 68.4
1-20

Shorter CAM Series
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