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Abstract

This paper addresses a significant
but mostly-neglected class of prob-
lems that we call bounds estima-
tion. This includes learning empiri-
cal best-case and worst-case algorith-
mic complexity bounds and red-line
bounds on sensor data. WC pro-
pose a methodology for hounds esti-
mation using regression with asym-
metric cost functions and demonstrate
its performance using a specific linear-
regression method.  We argue that
its focus on bounds makes it prefer-
able to existing estimation methods
for bounds estimation problemns.

1  Introduction

Work in the areas of artificial neural network and statis-
tica pattern recognition over the last several years has
resulted in significant progress on methods for cstim -
tion problems learning an approximation of a gen-
erator function given a finite set of (possibly noisy and
partial) patterns of the (continuous) target output and
the (not necessary all continuous) inputs. Iu the sim-
blest and most commonly used form, which we will call
mean estimat fon, a regression network learns t 0 predict
the input-conditional mean of the target. In the most
complex form, called probability density estimation, the
network learns to predict the input -conditional probabil-
ity of each possible output value, such that the sumn over
all of thesevalues for each pattern is one. The popular
comproinise between these two extremes arcerrorbars
e.a. [4], [10] ), based on learned input-conditional mean
plus/minus learned input-conditional variance.

In this paper, we are concerned with a large class of
important problems for which we will argue thatimean
estimation (even with error bars) is too simplistic and
that other existing probability density estimation meth-
ods are both excessively complex and somewhat inappro-
priate. This class includes monitoring physical systeimns
for thesake of triggering a red alarm (e.g. NASA Space
Shuttle operations), empirical determination of hest-case
and worst-case complexity bounds for algorithins (e.g.
quicksort), and learning int ma-valued evaluation fumnc-

tions for_~anc-tree scarchers such as B*[2]. We cdl this
class of problemsboundsestimationproblems.

Asfat as we know, the t echnique which we will present
in this paper is the first regression-based learning algo-
rithm specifically designed to address bounds estimation
problems. It order to better understand wily existing es-
timation techniques are ill-suited for bounds est irmation
we will first discuss in some detail how they would behave
on such problems. We will then present our new tech-
nique for avoiding these short-comings and demonstrate
it on some simple yet. illustrative examples. Finally, we
identify some limitations in our current ap proach and
suggest promising areas for future work.

2 Motivation

As initial motivation for this paper, consider the task
o f ecmpirically determining accurate time complexity
bounds for a given implementation of the quit.ksort al-
gorithm. For a list of size N, its worst-case (but gener-
ally rare) bound is O(N?) and its best-case bound (and
expected-case) is Q(Nlog N). In defining a regression
network and training patterns for this example, we will
pretend t hat we did not know these facts already. For
sitnplificat ion, we consider basic quicksort, without the
common median-of-three enhancement. In that case, the
worst-case lists are easy to describe  they are initially
fully ordered.

For simplicity, assume we predefine the problem as a
sitnple linear regression to find the SiX weights w1, ., wg
for the linear weighted-sum: {ime = wj -+ 1112,10.8IN +
wyN vwiNlogN + wyg N? + ws N¥ + we2™ | For rough
est imat ions of the t ime complexity of the many com-
puter algorithms which have a primary scaling factor N,
one might hope that this specific simple linear equation
would suffice. However, as we will now discuss, previ-
ous est imation methods will per form oy poorly on this
example, whereas our new technique finds complexity
bounds that one would consider reasonable and useful.

We must stress that the ouly realistic goal for
regression-based bounds estimation is to find bounds
that satisfy some (domain-specified) acceptable rate of
violation on avalidationdata set. 1115 “expected”
bounds, even if overtight relat ive to the t rue bounds
for the entire underlying domain distribution, must be
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acceptable. This is not typically a problem; for exam-
ple, monitoring tasks caun tolerate some sinall false alavm
rate. hi t his regard, a regression-based a)proach must
necessarily differ from a Inore analyt ic-based approach.

2.1 Mean Estimation Is Inadequate

By definition, mean estimat ion will, at most, be able to
accurately estimate only the expected-case. Kven then,
trying o ensure the learning of accurate weights on the
critical NlogN and N°terms (say, to compare two quick-
sort implement ations) would iinpose a great burden on
us t oensurc that our pat terns are truly representat jve
of the actual lists in our application domain. In par-
t icular, we would have to be especially careful not to
include an unrepresentative number of patterns near ei-
ther the worst-case or the Imt-case. For example, if we
wish to randomly generate many training patterns, our
generator must reflect the expect ed distribution of it ial
orderedness it our application’s lists, as well as any ot her
important factors (e.g. the amount of duplicate elements
in each list, etc)). Otherwise, mean estimation will not
be telling us anything of real value. For example, jt al-
ready cannot confidently ident ify the worst-case bound,
unless we actualy spoonfed it only worst-case patterns
(which e are assuming we do not already know).

of course, we are aso assuming the general case where
both the best and worst case for many N is not known
to cxist in the set of training patterns. Qtherwise, in
this simple example of only one input, one could obvi-
ously just retain the patterns wit h maximum (minimum)
targets for cacliinput value, and use mean estimation
to confidently find the high (low) bound. Furthermore,
note that cven if collecting such a complete set of pat-
terns was possible, such input-conditional min/max tar-
get pre-filt ering is not feasible i general, even for rela-
tively small sets of inputs. It would effectively require a
multi-dimensional histogram (whose size is exponential
inthe number of inputstimesthe mumber of bitsrequired
t 0 represent cachiinput value), where cach bin remein-
bers the minimum and maximum target value seen for
thesctof inputvalues that bhin represented.

Alsonote that it is not sound 1o even try t () roughly
cstimate a high bound as the most complex input term
with a significantly non-zero weight in a mean estina-
tion. The reason is that estimating the mean may not
require any significant accounting of the worst cases, es-
pecially if the mean case is polynomial and the (rare)
wrist case is exponential. Furthermore, an analogous
attempt for finding low bhounds is not even possible.

2.2 Error Bars Are Inadequat ¢

Alt hough error bars are specifically designed to reflect
input-conditional confidence in mean estimmations, this
quicksort exampleillustrates t hat they do not adequat ely
address the general b ounds € stimation b roblem. For ex-
ample, we might indeed learn error bars wit hin which
95% of all quicksort times for a givenNwill fall. DBut
that still does nott ell us how high or low the quicksort
tinme can be for that N.
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Most itnportantly, note that in this example, the 5%
of the patterns outside of those error hars will not be
normally distributed.  The quicksort t imes lower than
t he low error bar will 1)e few st andard deviations away,
whercas the wwst-case times will likely be many stan-
dard deviations away. S0, for any chosen number of st an-
dard deviations, one bar will fit better at the expense
of the other. There is also the fundamental problem
t hat input-condit ional variance can be seriously under-
estimated for finite sets of traiuing pat terns, as discussed
in [4].

Furt hermore, whereas ignoring, out liers is often very
useful in mean estimation, it is less appropriate for
bounds estitmation, since such “outliers” are more likely
to actually be patterns of the very bounds we are try-
ing to learn. This is easily unagined for problems with
sharp phase transitions between comunon polynomial
and rare exponential complexity bounds (e.g. constraint-
sat isfaction problems [6]).

2.3 Probability Densit ies Are Excessive

So, to learn the worst-case and best-case bounds, we
need Sone form of probabilit y density est imat 101y more
powerful than error bars. One popular type is a Gaus-
sian mixture model [3], which essentially generalizes
normally-dist ihuted error bars for multi-modal prob-
lewns. However, t his will not perform well for our quick-
sort example, since there d 0 not exist some finite set
of modes (conditional only on the sole input N) around
which the quicksort times are normally distributed.

Alternatively, one could try fractional binning [10]
which is a for mn of input-condit ional histograms that
performs probability density estimation while reducing
the classic problem of discontinuity af bin boundaries
(by averaging the outputs of neighboring bins). Due to
its generality, fractional binuning should eventually learn
reasonable bounds, wit hin t he resolut ion of t he fixed
bin widths. But it will require siinultancously train-
ing the output s for tens, hundreds, 01 perhaps even
thousands of bins. Thus, we would expect its training
time for bounds estimation to be orders of magnitude
greater than that of a siugle regression. Furthermore, it
would still not result in an It erp retable function such as
180.1 + 1.2log N+ 3.4N2. Thus, it scems more reasonable
toview' fractional binning asatractable but approximate
alternative 10 the previously mentioned histogram-based
method for partitioning patterns into high, low, andin-
termediat e classes.

Such methods are ideal for problems for which clearly
identifying t he modes of multi-modal dist ributions is the
key poal, such as learning IModcls for many cont rol tasks.
But they are excessive for the task of bounds estimation.
In our quicksort example, we are not asking to find somne
fiuite nunber of peaks (imodes) iu the non-normal dis-
tribution of quicksort time across the single input N.
Nor are we asking for the input -condit ional probabilities
of cach out put value. We ave sinply asking what the
bounds are, conditional on N.

From the perspective of the fractional binning ap-



.

-

Dennis DeCoste, JPL

proach, we are asking for a single bin which contains all
of the targets. We do not. part icularly care how the prob-
ability density varies across that bin. In other words,
whereas fractional binning employs some fixed number
of bins with fixed widths and fixed location and learns
input-conditional probabilities for each, for the prolslem
of bounds estimation it seems more appropriate to sim-
ply fix the probability (to 1) for a single bin and learn
its input-condit jonal width and location.

2 .4 Key Problem: Insufficient Features

The underlying reason existing, probability density esti-
mation methods are excessive for hounds estimation is
that they promise more than is required, and so in order
to deliver on those promises they require oret raining,
patterns and morce training time. Note that the factors
defining the mean and probability density (e.g. for quick-
sort: N, degrec of orderedness, degrec of duplicacy, de),
can 1)c much more complex and hard to fairly represent
in a finite set of patterns than the factors defining the
worst case (e.g. fully-ordered lists for scveral N). Thus,
one of our motivating intuitions is that bounded esti-
mation may require significantly fewer relevant features
(i.e. inputs and hidden units) than probability density
estimation.

If the training patterns provide all relevant inputs and
our regression model has sufficient flexibility (e.g. mun-
ber of hidden units), then the mean and both bounds
will be within the target noise of cach other. The key
dilemma in practice is that a sufficient yet manageable
set. of feat ures is often difficult, to det ermine. A t radi-
tional probability density estimmation frainework commits
to minimizing the error in intimations of the probability
for cach Gaussian) bin, ctc. in the regression network.
So, if al of the relevantinguts are not availalyle, this
caun lead to a vicious cycle (with diminishing returns)
of introducing addit ional Gaussians  bins, etc., inan at-
tempt to find the (possibly non-existent) right number
that best matches the modality of the underlying distri-
butionin terms of the available data. Thus, our int uition
is that a more direct attempt to learn bounds instead of
probability densities should be much more eflicient when
good feat uresare scarce.

2 .5 Hard-Limit Bounds Often Suflice

A's further motivation, we st ress t hat in our experi-
ence crisp functional limits are actually not uncommon
or impractical in a variety of domains. For example,
(manually-defined) high and low red-lines ave pervasively
used within NASA operations as thresholds for t rigger-
ing alarms during automated monitoring of spacecraft
for anomalies. In fact, to a very large extent, space-
craft are designed with component tolerances and scn-
sor placements that, make such red-lining sufficient for
detecting faults in many plausible future scenarios. Thie
cost of manual formulation and validation) of red-lines
and the existence of massive archives of 1nission sen-
sor data together beg for automated 1 )ouuds estima-
tion. Similarly, tile B* chess search algorithm [2] shows
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promising use of interval-valued position evaluations,
cven though a more general probability distribution rep-
resentation (e.g. [1]) has greater representational power
(and greater computation costs). Otliers have success-
fully improved qualitative reasoning through tile fitting
of piccewisc-mmonotonic quantitative bounds [7].

Clearly, (accurate) probability density estimations (if
obtainable) are more powerful t}an a mere pair of input-
condit ional bounds, particularly for an applicat ion for
which a mecaningful utility function canbe formulated
and applied across the density. That could be particu-
larly useful for tasks such as control. But as the above
cxamples illustrate, many analysis tasks would benefit
from bounds estimation that balances accuracy against
cost (ot htraining and execut ion).

3 Bounds Estimation Via 2 Regressions
We define the bounds estimation problem as follow’s:

Definition 1 (Bounds estimation) Given N pat-
terns of target yand inputs a,, generated from the true
wr derlyin og fumetion y = flvy, ¥ o0 2wy ) + €, find the
“tightest-upper and 10° WC7' bounds yyandyjsuchthat
y1, <y<yg holds =os much 11,5 p os sible ! for each pat-
tern <y, 1 ,2'2, ..> whereyp=fr(ey2 .- 2) and
yn = fo (e, T2, ay,

We allow any 0. < 1 <m and 0 < I <, making ex-
plicit both our expectation that some critical inputs of
t he generator may be completely missing from our pat-
terns and our expectation that some inputs may only be
uscful in determining one Of the bounds. We also make
the standard assumption that the inputs arc noisecless
whercas the target has Gaussian noise defined by e.

3.1 Asymmetric Cost Function

Our approach is based on the simple intuition that the
regression cost function should discourage outputs below
{above) the target for high (low) bounds. To do this, we
split the task of bounds estimmation into two indepen-
dent regressions over the same set of patterns one to
learn the expected high bound fr and one to learn the
expect ed low bound f,. We define respeet ive asymimet-
ric cost functions Iy and Fy, across dl patterns P, as
shown in Figure 1. 2

- Py, (yn ~ D ity >y
Prog(uie - w)Ha ity <y

Ey = Z,,(”P cn By o= Z,'ET L
I legfp les] DTS lee’l’ ferl

Parawmeters: Py, Pu,, P, Pr,, > 0, Ru,,Ru,, R, Ry, > 1.

. Pr, (v ~ y)“"“ ity <w
’ P, (o - e ity >y

Figure 1: Asymmetric cost functions.

YWe will provide parametric definitions of this and “Light-
ness” shor tly.

2pan sinplicity, further discussion focuses 011 learning fu
us g cost Ky learning fr, usitig Ky ois analogous.



Dennis DeCoste, JI’L

For cach pattern, Py, gives the penalty factor for an
alarm, when the network gives an output yy below the
target y, and Py, gives the penalty for a non-alarm,
when gy > y. We will call these alarm and non-alarm
patterns, respectively. During each training epoch, mauy
patterns can jump between these two ¢la 8808, donot(\d
by the sets P, and P, where [P, ] + |Pu Pl N
Thus, sclect ion of the I’ and r paramecters should prefer
symmetry in the cost function, to minimize the amount
of discontinuity in the error surface.

We can favor non-alarms (i.c. looseness) over alarms
(incorrectuess) by making Py, > Pu,. ‘his is analo-
gous to the use of nonstandard loss functions to perforin
risk miunimization in classification tasks [3]. Note that
formulat ing nonstandard loss funct ions for classification
often involves relatively few decisions (e.g. how costly
missing a cancer t umor is versus a false positive). In
cont rast, complet ely analogous loss functions for I hounds
regression would require (manually) specifying two large
0((2'")? matrices, where nis the number of hits used to
approximate the continuous targets. Our P factors are
an attempt to gain benefits of using nonstandard loss
without specifying that fall matrix.

1 %, =Py, = 1 and R= Ry, = Ity, gives Us
t he class of Minkowski-R errors [3], where R=2 gives
&t andard sum-of-squares error and R= 1 gives classic ro-
bustestimation {which reduces the effects of outliers).
Ry, <2 becomes important when there are many non-
alarm patterns for the same iuputs for which the targets
arc much lower than yy. With fty, > 2, machine pre-
cision limitations could preclude Py, from being sufli-
ciently low to avoid those numerous non-alarm patterns
from dominating the optimization result (leading to ex-
cesstve alanns elsewhere).

The special synunetric case of Py, = Py, =- Iy, =
P, =1 and Ry, = Ry, = 1t = Ry, = 2 pives
st andard least-squares regression.  Thus, a convenient
property Of our choice of cost furiction isthat, in t he limit
of suflicient inputs and training patterns, hoth bounds
can converge to the st andard mean estimat ion result.

3.2 E flicient Linear Bounds Estimation

We now present a method for efficient linear bounds es-
t imat ion using our asymmetric cost funct ion # 5, for a
net work consisting @ single linear out put unit, of the
form yy = Z:‘: L Wil

Despite its simplicity, we believe that assuming lin-
carity will bemore practical for bouds estimation than
is typical for other estimnation problems. Generally, the
expect ations oft he t op-level task will be lower, being sat -
isfied with avoiding alarms while not being “too loose”.
In contrast, other estimmation-based t asks oftenintend t o
use the result, for tasks such as long-term predict ion or
cont rol, in which precision is critical. Furthermore, out
intent jon is to embed this approach in a constructive
framework such as Cascade Correlation [5], for which a
single lincar output unit is indeed optimized by itself
(upon inserting a new frozen hidden unit).

Having, assumed linecarity and carefully chosen our cost
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function Fyy, optimization via Newton’s mothod [3] is
particularly efficient: w(t+1) = w(t) - le, where g

1
is the h-row vector gradient of clements Tui’— and A is

the /it x It Hessian matrix of elements M]glu{ .

For our specific cost function £y, the elmnonts of the
gradient at cach epoch ¢ can be computed by averaging
over alarm ;m(l non-alarm patterns as follows:

61‘1‘1[ - If}[ 18yn
s = L 7 -~y -2 4 S,
Sins '77”, NP, ,[1 TR Ll(n [y ]]{ Sw;
- 18yn
Py B, 20 cp, lyn — gt TEEE,
. ~J
=@y, SINCE Yp = 9. Widy.
With ¢, = |yn — y| for each pattern p, the elements of

by 1
Swidu; T 7511]‘* lﬁ][
I)HH ]{”“ }:Pcfpn[(lfﬂ,j“ 1) ]f][ -2 5%_ Syp -+ / Cl,[ 1]"

llv

Py, Iy, ZJ'C'P“[(R”T 1)e, H” " 25%._L_} Z (71] Ho- ]]
where Z,, =2 Z, = RS

5lﬂ,5ur_,
For Ry, = Ity, = 2 the Hessian simplifies to:

sivl,'lisj.f,; =20, [0 op, vivi)F 2P, (30, p, wins]

Starting with zero weights, we batch learn with New-
ton until it either convergences (i.e. all elements in gra-
dient g are close to zero) or exceeds a limit of 100 epochs
(higher for extremely low non-alarm penaltics).

We augiment Newton’s method with a A parameter
that gets added to the diagonals of the Hessian A, pro-
viding a model trust region (as in Levenberg-Marquardt)
[3]. This acts like gradient descent when Newton would
increase error Ky and also adds a form of weight reg-
ularization. Between epochs, we halve A when error de-
creases and double it when error would have risen.

Using known methods to divectly update A1, one can
ensure a total complexity per epoch of ()(th)

, . dyn
where b

A are partial derivatives of g

— e SYH o o
= 0, siuce S, = g

3.3 Spot-Checking Over P, R Parameters

Given our above formulations, even simple spot-checking
for various reasonable values of Ry, Ry, ,Pu,, and Py,
provides a significant advance over the existing alter-
natives we have discussed. lor example, in our expe-
rience, quick and reasonable results (though not opti-
mal nor necessarily alarm-free) can often be gathered
by re-runming our batchi Newton for each combination
from value sets such as Ry, € {1,2}, Ry, € {2,4,10},

Py, € {1,0.01,1/A,0}, Py, € {1, N,N?}. Such spot-
chee king considers a wide spwad of balancings between
alarms and non-alarms, while obeying the reasonable
constraints Ry, > Ry, aud Py, > Py, , to reflect our
discussed strong preference to avoid alarms. The degree
of difficulty in finding even rather loose low-alarm fits via
such spot-checking can provide useful insights for data
exploration (e.g. feature sufliciency).

We first train with the P’s being 1 and the R’s be-
ing 2, which is similar to mean estimation via singular
value decomposition (SVD). In addition to possibly giv-
ing a sufficient result for some problems, the resulting
SVD weights often prove useful for sceding training us-
ing other I’ and R values, as we will discuss shortly.
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We currently manually evaluate the results of various 1'
and R by comparing the number of resulti ug alarms and
the sums of squared errors over P, and over P,. We
have no formal basis for trading-off alarin count versus
alarm standard error versus non-alarm standard crror;
ultimately this will be very task-specific.

4 Examples

For simplicity in discussing these examples, here we use
tile R and P’ parameter settings defined for the high
bound when learning the low hound as well.

4.1 Complexity Bounding

A's simple demonstration of discoverying quicksort-like
complexity bounds, consider a mixed generator which
emits two types of outputs: y1=0.2N? + Sandy2 =
2NlogaN 434 2. For the ten N=1,10,20,... 90, we gen-
crate one pattern < yl, N > and five distinct patterns
< y2, N >, where the five y2 values for each N are de-
fined with z=.2iN for i=0,---,4.This gives a total of
60 patterns. As the first plot (2a) of Figure 2 shows,
for cach N all of the y2 values cluster into short vertical
bars. For N=1, y1 < y2, but by around N=60 the n?
term begins to dominate (i.c. y1 > y2).

1600 1600 200

1600 (a) i ( b ) oo
140 1400 s

1200 R J 1o

10- aR %

0 Fomw A

i 600

%0 // 40 / 0
400- ‘ 200/ .
200 A Ve / 50

-

..... O

0 { o .

010103040506070 8@| 3| CD “ 6;76@0901(‘1‘1‘3 Loan3t /Hc‘7 97 0 0 7\ 304J Oﬁ/)/'t' 9[07
Figure 2: Example complexity Bounds

Targets plotted as dots and bounds plotted as dotted-lines.

For various I’ and R paramecters, we trained seven lin-
car net works, denoted by their most complex term of N:
f] = f(])7 flo(gN - f(] 10(/2]\) f]\' = {(] l()(/lj\’r ]\7)
R f j s logsN, A", Nlog,N,N? N 2%).

The single line in plot, 2a shows the mean estimation

for network fy2 (via SVD or similarly Ky, = Ry,
2, Pu,= Py, = 1). For each N the mean estimat ion
is significantly displaced toward the more numnerous tar-
gets penerated from y2, so that variance-| »ased error ars
would not suffice to tightly bound the data.

Plot 2b shows the bounds for fy: learned using
Ry, = Ry, =1,Py, = 0,Py, =1. The initial weights
were not zero, but instead were as given by SVD. With
zero weights aud Py, = 0, the lower bound would have
no error to drive it upward. SVD followed by training
with Py, =0 generally gives alarm-free and reasonably-
tight bounds in practice, even though in theory the zero
penalty would accept any alarm-free bounds that oc-
curred during, training,.

In contrast, 2¢ shows weak bounds for fn for the same
R and P and initial weights as 2b. This illustrates a
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common  occurrence  networks with insufficient fea-
tures tend to be readily detectable dueto loose bounds.
Similarly, the high bound for the wildly overly-¢ omplex
feature 2 “ of f,~ was extremely 100 SC since training
reached a weighted-term of 0.000001 2 which removed
al alarms for the high bound, and Py, = 0 gave no error
to drive learning any further.

P’lot 2d shows bounds for fy2 using Ry, = 2, Ry,=
lo, P’y,= 0.01, P;;,=1 The nou-zero poualty Py, forced
bounds inwards while the high Ry, ensured that alarms
were severely penalized. These are much tighter than2b,
at the price that a single very small alarin (of absolute
squared error around 2) occurs in each bounds. Most
noticeably, the looseness in the low bound at N=10 for
2b has been improved. This was the best result of our
small spot-checking over R and P. It yields a particu-
larly good solution of the underlying inixed complexity
of the gencrator: fyop = 4.88 4-20.44l0g, N + 37.0N —
781 NlogoN + .33N? and fne; = — 113 -- 5.4loga N —
9.1 GA’ + 3.19ATIOY1AT +4.02N2, In contrast, for same
R and P: fysp= 1.02 4. . + 0.73N2 — 0.005N? and
fnsn= O+ 4 0.000021" N2+ 0.0014N?3 suggests that
the N3 terin may be overly-complex for the data.

4.2 Big-Oh Example

The closest relat ed work is t he recent work Of McGeoch
and Cohen 18], which presents seven heur istics for at-
tempting to approximate the magnitude of best-case
and wwrst,-case.  Their approach also requires four or-
acles, to provide appropriate trending and step-size de-
terminations. They present the results of these heuris-
tics iu t rying to find upper and lower bounds on the
valueof b of a variety of gencrator functions of the form
fa) = (:1}' 4 ca? -t e, forb > d, given only SIX patterns
for the = 8,16,32,64,128 cases.

The first plot (3a) of Figure 3 snows the result of
our training the previous network whose complexity is
lower t han t he complexity of their test function for y11,
namely fiog,. = f(1,logx), with IRy, = Ry, =2, Py, =

= 1. Plot (3b) shows that rcusing the resulting
weights to seed a training with 7y, changed t 00 results
in alarm-frec bounds with still considerable looseness.
However, get ting even a loose hound for this generator
is significant in that their reported that none of their

heuristics were able to find cither an Upber or a lower
bounds for 1) for y] 1.
06 - {a) 1.0%e406 - (b)) 1eh0¢ (c) 105240 - (d)
9500 16208 4000 1e40s \
annan - S0 94700 950000
omn ! \ 857 i ' \
810605 : . e 857 T,
IO , i . ~_
D000 . L T IR o FA00aG . B R P
’ O S0 100150200260 30 654 10E1502002593 \‘"J[ 059 11 190 200 254 37 G50 100150 261257300

Figure 3: Hard case: y11 =- 328 - 10120 4 10°.

We also learned 11 110\\ networks of the foun fro =
f(])1 fJ = f(l ; )7 fﬂ = f(] T 8 (J) 1'0
foro = f,at @ ad et b b T a8 2 20),
With Ry, = Ry, = 2,0y, == Py, =1, the 1‘(wsult for
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f. 1 is shown in plot (3¢). With those resulting weights
being reused to seed a training with Py, changed to 0,
the result is plotted in 3d.

The intention of introducing these new networks was
to provide a means of determining (t0 one significant
decimal place) the power b of interest. Given that our
previous complexity network f, is able to fit the data
with little residual looseness, this would be arecasonable
next step even if we didn’t know the form of their geti-
crater. Manually examining the weights and errors of
these networks after training with ’y7, =0 (based on ini-
tial weights from training with 17, =1), we noticed that
even f, 3 is able to fit the data with low error. The lowest
errors (by an order of magnitude) were both achieved for
the bounds of f, 7; curiougly, .7 is the power between the
two competing powers of x in the generator for y11. Wc
are not claiming any sound algorithin for finding bounds
b, but it is interesting to see that exploring the conse-
quences of various R and P values can lead to potential
insight about the data.

5 Discussion

This baper Las argued that there exists an important bhut
neglected class of problems called bounds estimation for
which previous regression techniques can be ill-suited.
We have developed a principled cost function for these
problemns, a specific method for efficient linear bounds
estiiation using this cost function, and have preseuted
promising empirical results.

Our proposed framework supports anytisne bounding,
in which the current set of features can be used t0 learn
bouuds with no (or few) alarms, but with perhaps con-
siderable 1oo sciess. As better features becorne available
(c.g. new sensors or external feature construction pro-
cedures), it can learn tighter bounds. We believe this
anytime property will Prove very useful in yeal-world 81>
plications such as automated monitoring. In such ap-
plications, loose bounds are useful so long as the false
alarm rate is low. Loose bounds on many perspectives
(e.g. raw sensors, derivatives, power spectra) can often
help detect anomalies that no existing tight bounds caun,
since faults can manifestin SO many ways.

5.1 Limitations

A s mentioned earlier, if we never trained on quicksort
patterns representing fully-ordered lists, we would un-
derestimate the conceptual high bound., We view this as
an example of the classic difficulty of extrapolation. We
believe that using our approach to concisely remember
the historically observed input-conditional bounds will
be useful on its own, such as for avoiding the same false
alarms during future monitoring. We currently make no
strong clains about generalization ability; avoiding over-
fitting while adjusting R and I’ parameters will probably
require careful use of validation) sets during training.

A more fundamental limitation is that our approach is
not well-suitd for iterated time-series prediction, since
thebounds could quickly degrade outwardiwo extreme
values. For iter ated predict ion, as with control, we would
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expect more general (and costly) probability density es-
timation to usually be required.

5.2 Future Work

Although grounded on solid principles, our proposed
asymmetric cost function is not the only option. Given
our initial encouraging results, it secems worthwhile to
also explore more exotic ones, such as ones which do not
specialize to standard sum-of-squares.

It appears that one should be able to handle nega-
tive patterns (l.c. ones that should be above the high
bound) by extending the definition of ey to include a
new penalty term for ypy being above such a negative
tar.get, with zero penalty for yy below that target.

We also not ¢ that we have not yet test cd this approach
in a wore general nonlinear frainework, such as neural
networks with hidden units. In part, however, this is
because we favor first exploring pre-optimization feature
construction methods (e.g. [9]), which we suspect might
allow simpler lincar optimization to often suffice.

For the near future, we are planning an empirical com-
parison on a real-world spacecraft domnain against other
probability density estimation techniques, to better un-
derstand when higher-precision bounds estimation might
still warraut their higher complexity.
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