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Abstract

T he solar chy oosphere consists of t hice (1( 1,%s(,s
which contribut ¢ differen tially to ultraviolet va diation
reaching the car th.  We describe a data set ot so-
larimages,mcans Of scgmenting th e imagesinto the
constit uent classes, an d a w ovel high-level represent -
tion for compact objects based 071 atrian gulated spatial
‘membership function.. Suchrepresentationsare fitted
i (1 va riable- dim ension Ma rkov chain Mon t ¢ Carlo
scheme.,

i1 Introduction

The solar chromosph ere, observable (see figure 1)
inult raviolet light, roughly cousists of t hree cl asses:
plage (bright magnet ic dist urbances), network (hot
boundaries of couveet ion cells), and background
(cooler interiors of these cells). Plages appear as ir-
regular groups of clumps, seldom near the solar poles.
Similar to sunspots, plages experience a cycle of for-
mation and dissipation, starting o ut as relatively com-
pact regions and decaying over many days into a dif-
fuse and broken-up cluster. The ((11-s1 ructurednet -
work has little contrast with the background, is spa-
t ially homogeneous, and persists for tens of hours.
Sce [8] for more on chiromospheric feat uves.

The t hree classes cont ribute differently t o t he ul-
t ra violet (UV) radiat ion reaching Eartl Vs upper at -
mosphere, with the plages and magnetic network giv-
ing the largest contribution. This radiation cannot be
sensed direct ly from t he ground but the feat ures giv-
ing rise to it can be; they are used as proxy input s to
models of sol ar it radiance. These nodels are crucial
to understanding phenomena such as global wartuing
and phot ochemical decomposition processes int he up-
per atmosphere [7].

Also of int erest is t he evolut ion of plages. Current
understanding (out lined above)is of a qualitat ive and
anccdotal sort and a more quant it at ive description of
ant icipat ed plage shape s and t he evolut ionu of plage
regions would be of value.

The primnary source of datafor this study is theset
of Call K full-disk specctrohcliograms that has been
collected daily at Sacramento Peak National Solar Ob-
servatory from t he mid-sixtics onward. The images are
recorded 011 photographic filin, an interval of which
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Figure 1: A full-disk chromospheric image from 15
July 19{)2, showing a decayed plage pairint he nort h-
west quadrant of the sun, aud a younger, more cor -
centrated plage in the sout heast.

(fromn t he mid-cighties forward)hasbeen digit izedt o
2K x 2K pixcls.

2 Image Decomposition

Firstwe discuss t he problem of partit ioning t he im-
age into plage, network, and background components.
Scientists ofteneither apply at hreshold across t he flat-
tened image to determin e plage areas, or nanually
surround the plages with polygouns. The first method,
while simple and object ive, 1gnores all spatial infor-
mation that is available. The secondmethod clearly
uses a large amount of side informat ion possessed by
the scientists, but is also highly subjective, difficult to
cven describe, and hard to repeat.

While the Bayesian framework is not universally
appropriate for inference problemns, in the situation at
hand the prior information is so apparent that approx-
imating it sccms better thanignoring, it. Accordingly,
we est ablish the well-k nown Bayesian formalism. De-
noting pixel sites s = [s152] in atvimage domain N,
and defining matrices of classlabels X ={a¢}se N, tak-
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Figure 2: Animage det ail haviug network and plage clemnents is shown with t hreshold and MRY labelings.

ing values it the set {P, N, B}, and ohserved intensities
y, the maximum a posteriori (MATD) decision rule is

x = argmax log P(y |x) + log P’(x) 1)

In practice, the first t erm forces fidelity t o t he data
while the second penalizes unlikely rough labelings.

Prior mo dels I'(x) may 'be specified in many ways.
We have used the Markov field smoothiness priors
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for #> () [1]. The constant Z is chosen to normalize
the probability mass function, and the sum extends
over‘neighboring’ sit esin 1V, 0110111 rectangulargrid,
sites are neighbors if they adjoin vertically, horizon-
tally, or diagonally. As /3 d rops, rougher labelings are
allow ed, and the uniform distribution is obtained at
B 0.

The remaining ingredient is t he likelihood

Py 1x) - ][ Pluslao) (3)

The three densities P(y | 2) can be estimated from la-
beled images supplied by scientists. We have found
that the lognormal distribution is a good model for
the per-class intensities.

The objective function of (1) becomes

-~ log 5§ " x 2 ~
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I f the class variances are ident ical, and (4= O, we
recover the t hreshold rule current I-y used iu practice.
To t ackle t he optimization problewm for general F we
have followed the well-k nown Gibbs sampler scheme
with Ripley’s ‘clock’ modification {6, p. 99]. Sample
results ave shown in figure 2. The first panel shows
a piece of a chiromospheric iimage from January 1980

wit 11 aplage in t he lower-right corner. Beside t his is
t he corresponding t hreshold segient at ion. The abun-
dant speckle is consistent with the implicit prior that
is uniform over all labelings. In the final pauel is the
MAP segmentation with MRY prior at 4: 0.7. The
estimate is found by the stan dard Gibbs sampler ap-
proachwit 11 t emperature loweredinsteps (discretized
cooling Wit h a geomet ric rat ¢) over 800 image sweeps,
We note that the MAP/MRE segmentation eliminates
many of the tiny paps in the large plage and makes the
network st 141(1112°C mor¢apparent

3 Spatial Descriptions

Now we address t he second of t he concerns raised
in the introduction, that of representing and atialyz-
ing plage shape. i contrast to the essentially pixel-
scale characteristics of t he network/backgroundint er-
play, plages are high-level phenomena which are not
well-capt ured by pixel-level rules. Following Grenan-
der(e.g., [4] ), we pursue a hierarchical represent ation
of plages. 1t is convenient fo embed the pixel sites
N ina contimmum N . [0, 1] To represer It aplage,
or a cluster of related plages, we proposc a te;lt-like
structure defined by a triangulated planar graph

G- (v, E, &) (4)
VN
E ¢ N?
h:V <) [04]

avertex Set
an edge relation

a height function

The height function extends to all of N by lincar in-
t erpolation across t he faces of t he pyramids. This
St I'(let uremodelsthe “degree of membership” of  a
given pixel in the plage class and allows the binding,
of nearby plage v egions int () one coherent object. We
note that, if the height function is thresholded at a
given level, the resulting shape is a cluster of regions
1)011 [1(1( *@ by polygons t he same way scient ists cur-
re ntly delimit plage regionus na nually. See fig are 3.
To definea probability (list ribution on membership
functions, we generat ¢ eachas t heinterpolated version
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Figure 3: A perspective view of a ridge structure hav-
ing about twenty vertices.

of the Delaunay t riang ulation of independently chosen
points in N. These points comprise V,and V' is gener-
at edmechanically as t he t riangulation of V. Heights
are t hen assigned independent ly to t he members of V
to form tie-proints. The probability density of such a
mentbership function is induced by t he one on V-

P(hy - 77 te vending (5)

We have assumed the members of Voare chosen ac-
cording to the uniform distribution on N, and that
the heights are uniform 011 [(), 1]. A computational
advantage of this schicine is t hat additions, deletions,
and adjust ments of one vert ex have a local effect on
the triangulation. Also, the penalty in log-probability
paid by joining two separated graphs is the sum of
component penalties, so that separat ed plages co-e xist
independently.

Incorporating the new structure into the existing
MRYF model is done, in hrief, by letting the height
fauct ion h(s) favor the event {ag = P}. Specifically,
let t here be a Markov relationship betweent het hree
1(’1°(1S Of t he St ochastic model so t hat

Plh,xy): PP (x| 1) P(y | x) (6)
In addition to I’(h) defined in (5), we let

log P(x | h) - Ky (7)
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whicre Ky, i's a1 appropriate normalizing constant
(The corresponding constaut log(27}/2 in the second
cquat ion has been dropped.) In this way the height
funct ion biases the corresponding label in favor of t he
plage Class. This conditional probability model allows
us to generat e randomn height functions, labelings, and
images that are morce physically reasonable than the

unadorned MRF schieme, hecause larger-scale image

characteristics arc honored.

This deseribes t he ‘synt hesis problem’ (cf. [4] ); t he
complementary ‘analysis problem’” focuses on the pos-
terior

Phyx|y) = Plh,x,y)/P(y)x P(h, x,y)

A's inscction 2, we pursue the MAP estimate of the
cotbined description. Onetechnical difficulty is the
normalizing constant K, which figures in the pos-
terior. In what follows, we have assumed that the
variation of Ky, withrespect t o e is uegligible con-
pared to the designed variation ill P(I, X, y), leading,
to anapproximat ¢ posterior w(h, X) with negative log-
probability
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having a minimum at (h, x). Iuference proceeds in
much the same way section 2, except that two sorts of
variables must be varied. To simplify the discussion,
we heneeforth consider only updates to b with x held
fixed: t he other case proceeds as before.

Updates of hcorrespond to all eriug t he vertex list,
and are done with sitnple Metropolis-Hastings steps [2]
because t he conditional (list ributions needed by t he
Gibbs samplorare intractable. Such a step proposes
a new state h',computes p(h, 1) v (B, x)/n(h, x),
and probabilist ically accepts or rcjects B largely on
this basis; this rosults in a Markov transition kernel
Q(v,dv') 011 the composite vertex-list set V= UiV,
1 £ is designed properly, it hast he posterior was its
stationary distribution.  Beyond the obvious restrice-
tious t 1 lilt Q beaperiodic andirreducible, it is sufli-
cient that Q maintains detailed balance: under m, the
mass moving directly from A ¢V 1o B equals that
moving in t he reverse direction.

First we describea setof ol)(Crater’s” complete
cnough to ¢ nsure irreducibility. A svertex miove’ op-
erator Af ¢ hooses a vertex at random and displaces it
randomly. A ‘vertex raise’ operator R oraises or low-
crs a vertex at random. To allow movenient he tween
the constitucnt spaces of 'V, we have ‘add’ op erators
Ay, and corresponding ‘kill” operators A; , which move
back and forth b etween Vg and Vg .

Next, we define a transition kernel @ on the ba-
sis of thesc operators; this kernel is a*hybrid sam-
pler’ composed of cach of t he t hree move-types (M,
R, AITA’). In each epoch in the siimulation, one such
move-type is chios enatraudom. Ensuring det ailed bal-
ance within cachove-type yields (let ailed balance in
t he superposition. Obtaining detailed balance intypes
M and 11" is t vivial provided t he (list r ibution of the ad-
(1 it ive displacement is symmmnetric. (Modular addition
will eliminate edge conditions. ) Operators Al and 11
are accepted with probability win(1, p(h, I')).

Obtaining det ailed balance of Ay, A) is more com-
plex because t he flow bet ween t wo different Buclidean
spaces must be equali zed. Following recent work of
17, Green[3], we find t he chance of accepting a pro-
posed delet ion of »* via A} shouldbe thelessc (1 of
unity and

O0/L11) X’,’(svl(-ct/lk) pe(v?)

|
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Figure 4: Plage probability; mean inferred membership function; standard deviation of membership functions

(Here py, is a density used to choose a new point for an
add aperation; in practice it is used to focus attention
on interesting parts of the linage.) The intuition is
simple: the more likely it is to attemnpt deletion, the
less likely we must be to accept it. The more likely it
is to add v* back in, the more willing we are to delete
it. The factor of A+t 1 comes from the random choice of
which vertex to delete: when v* is added via Ay, there
is one chance in k-1 1 that a subsequent application
of A will consider v* for deletion.

Initialization is important since a small feature may
become hidden in a large triangle so that that o is not
increased by any single vertex addition. The initial-
ization procedure should therefore ensure locality of
the effects of changes. A procedure that has proven
effective is to initially replace the terin of 7 enforcing
agreement between hoand the plage probability with
one penalizing per-triangle inhowmogeneity:

STgr( - gr) L with gz [T 1 - P)
1 sl
aud |7'| the nmumber of pixels in triangle 7'. The mod-
ified criterion subdivides the image during an iuit ial
phase of 1000 epochs; then it is gradually replaced
by t e final crit erion in a sccondary st age t wice this
length. By the end of the second stage, a satisfactory
basin of w(k, X) has been found aud the Met ropolis
iteration procecds as described above.

Finally, to speed the sampling process the indica-
t orl(x, P) above is replaced with its expect at ion
Plry:= P | y). This is analogous to t he use of condi-
tionalexpectationint he ICE algorithimof A. Owenlh]
and allows t he sampler t o divect ly access t he uncer-
tainty iu the label, instead of reacting to its proba-
hilistic fluctuations as Gibbs it erations proceed.

Sampleresult s for fit t ing a rather complex plage
pair are shownin figure 4. Fits withq, 2, a: ().4
were  obtaiued froma total of 30 ()()() Metropolis pro-
posals taking 170 scconds of computationtime on a
Sun Ult rasparc. Roughly 175 proposals/sec arve made
by exploiting the significant cancellation in the quo-
t ient p(h, h'): only t he chianged t riangles need be re-
considered. As desired, t he membership function has

suppressed the small-scale features and ident ified the

t wo main objects and their principal outliers. The

right -hand plot shows most of t he variability in t he

fits is atthe houndary, especially where a sharp pro-
jection occurs.
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