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Abstract

The non-linear growth of non-axisymme tric instability in geometrically thin
Keplerian discs is followed numericall y with the use of a time dependent two-
dimensional polytropic hybrid Fourier-Chebyshev spectral method of collo-
cation. The non-axisymmetric instability (a corotation resonance) develops
in tile inner disc when the inner boundary is rigid (corresponding here to the
surface of anaccreting compact star). All themodes of the instability have
a high Q values and a period of rotation of the order of the Keplerian period
at the inner edge of the disc. The high order modes have growth rates larger
than the low order modes. When the viscosity is large, the higher modes
arc the first to be damped and saturate at moderate values: the energy is
contained inthe low order modes which dominate the flow. When the vis-
cosity is low, the high order modes dominate the flow, while the low order
modes do not grow: the energy is contained in the higher modes. When the
order m and the amplitude « of the unstable mode are high enough (in the
present calculations m3 1.5 and «30.3 for o = 0.001), the flow undergoes a
subcritical transition toturbulence. The turbulence is confined in the inner
region of the disc,inside the ‘resonant cavity’, where it sustains itself clue to
the over reflection of waves (i.e. like the non-axisyinmetric instability itself).
Some of the low order modes (e.g. m=1,5) are dominant during transient
phases of the turbulent flow. The turbulence obtained in this work cannot
account for angular momentum transportinthe disc. However, the insta-
bility provides a new robust mechanism to explain the appearance of short
period oscillations (Dwarf Nova Oscillations and Quasiperiodic Oscillations)
observed in the inner disc of Cataclys mic Variables and other related systems.

Subject Headings: accretion, accretion discs - binaries: general - hydro-
dynarnics - instabilities - stars: oscillations - turbul ence



1 Introduction

Papaloizou & Pringle (1 19S1, 1985, 1987) first demonstrated that a thick
disc is unstable to non-axisymmetric perturbations. Additional authors, who
also used lincar analyses, have givennecessary (but notsufficient) conditions
for stability (Goldreich & Narayan 1985; Goldreich, Goodman & Narayan
19S6; Goodman,Narayan, & Goldreich 19S?; Narayan, Goldreich & Good-
man 1987; Blaes & Glatzel 1986; Glatzel 1987a, 19 87b, 1988, 1989; Sekiya &
Shoken 19SS; Jaroszyiiski1988; for a review sce Narayan & Goodman 1989).
Numerical simulations were also used to investigate the non-linear regime of
these dynamic instabilities (e.g. Hawley1987; Blaes & Hawley 19SS; Haw-
lcy 1991). A basic amplification process, the over-rdlectioll of waves(Jones
196S; first recognized in discs by Drury 1990), is responsible for the growth
of the instability. A globally unstable modemust have a corotation radius .,
(a radius at which the unperturbed flow rotates with the same speed as the
perturbation) within the boundaries of the disc and a reflective radial bound-
ary ( Narayanect a. 19S7). When the perturbation, located say at a radius
7, rotates at asub-Keplerian velocity Q, < (r,), its corotation radius is
located at a larger radiusr. >7'1,, while whenQ, > QA’(Tp),?'C < 1. Assume
now asub-Keplerian perturbation, as it propagates outward the pert urbation
wave has an angular velocity 2, < Qforr <r.,and 2, > Q for » > r,
i.e. for » <r. it has a negative angular momentum (negative action), which
changes sign as it crosses the corotationradius. The coronation radius is an
evanescent region, into which the wave cannot propagate. ‘1 here the wave is
reflected inward,butinadditionit is also partially trans mitted outward, due
to the tunneling effect. Thetransmitted wave has a positive angular momen-
tum and consequently, the reflected wave at the corotationradius has more
negative ang ular momen tum than tile originalincident wave, since the total
angular momentum of the wave hastobe conserved (Goldreich & Narayan
1985; Narayan et al. 19S7; also known as the wave act ion conservation, €.g.
Lighthill 197S; Spruit 1989). Because of the reflecting inner boundary, tile
wave reflected at the corotationradius, will be reflected back toward the
corotation radius and thus provides a feedbackloop. If an integral number
of waves is accomplished within the loop, then the process behaves like an
oscillator with adriving force at a resonance frequency (‘runaway’ oscillator).
The same process also occurs for a super-IKeplerianperturbation a t he outer
boundary, if thislatter is reflective. If both boundaries are reflective, then
t he locations of the boundaries will define the relat ive phases of the inner

and out er stan ding waves. These are also referred to as edge modes, sinee



they grow in the vicinity of the boundaries.

The above theoretical linear analyses and numerical non-linear investi-
gations were carried out for slender and wide annuli/tori. In thick discs
and tori systems the non-axisym metric instability was expected to be strong
enough to completely disrupt tile fluid configuration, bringing into quest ion
the existence of such systems. lHowever, the lack of arigid reflective inner
boundary in these systems (accretion onto a black hole), made this scenario
very unlikely (Blaes 19S7; Hawley 1991; sec also Gat & Livio 1992).

In thin Keplerian discs, the rigid surface of the accreting object (say a
white dwarf or a neutron star) can provide the reflect ive inner boundary,
however. the growth rate of the modes is simaller (see the linear analysis of
Hanawa 198Tb). It was suggested (Narayan & Goodman 19S9) that the un-
stable modes could provide a viable mechanism to efficiently transport angu-
lar momentum, though, numnerical simulations (Kaisig 1989a,1989b) showed
that the angular momentum transported in such a case (a local approxima-
tion to aninviscid thin Keplerian disc in a Cartesian system of coordinates)
is not very efficient. ‘I"here was no evidence for the development of turbulence
and it has been pointed out (Zahn1990) that the artificial viscosity might
be responsible for the observed saturation of the fluctuations.

A fully two-dimensional numerical analysis of a thin Keplerian disc is
still mnissing, and it the purpose of the present paper to follow the I]oll-linear
growth of a non axisyrmmetric instability in afully two-dimensional thin Ke-
plerian viscous disc. Finite-difference numerical simulations are not very well
suited to study the instability because higher-order modes have snort radial
wavelengths, requiri ng high spatial resolution, and have low growth rates,
requiri ng integration over many orbits (as already remarkedby Narayan&
Goodman 1989). Therefore, in this work we use a hybrid Fourier-Chebyshev
Spectral Method developed ina previous work to study tidal effects inaccre-
tion discs (Godon 1997, Paper 1). Spectral Methods are global and of order
N/2in space (where N is the number of grid points). They make use of fast
Fourier transforms and are, consequently, relatively fast and accurate when
implemented correctly. For this reason Spectral Methods are frequently used
to solve turbulent flows (("g. She, Jackson & Orszag1991; Cho & Polvani
1996a).

In this work, we follow the non-linear growth of non-axisynmetric modes

as a function of different physical parameters, mainly the viscosity parameter



aand the disc thickness H/r (or equivalently the inverse Mach number in the
disc). In all the cases considered here the unstable modes arc located inthie
very inner part of the disc, adjacent to the inner reflective boundary. When
the viscosity is low, the high order modes dominate the flow, while when the
viscosity is large, the Tow order modes dominate the flow. When the order
and the amplitude of the unstable mode are high enough, the mode provides
the finite amplitude perturbation needed by the flow to undergo a subcritical
transition to turbulence. The unstable mode forms inflection points in the
inner disc which are unstable and cause the flow to undergo a subcritical
transition to turbulence. The turbulence is confined in the inner region of
the disc, inside the 'resonant cavity’, where it sustains itself due to the over
reflection of waves (i.e. like the non-axisymmetric instability itself). Some
of the low order modes (e.g. m=>35) arc dominant during transient phases
of the turbulence, but event ually the m=1 mode dominates the flow. Re-
cently, it has been shownanalytically and numerically (Balbus, Hawley &
Stone 1996, in the context of angular momentum transport in discs) that
differential rotation flows (e.g. Keplerian discs), unlike pure shear flows (e.g.
Couctte Flows), arc locally stable to threc-dimensional finite-amplitude in-
stabilities. However, this was a local analysis in which it was shown that
the initially unstable flow cannot tap energy from the Keplerian flow to grow
turbulent. in the present simulations, the instability is global and sustains
itself due to the inner reflective boundary. The turbulence taps energy from
the flow in the same manner as the non-axisymmetric instability: through
the corotat ionresonance (the over reflect ion of waves)'. This process cannot
account for the angular momentum transport in the disc, since the turb u-
lence is confined in the very inner part of the disc, however, it provides an
interesting new mechanism to explain the origin of short period oscillations
observed in the inner disc of Cataclysmic Variablesand other related systems.

Inthe next section we present a snort review on the stability of rotat-
ing flows whichhave been related to the study of accretion discs in different
contexts. Insection3 we give a snort of outline of the physical assumptions
made and the numerical method used to solve the problem. The results arc
presented and discussed in section 4, where a detailed comparison is made
with observations of oscillations in Cat aclysmic Variables.



2 Stability of Rotating Flows

It is commonly believed that if anaccretion disc can be subject to a hydrody-
namic instability that leads to turbulence, then the transition to turbulence
will take place only in three dimeunsions. The justification has been that
planar shear flow, which is lincarly stable, is unstable to three-dimnensional
finite-amplitude instabilities (scethereview paper of Bavly, Orszag & llcr-
bert 1988). Numerical simulations {Orszag & Kells 1980) have also shown
that the transition to turbulence in Couette flow takes place only in three-
dimension. And more recently it was realized that the transition to turbu-
lence in three-dimensional (31)) incompressible flow was associated to the
presence of streamwise vortices in the flow (e.g. Hamilton & Abernathy
1994).110WW'L’, a very important detail was omitted: the works of Orszag
& Kells (1980) and Bayly et a]. (19SS) were carried out for incompressible
flow only. ‘I"here is no reason to expect the compressible flow to behave like
the incompressible one. In fact two-dimensional (21)) compressible flows are
used to represent threc-dimensionalincompressible flows, since compressibil-
ity adds an extra degree of frecdom. Therefore, one should be more inclined
to think that the 21) compressible flow will behave like the 31) incompress-
ible flow and undergo a transition to turbulence. AS an example, the Shalow
Water Equations (equivaent to a 21) compressible flow) are used to represent
the three-cli]ncnsional incompressible flow inthe atmospheric layer. In this
section, we review some details of the stability of rotating flows which have
been related tothe study of aceretion discs.

2.1 Stability of Incompressible Couette Flow

In a rotating inviscidincompressible flow, when the equilibrium and the per-
turbations are axi-symimetric, the specific angular momentum ¢ = r2Q = is
constant in time, where » is the radius in cylindrical coordi nates (r, ¢, z) and
2 is the angular velocit y. Such an inviscid incompressible rotating flow is
unstable to infinitesir nal axisymmetric perturbations when the angular mo-
m ent um decreases outward dé? /dr < 0 (Rayleigh191 6). The instability leads
tothe appearance of a secondary stationary flow consisting of the Taylors
vortices (there is exchange of stabilities), while the effect of the viscosity is to
stabilize the flow below a critical Reynolds number: e < Re.. Couette flow
(i.e. the flow between rotating cylinders), with counterrotating cylinders, is
cxpected to be linearly stable (i.e. stable to infinitestmal perturbations) be-
low a critical Reynolds number, however, the experiments (e.g. Coles 1965;
Daviaud, Hegseth & Bergé 1992) have shown that it is subject to a non-linear



local instability (i.c. it is unstable to finite amplitude perturbations) that
leads to turbulence.

'The two different instabilities, linear and non-linear. inthe rotating C;ou-
ett o flow lead to two different trausitions from laminar to turbulent flow: su-
percriticaland subcritical, respectively. Couctte flow with tile two cylinders
corotating or with the outer cylinder atrest, is lincarly unstable according
to the Rayleigh criterion and exhibits asupercritical transition] to turbu-
lence. The supercritical transition is a progressive and reversible transition
to disorder, which takes place as therotationincreases: first the Taylors vor-
tices form and, as the angular velocity increases, a tangential wave pattern
appears, and becomes morc complicated until the whole flow grows fully tur-
bulent. In this case the turbulent Couette flow is characterized by boundary
layers at each cylinders, while the rest of the fluid has a constant angular
momentum. Co uctte flow with counterrotating cylinders, or with the inner
cylinder at rest is unstable to finite amplit ude perturbations, and shows a
subcritical transition to turbulence. This transition] is abrupt and localized.
The instability is non-linear and leads to turbulent spots in the laminar flow.
Theflow is divided into regions which are either laminar or turbulent. Waves
propagate outwards from the turbulent spots into the laminar regions. As
the Reynolds nuinber increases the laminar regions grow scarce until the fluid
becomes completely turbulent. Here the turbulent Couctte flow is character-
ized by an enhanced eddy-viscosity proportional to the shear rdf)/dr and a
Reynolds number Re x~ 1 .

The subcritical] transition to turbulence due to a non-linear instability was
followed numericaly in three-dimensionalincompressible Plane Couette Flow
for f¢ > 1000, but wasnot observed in the two-di mensional case (Orszag
& Kens 19s0; Dubrulle 1991). The exact amplitude of the perturbations
needed for' the development of turbulen ce dep end s on the Rey nolds number
(Dubrulle & Nazarenko 1994). 1'he instability coexists with the appearance
of inflection points in the mean flow, i.e. local maxima of vorticity inthe
flow, which arc unstable according to the Rayleigh-I'jertoft criterion (Fjprtoft
1950). The study of the effect of inflection points in aninviscid Couette flow
was followed by Lertier & Knobloch (1988), and Dubrulle & Zahn (1991) ox-
tended the case to a viscousflow. It has been shown more recently that the
cxistt'[lee of streamwise vortices isinvolvedinthe destabilization process that
leads to turbulence in the three dimensional incompressible flow (e.g. [Mamil-
t on & Abernathy 1994; Dau chot & Daviaud 199 1, 1995a, 199 5b; Hogset h
1996). A stream wi se vortex induces an inflection pointin t he tlow, which is



unstable. This process is purely three dimensional, and cannot take place
in two dimensions, which explains the results of Orszag & Kell (19S0) and
Dubrulle ( 1991). The streamwise vortices tap energy fromthe rotating flow,
and then pour it into the turbulenice. If this mechanism was to workin a 31
disc, the vortices would be oriented in the angular direction (D ubrulle 1997).
However, it has not been shown that the same three-dimensional mechanisim
(i.c. the streamwise vortices) is responsible for the destabilization of com-

pressible rotating flows.

2.2 Stability of Compressible Couette Flow

It is not clear how compressibility will affect the flow, since it adds an extra
degrec of freedor 11. It is important to stress that only a few studies have
been carried out for supersonic rotating flows, where compressibility starts
to affect the flow. Inthe limit of small values of the Mach number, the dom-
mant instability is of the Kelvin- Helmotz type, while for large values of the
Mach number the instability is the (two-dimensional) centrifugal instability
(e.g. Tomasini, Dolez & Léorat 1 996). In their work on transonic shear
flows, Tomasiniet a. (1996) did not rule out turbulence, though it was not
obtained numerically.

2.3 Stability of Atmospheric Flow

‘I"'he atmospheric ffow is presented here asan example of a linearly unstable
21) compressible flow. Two-dimensional models of the atmospheric shear flow
on a rotating surface have a lot of similarities with the two-dimensional Kep-
lerian flow (differential rotation, Coriolis force;see e.g. Cho & Polvanil996a,
1996 b). The atmospheric flow is really a three dimensional incompressible
flow, however it is represented by the shallow-water equations (SWE), which
are completely equivalent to the equations of a 21) compressible flow. T'wo-
dimensional inviscid Keplerian discs can be represented by the SWE, where
the depth h of the shallow’ water flow is proportional to the surface density of
the disc ¥ (and therefore there might be some links between the behaviour
of the two different flows). Inthe SWE the shear flow is unstable to waves
longer than a critical value. These waveshave ap hase speed that mat ("1)(’s
the mean current velocity withint he flow, whichpermits a traunsfer of ¢ nergy
from the current to the wave. This process is known in geophysical fluid
dynamics as barotropic instability (Pedlosky 1987; (lushman-Roisin 199 ).



This inst ability islincar and is I)cli(’vet] to be responsible for the formation
of turbulence in the atmosphere on the large two-dimensional scales which
transport angular momentum (the sinall scales are not affected by the rota-
tion and can be represented by three dimensional homogeneous turbulence
with a Kolmogorov energy spect rum) .

It isinteresting to remark that while the 21) geophysicalflow (represented
by the shallow water equations) is unstable to the Coriolis forces, 21) tran-
sonic shear flows (like the onestudied by Tomasiniet a. 1996) arc unstable
to centrifugal forces. In discs, both the centrifugal and the Coriolis terms are
present, however the centrifugal force is balanced by the force of gravity.

2.4 Stability of Differentially Rotating Discs

Rayleigh (1916) has shown that a rotating flow is stable to infinitesimal non-
axisymmetric perturbations whenthere is nolocal extremum in the vorticity.
However, compressibility adds an extra degree of freedom, which allows the
appearance of linear non-axisym netric unstable i odes in the case where
the angular velocity is a power law of the radius (Goldreich & Lynden-Bell
1965; Stewart 1975, 1976). Compressibility becomnes important when the
flow velocity becomes supersonic and shocks start to form.Inaccretion discs
the rotation speed is supersonic, 2o =7 and the vorticity is monotonous
w =]V X 7lx (2 — p)? (with 1<p< 2). If a small non-axisymmetric
perturbation (say 67F)isintroduced,thentheangular momentum equation
gives:

dt _ _13éP

dt — P (')d)‘;‘
and the specific angular momentum is no longer constant (where p is the
density). In this case df?/dr < 0 for some range of rwithin the boundaries
ensures iustability, however, d¢?/dr > 0 for all r within the boundaries does
not especially exclude instability (Chandrasekhar 1961 ). The most general
and sufficient stability condition for non-axisymmetric perturbations is that
of argid rotation, i.e.  constant (e.g. Sung 1974; Hanawa 1986, 1987a:
Fujiinoto 19 S7').

(1)



3 Numerical Modeling

All the details on the numerical method and the exact form of the cquations
can be found in Paper |, therefore, we give here only a short outline of the
numerical modeling.

3.1 Physical assumptions

The full Navicr-Stokes equations are writtenincylindrical coordinates (77, ¢, 2),
and are solved in the plane of the disc(r,¢). We uscan alpha viscosity pre-

scription for the viscosity law, and assume a polyt ropic equation of state.

We chose n = 3 for the polytropicindex and the polytropic constant is fixed
by chosing H/r at the outer radial boundary i,,,, i.e. by chosing the 'tem-

perature’ of the disc. A cold disc has ///r =~ a few percent, while for the
hot disc case //r = 0.1 -- 0.2. Unless otherwise specified, inthemodels
presented here,the outer radius of thecomputational domain is located at

Rout = 98in, where Ry, is the inner radius of the computational domain.

32 Boundary and initial conditions

The outer radial boundary is a free boundary, i.e. it is treated with non-
reflective boundary condi tions. At this boundary p, v, and Q arc given, e.g.
the solution of a standard thinKeplerian disc.

The inner boundary is treated as a rigid fast rotating accreting object. At
the present stage of the work wc ignore the boundary layer between the disc
andthe star. However, the sharp density drop in the boundary layer seems to
reflect waves very efliciently (Godon1995). This makes our present reflective
inner boundary ass umption valid for awider range of problemsincluding the
onc Of the boundary layer. Consequently, we chosev, = O, Q=8x and p is
not given, since this would overspecify the bounda ry conditions. (see paper
1 for al the details of the treatment of the boundary conditions)

The initial density is uniform, the initial rotat ion law is Keplerian and the
radial velocity is initially set to zero. The equations are first solved in one
dimension, and after aninitial dynamical phase of relaxation, the equations
are solved intwo dimensions. The initial infinitesimal perturbation of the
disc is either provided by the tidal potential of a companion of very small
mass (like in Paper 1), or by a random "notse” in the density, The results
obtained using the two different inttial perturbations are the same. In most
of the cases, we decided to use a yepy weak perturbating tidal potential to



provide the init ial non-axisymmetric perturbation. This has the advantage
of being a 'natural’way to disturb the system.

3.3 The numerical scheme

In order to follow the non-lincar growth of theinstability, we use the time de-
pendent hybrid Fourier-Chebyshev method of collocation developedin Paper
1. A Chebyshev expansion is carried out inthe radial direction, while aFourier
expausion is used in the angular dircction. We solve the time dependence
of the equations by means of an explicit 4th order Runge-Kutta temporal
scheme. We take 64 points inthe radial dimension and 32 pointsin the an-
gular dimension (64X32) for models with a moderate viscosity (a~ 0.1). For
models with a lower viscosity («a107) we take higher resolutions: 256X 32,
256.X64 and 1 28X 128. When the viscosity v is constant, one can solve the
viscous term implicitly in a very eflicient manner, by writing the equations
inthe spectral space. One is thenleft with a diagonal banded matrix, easy
to inverse (see e.g. Canuto et al. 1959; this was applied by Tomasiniet a.
1996). However, in the present case the coeflicient of the viscosity v is not
constant, (v = acsH'). Consequently, the time dependence of the equations is
solved using an explicit fourth-order Runge-Kutta method, and the Cheby-
shev method is implemented using themodification described by Kosloff &
Tal-Fzer (] 993). This alows onc to runthe code efficiently on awork station.

In the radial direction we use a spectral filter to cut-off high frequencies.
‘I”his implementation is used for numerical convenience. It gets rid of the
high frequencies which can cause numerical instability, while it keeps a high
enough number of terms inthe spectral expansion to resolve the fine structure
of the flow (see eg. Paper 1, but aso Gottlieb & Orszag1977; Voigt, Gottlieb
& Hussaini 1984; Canuto et al. 1988; aspecific application canbe found in
Don & Got tlieb 1990). The models with alow viscosity (o~ 0.001 ) are un-
stable to high order modes of the Papaloizou-Pringle instability. The order
of unstable modes reaches a very high valuie. Inorder to follow the evolution
of the Papaloizou-Pringle instability in the low viscosity models one has to
make sure that the highest un stable modes are not the highest mode Of the
resolution. Thismeans that one cancither increase the resolution or dammp
the higher modes of the resolution. In the present simulations we damp the
higher modes by using a spectral filter in the angular dimension. The filter
we nse has the same analytical form as the filter used in the radial direction,
it et s-off exponentially the high frequencies above a given frequency by (see
paper Hor details). It, acts like a an art ificial viscosity on the mode & > k.

10



This filter is aso necessary inorder to follow the turbulence: it is here similar
to the strong cutt-off of the high frequencies obtained with a high power (p)
of the dissipation operator usedinthe numerical study of turbulence (e.g.
Cho & Polvani1996a). It does not affect the transition to turbulence or the
turbulence itself, but only the detailed structure of the flow. The high power
dissipation) operator permits to extendthe inertial range of the turbulence
to higher frequencies (k).

4 Results and Discussions

We have run models with different values of the physical and numerical pa-
rameters. We have varied the viscosity parameter o, the Mach number in
the disc M = vy /c,, the resolution and the spectral filter. Not all the models
are presented here.

4.1 Preliminary considerations
4.1.1 Conditions for instability

We found that the non-axisymmetricinstability does not develop for o >0.04
and M < 14, which means for a high viscosity, sincev = ac?Q;' (i.e. mod-
els with M < 14 require @ < 0.04 to becoimne unstable, while models with
« > 0.04 require M > 14). This is justified by the fact that the viscosity
damps the waves which are responsible for the growth of the instability. I'n
addition, as expected, the non-axisymmetric instability develops when the
inner boundary is reflective. In all the models presented here, theinner
boundary is rotating at the Keplerian velocity, i.e. we ignore the boundary
layer (In order to take into account the boundary layer between the slowly
rotating stellar surface and the Keplerian disc, we would have to increase the
resolution by alarge factor). However, inthe boundary layer there is a sharp
transition where the flow becomes sub-Keplerian and is partially sustained
by the pressure. There the density drops by several orders of magnitude.
This abrupt change in the density is proue to reflect, incoming waves: the
waves will not propagate into the low density (sub-Keplerian ) region. And it
is therefore a good assumption t 0 assume that t he reflective boundary is the
high density region where the rotation is still Keplerian (we also discuss the
issie of the boundary layer inthe conclusions section). 011 t he ot her side,
some systems might have a fast rot ating accreting star. It is enough for a



white dwarf (in Cataclysmic Variable systems) to accrete =~ 0.1 — 0.15M;
to rotate near break up (Narayan & P opham 1989) and at this stage it can
still continue to accrete (Popham & Narayan 1991 ). In addition, many CV
systems do not show observational evidence of a boundary layer ( Ferland et
al 1982). In these systems, it could well be that only the outer envelop of

the star is rotating near break up.

4.1 .2 Growth rate of the unstable mode

111 all the models we found that the growth rate w; of anunstable mode
(m=1) varies between wi /€y 2310-3 — 10-2 inagreement with the results of
linear studies for thinKeplerian discs (Hanawa 1987b; Kaisig 1989; Savonije
& Heemskerk 1 990). This means that one has to follow the simulations over
a time scale of the order of at least ~ 100 — 1000 local orbits at the inner
edge of the! disc,in order to discern the unstable mode in the density profile.
in contrast, in the thick discs cascthe instability needs to be followed only
over a few orbits (Papaloizou & Pringle 1984; Hawley 1987). In Paper 1,
some models were followed over a time scale ~ 10’1 periods, while here most
of the models arc followed 011 a period of the order of &~ 10°local orbits. The
growth rate of a particular mode increases with increasing viscosity (e.g. see
Table 1). This can be explain simply because the higher the viscosity, the
shorter the accretion time necded to accumulate (non-axisymmetric) matter
in the inner disc.

4.1.3 Effect of the viscosity

The high order modes have growthrates larger than the low order modes.
Consequently, when the viscosity is low, the high order modes dominate the
flow, while the low order modes do not grow (the energy is contained in the
higher modes). When the viscosity is large, the higher modes are the first
to be damped and saturate at moderate values, the energy is then contained
inthe low order modes which eventually dominate the flow (see also ‘I’able 2).

Models with a low Mach number (M ~ 5 - 10, hot discs) were run with
o = 0.01 (and a resolution of 64X32). Initially, the m=1 mode is dominant
but after a few dozen of orbits the dominant mode is the m=2 mode (e.g.
model 3 in Paper 1). Models with a high Mach number (M =~ 20 — 60 cool
dises), run with « == 0.1 (and a resolution 61X32), showed that the dominant



mode is of order m=2 (like in models 1 and 2 in Paper 1). When the viscosity
is decreasedto o = 0.01 (with a resolution of 256X32) the m=8 mode is
initially the dominant one, but eventually the order of the mode changes to
in=7,6 and eventually the dominant mode becomes the m=>5 mode (t his is
the case for model 5inPaper 1, which was runfurtherinthe present work).
We have aso run cool discs witha = 0.001 (and withresolutions 256 X64 and
128X128) and found that the dominant node was very high (rn > 15). These
low viscosity models were run with a spectralfilter in the angular direction
(see the section on the numerical method). The effect of the viscosity on the
order of the dominant mode is recapitulated in'l'able 3.

4.2 High viscosity and low order modes.

We have carried out a systematic study of anm=2modein a cool disc
as a function of the viscosity. Them=:2mode is dominantin a coo] disc
when aa 0.1. It forms a precessing elliptic density pattern around the cen-
tral object, with a pecriod close to the Keplerian period in the inner disc.
‘I’he mode has a very coherent period and phase. This suggests that the
unstable mode could be the source of short p eri od coherent oscillations ob-
served during outburst of Cataclysmic Variables (discs around non-magnetic
White Dwarfs, e.g. Patterson 19S1 ; Warner 1 986; for some recent results see
Mauche 1996) and maybe around Neutron Stars in Low-Mass X-ray Binaries
(e.g. Mason et al. 1 980; Sadehet a. 1982; Schoelkopf & Kelley 1991; or
more recently Strohmayer et a. 1996). An additional tests, that we carried
out to verify this suggestion, was to check how the period of the unstable
mode varies as a function of the Luminosity of the disc, i.e. as a function of
the mass accretion rate. T'he solution of the polytropic disc is independent
of tile value of the density. Consequently, we assume that the massaccretion
rate is proportional to the viscosity parameter a. The effects of the viscos-
ity onthe m=2mode is shownin table 1. Fora= 0.1, we find that the
period of themode 1’ varies with the mass aceretion rate M as P oc M9,
where 3= 0.1 in good agreement with the slope of the original ’banana di-
agram’ (# =~ 0.2, Patterson 19S1 ), and the more recent observations of SS
Cyg (8 ~ 0.1, Mauche & Robinson 1997). In this latter system the observed
jump of the oscillations from a period of = 6s to &~ 3s (Mauche & Robinson
1997; van Tecseling 1997) can be casily interpreted as a change of mode from
m=1to m= 2. In the next section we propose an additional explanation to
the "jump” of the mode observedin SS Cyg.



4.3 Low viscosity, High order modes, and transition to
turbulence

When the viscosity is furtherreducedinthe cold disc, ax 0.001, the higher
modes (m > 15)are dominant and sat urate at a much higher value than
when o & 0.1. The modes rather look like ’planets’ (i.e. high density is-
lands, like in the results of Hawley 1987).inducing waves that propagate
outwards. IMigure 1 shows such a result for amodel in which the m=: 16 mode
is dominant. in this model the resolution is 256X64and a spectral filter is
applied in the azimuthal direction, With a cutoff frequency of ko= 16. The
frequencies above kyare clamped by the filter, and therefor the m==16 mode
is the dominant one. It saturates with an amplitude of =~ 0.1. The inner
disc stays in this state for more 500 local orbits after the mode has grown
unstable, time at which we arbitrary decided to stop the simulations.

4.3.1 Non-1 inear evolution of a turbulent model

We carried out several additional test models (not al shownhere) and found
out that when the orderm and the amplitude @ of the unstable mode are
high enough (in the present calculations m3 15 and 0.3 is obtained by chos-
ing o = 0.001), the mode provides the finite amplitude perturbation needed
by the flow to undergo a subcritical transition to turbulence. in figure 2 we
show the appearance of an m=19 unstable modein the inner disc (in model 2
ko = 20). After the mode has grown exponentially, it seems to saturate with
an amplitude of ~ 0.3. A closer look at the amplitude of the mode reveals
that the mode still grows linearly at averylow rate. At a time of {650
all the modes (withk < ko) start to growth and the flow becomes turbulent
(see aso figure 7). The turbulence is confined in the inner region of the
disc, from which waves propagate outward (figure 3. though very different in
nature, the present turbulence has the same appearence as turbulent spots
with outward propagating waves; e.g. Dauchot & Daviaud 1994, 1995a & b).
Some of the low order modes (mn=5) are dominant during transient phases
of the turbulent flow.But eventually the m= 1 mode becoines dominant and
remains SO for therest of the run (for about 300 orbits).

The velocity fluctuations of the turbulence are subsonic (with a Mach
number M=0.5-0.7). By the end of the run (around t=1200) sinall Shocks
start to formand the fluctuat ions become supersonic. *1'11( 1110(1 ([ wasstopped
at this stage, since thespectral methods cannot resolve resolve shocks (due

Il



to the Gibbs phenomenon). Other models have developed supersounic fluct ua-
tions at an earlicr stage of the evolution and the turbulence could be followed
for only 50 orbits, whileinthe present modelthe turbulence was followed for
over 500 orbits (from ¢~ 700 to ¢~ 1200). The total kinetic energy of the
fluctuations is showninfigure 4. At the carly stage of the evolution (¢ < 300)
there is only small fluctuations ('noise’) due probably to theinitial relaxation
of the model and small amplitude viscous oscillationsin the disc (see also
Paper 1). Asthe in=19 mode continues to grow, the kinetic energy contained
in it eventually becomes larger than the ‘noise’ and thc exponential growth
of the energy becomes cvident (300 < ¢ < 400).The saturation of the mode
is seen clearly for 400 < t < 600. Thenaroundt~ 650 the flow becomes
turbulent andthe kinetic energy grows again, but it also oscillates with a
large amplitude (it is interesting to compare figure 4 with figure 7). The
fast and oscillatory growth of the kinetic energy around t=700 is associated
withand characteristic of thehigher m=19mode. Theenergy then decreases
while the dominant mode changes from m=19 to m=5and eventualy m=1
(around t=900). At this stage the kinetic energy starts to grow again, more
slowly and also more steadily, characterist ic of the low order m=1 mode. A

look at the power spectrum of the energy reveals immediately the dominant
modes m=1,5, and 19 (figure 6).

4.3.2 The Power Spectrum

The power spectrum of the kinetic cnergyintegrated over the turbulent re-
gion and in time is showninfigure 6 (in figure 5 the same is shown before the
transition to turbulence, while the m=19 mode is dominant). The Fourier
transform of the kinetic energy has been carried out only in the angular di-
rection, since in the radial direction the turbulence covers only a small region
(and therefore only =~ 15 grid points). Theslope of the spectrum is roughly
-1 (though at some stage of the evolution the slope is closer to -1 ..5). At this
stage of the work it is difficult to assess how accurate is this valuc of slope.
One might need to increase the number of points in the angular direction
fromm M=6064 to M= 12S, 236 or even 512 in order to be confident with this
result.

‘1 'he only other turbulent flow with which we can cornpare our results
ist 11(1 rotating two-dimensionalmodel of the atmosphere (using the shallow
water equations, Cho & Polvani 1996a). As stated in t he second section this
flow is equivalent to a 21 compressible rotat ing flow. There the index o f



the slope varies between &~ -3 and ~ --fand depends somewhat 011 the
initial conditions and on the dissipation paramcter p. However, as has been
pointed out (Cho & Polvani1996a) many spectral behaviours are possible,
and comparisons of spectral slopes (with spherical or planar results) should

not be tempted.

‘I"he only comparison which canbe made is the following. In the three-
dimensional incompressible turbulent atmosphere of a rotating planet the
larger scales are aflected by the Coriolis f or m and probably also by the
finite vertical extent of the atmosphericlayer. The deviation from a Kol-
mogorov spectrum is strong and the energy spectrum behaves like Fj oc k73
(e.g. Dubrulle & Valdettaro 1992). The large scales are most probably two-
dinensional in structure. The smaller scalesare not affected by the rotation
(theFddy turn over time is muchsmaller thanthe rotation time) neither by
the small vertical extent of the at mosphericlayer. 1'herefore, on this scale,
the turbulence remain homogencous, thre-dimensional and the Kol mogorov
inertial range still holds there Ey o /2 The same is probably true aso in
discs, and one might expect the large scale turbulence (A > 1) to be affected
by the rotation andthe the small thickness of the disc. Onecan therefore
say that thelarge scale turbulence which transports angular momentum will
be two-dimensional and non-homogencous, while the small scale turbulence
(A < H) will be three-dimer 1sional and homogencous (with a Kolmogorov

spectrum).

4.3.3 The energetic

The non-axisymmetricinstability grows according to the mechanism describe
in the introduction: it grows due to the over-reflection of waves, while it is
confined in the resonant cavity. This mechanisin transfers, through waves,
cnergy to the unstable modes. The instability produces inflection points in
the flow which, at some stage (when the perturbation is strong enough) makes
the flow unstable and turbulent. *1111(C turbulence thin, inorder to sustainit-
self, taps its energy fromthe flow inthe same manner as the instability itself:
through the over reflection of waves. Infact one can ook at the turbulen ce as
a non-axisymmetric instability where all the modes have grown unstable. The
turbulent pattern rotates at the same speed as theinit ia non-axisvimmetric
instability, from which it formed. It has the same a corotation radius. T'his
explains why the turbulence is co nfined only in the resonant cavity, between
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the corotation radius and the inner edge of the disc. There is no amplifi-
cation of the short waves propagating outwards (from the resonant cavity),
since there is probably still too much viscosity for waves of that amplitude
(the viscosity increases with radius andtheresolution decreases with radius).

4.3.4 Comparison with Observations

In order to make further comparisons with the observations, we assume (as
a first approximation) that the luminosity of the inner disc is proportional
to the energy dissipated them (our model is poylitropic). We compute the
dissipation function ®(1) as a function of time for two different cases: first
for a wholering with O <¢ <27 (say ¢,,)andthen for half a ring with
O <¢ <7 (®,). The first case enables to discern intrinsic change in the
dissipation function as a function of time. Thesecond case reproduces the
eclipse of the innerdisc by the central star, but enables also to discern non-
axisymmetric rotating (luminosity) pattern. 111 figure s we show ¢(t) for
the two cases around i = 770, just after the flow became turbulent. This
is a transient phase in which the dominant mode changes from m=19 to
m=5 and eventually to m=]. Theinner disc revealsan intrinsic change in
¢ (obvious when looking at ®,,) of large amplitude (=~ 10 percent)with a
frequency v = 2v0, where Vo is the freq uency of the rotating fluctuations
(slightly smaller than the local Keplerianfrequency vk, since the coronation
radius is larger than the inner radius of the disc). The variation of 2- is very
much sinusoidal and highly coherent. This variation is probably associated
with the forward and backward travel of waves intheresonant cavity, which
is the process that sustainsthe instability and the turbulence. A look at
& ... however, shows a variation much less sinusoidal and less coherent. Some
additional frequencies can be discerned, like v =1y, v = 3y and v = 5.
These are the odd dominant modes 111=1 ,3 and 5. The even modes can not
be seen since they cancel themselves while rotating (as a fluctuation disap-
pears behind one side of star,another onercappears 011 the ot her side). The
v =210 frequency is also apparent (due to the intrinsic change in @).

A look at the same graph but around ¢ =~ 1100 (figure 9) shows a com-
pletely different picture. At this stage the m=1 mode is dominant. The inner
disc stays in this stage for about &~ 300 local Keplerian periods until the sim-
ulation is stopped. The quantity @, reveals two periods of intrinsic changes

(and of small amplitude): 1 = 214 (the same as previously, but its amplitude



has decreased) and v = 0. 0814 (corresponding 10 a period ' =12.4 lota] Ive-
plerian periods). This low frequency oscillation is transient and is associated
with tlie eccentric oscillations of the whole disc as the one observed in the run
of model jinPaper] (but not mentioned there; this kind of oscillations was
also observed intheresults of Rézyczka & Spruit1993).In theinner disc,
however, the rotating dominant m=1mode produces a highly sinusoidal and
coherent oscillation with a frequency v = 14, which is observed in the graph
of ¢, infigure 9. In contrast to the case infigure 8, the rotating m:=1mode
in the inner disc can illuminate the whole disc, such that an observation of
the reprocessed light will in fact reveals the frequency v = 1 (this is difficult
to reproduce if several modesare dominant, likeinfigure S for ¢, around
t &~ 770 with the frequencies 3vg and 5vq).

‘1’0 summarize and compare, we have distinguished three kind of oscilla-
tions related to the turbulent inner disc. The first with a frequency v = 214
is due to an intrinsic change inthe luminosity of the disc and is mainly seen
during a transient phase of the turbulence, while the energy is in the higher
modes (after what the amplitude Of this frequency decreases). The second
oscillations with a frequency Yo can be observed directly due to the occulta-
tion of the inner disc by the central star or indirectly if its light is reprocessed
by the whole disc. This oscillations is due to anm=1 rotating mode and is
seem after the initial ‘relaxation’ phase of the turbulence, whenthe energy is

passed to the m=: 1 mode.

We propose that these two oscillations, which are highly coherent and
sinusoidal, are the oscillations which arc us ually observed as Dwarf Nova Os-
cillations (I) NOs)inCataclysmic Variables. Them= 1 is the fundamental
mode of the oscillation] and is it the one which is usually recognized as the
DNO: its m=Isymmetry allows for the 360 degree shift in the phase when
the source is eclipsed by a companion star (with a jump of 180 degree at
Inicl-eclipse; Patterson1981). While the v = 214 oscillations is probably ob-
scrved as its first harmonic (first harmonics have been observed in Al Agr
by Patterson1979) or during a transicnt phase of the disc (e.g. at maximum
light during outburst; Mauche & Robbinson1997). It would be interesting to
check if the first harmonic observedin SS Cyg (or A Aqr) also undergoes a
phase shift of 360 degree during eclipse. We postulate that if it is due to the
process described here, the fiest harmonic will not undergo any phase shift
during eclipses from the secondary. If it is due to asplitting of the mode from
m=: 1 to m=2 (as proposed in the preceding subsection), then it will exhibit
a phase shift of 180 degree (with no phase jump during mid-eclipse). It has
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been proposedlong ago (Bath1973) that the DNOs are due to eclipses of
transient hot spots at the inner edge of the disc. Models of boundary layers
(c.g. Kley 1991; Godon1995; Hujeirat 1995) have not been able to provide
oscillations highly sinusoidal and with Keplerian periods. Here we propose
a ‘robust’ mechanism to create such hot spotsintheinner disc and (proba-
bly)in the hotter ‘thermal boundary layer’, whichcreates oscillations highly
coherent and sinusoidal with allthe characteristics of the observed D NOs.

We believe the third kind of oscillations, whit.11 is transient and has a low
frequency, is more related to the so-called Quasiperiodic Oscillations (QPOs).

The present results, however, cannot explain the flickering observedin the
inner region of cool discs inCV systems, though it is believed to originate
from aninner turbulent disc (e.g. Bruch1992).

5 Conclusions

We have followed the non-linear growth of non-axisymmetric instability in
geometrically thinKeplerian discs. The instability cicvclom intheinner disc
when the inner boundary is rigid (corresponding here to the surface of an
accreting compact star) and when the disc is neither too hot (say with a
Mach number M > 15) neither too viscous. All the modes of the instability
have a high Q values and a period of rotation of the order of the Keplerian
period at the inner edge of the disc. The high order modes have growth
rate larger than the low order modes. in CV discs the viscosity parameter
is expected to be a= I, 10-1, however in the innerregion (boundary layer)
the viscosity dropby several orders of magnitude,and there ax1073 (e.g.
Regev 19S3). Here we consider both cases. When assuming a high viscosity
(= 0.1) the higher modes are first tobe damped and saturate at moderate
values: the energy is contained inthe low order modes which dominate the
flow. When the viscosity is low (a= 0.001 ), the high order modes dominate
the flow, while the low order modes do not grow (tile energy is containedin
the higher modes). Whenthe order rand the amplitude a of the unstable
mode arechigh enough,the flow undergoes a (subcritical) transition to tur-
bulence. The turbulence is confined inthe inner vegion of the disc, inside the
resonant cavity’, where it sustains itself due to the over rellection of waves.
Someof the low 01'(1( L' 1110(1('s (e.g. m=3, quite amazingly similar to the re-
sults of Dubrulle 1991 in a 3D Couette flow) are dominant during transient
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phases of the tinroincie flow, but event ually the m=1mode dominates the
[low (this is a commonsituationin 2D turbulence, since the m= | mode cor-
respond s to the largest Scale available for tile development of the turbulence
with an inverse cascade of energy). The turbulence obtained in this work
cannot account for angular momentum transport in the disc. neither canthe
outward propagating waves (e.g. Kaisig 1989a, 19 89b). Waves which can
transfer angular momentum are inward propagating waves (Spruit 19S9), ex-
citedin tile outer disc (e. g by tidal forces, scc Paper 1). It is now believed
that a hydromagneticinstability (the Velikhov-Chand rasekhar instability) is
responsible for the transport of angularmomentuminthe disc (Ha bus &
Hawley 1 991). However, tile present results provide a new mechanism to
explain the appearance of short period oscillations observedin the inner disc
of cataclysmic Variables andotherrelated systems. Weidentified in the tur-
bulent inner disc highly coherent and sinusoidal oscillation, with a roughly
Keplerian period, together with its first harmonic, that easily explainsthe
appearance of DNOsinCVs. A less coherent oscillation with a longer period
is also observed, clue to eccentricoscillations of the disc. This latter oscilla-
tions is more characteristic of the QPOs observed in these systems.

The present work hasan additional direct implication for two-dimensional
compressible transonic shear flow's like the one studied by Tomasiniet a.
(1 996).In their numerical simulations Tomasini et a. show that a centrifu-
al instability dominates the flow without transition to turbulence. owever,
these authors remark that the absence of turbulence is probably clue to the
low Reynolds number and low resolution. The centrifugal instability is re-
lated to a strong shear inthe flow, and it is not known whether some link
exists between the centrifugal instability and the Papaloizou-P ringle insta-
bility. However, if a relation exists between the two, then there are good
reasons to think that the centrifugal instability might also leads to a sub-
critical transition to turbulence in tile two-dimensional compressible rotating
shear layer flow st udied by Tomasini et al. ( 1996), provided the amplitude

and the order of tile unstable mode are high enoughi.

A high resolution study of theinstability in the inner disc will be carried
outin the future. A high resolution spectral code will eriable to include the
effects of the dynamical boundary layer on the solution. It is possible that
t he very large shea v in the bou nda vy layer is enough to sustain turbulence
in the flow, wit hout the need for a reso na nt cavity and non-axisvimmet ric

unstable modes.
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Figures caption

Figure 1.
A grayscale of the density is shown. Anm= 16 mode has grownin the mmner
disc. Waves propagate outwards from the corotation radius into the outer
region of the disc.

Figure 2.
A grayscale of the density is shown. Anm=19mode has growninthe inner
disc, from where waves propagate outwards intothe outer region of the disc.

Iligure 3.
A grayscale of the density is shown in the inner disc in which all the modes
have grown unstable. The flow is turbulent in the inner disc, from where



waves propagate outwards into the outer disc. Here the modes 5 and 19 are

stronger tha n the other m odes.

Figure 4.

The totar kinetic energy in the inner disc Ky = Jpv2 4 1pv? is drawn (in ar-
bitrary units) as a function of time (in units of Keplerian rotation period at
the inner edge of the disc2n/Q (R;,,)). The Keplerian ’background’ velocity
has been substracted to vg. The energy has been integrated radially over the
inner turbulent region, and azimuthally over 27. Around¢ = 400 the energy
reaches a plateau whenthe unstable m=1 9 mode starts to sat urate. At this
time the mode has stopped to grow exponentially, but continues to grow
linearly. The energy undergoes an additional growtharound¢= 650 — 700
when the flow becomes turbulent. The flow stays in the turbulent state for
t >700 till ¢ ~ 1200.

Figure 5.
The total kinetic energy spectrum is shown, integrated in time and in the
radial direction over the inner turb ulent region. The spectral decomposition
has been carried out inthe azimuthal direction. Thespectrumis SIIOW11be-
fore the transition to turbulence. while the m=19 mode iS dominant.

Figure 6
Same as figure 5, but the spectrum is shown after the transition to turbulence.
D uring most of that time a few modes are stronger thanthe others, these
modes are the m=1,5, and 19. The slope of the spectrum at theonset of the
turbulence initially reaches =~ -1, and increases slightly with time(x -1.5).
At { =~ 850 the m=1mode increases and becomes dominant for the rest of
the run (i.e. till t= 1200).

Figure 7.
Some individual modes are drawn as a function of time. The amplitude S,
of cach mode m is drawn in units of So- Themodem=19 (full line), which
event ually leads to turb ulence, is shown together with 3 other modes: m=>5

(dash), m=10(dot-dash)andm=15 (dot).

Figure 8.
The energy dissipated in the inner dise is shown (in arbitrary units) as a
function of time (local Keplerian orbit at the inner edge of the disc), imme-
diately after the onset of the turbulence around t=770. The upper graph
shows the energy dissipated in the inner dise for 0 < ¢ < 27 (d,,), while the
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lower graph shows the energy dissipated for O <¢ <7 (@,), equivalent to
the inner disc eclipsed by the central star.

Figure 9.
This figure is the same as figure S but for ¢ ~ 1100.

o
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TABLE 1
EFFECTSOF THE VISCOSITY ONTHE
M=2MODEIN A COOL DISC

(84 W?/an an/ f
0.1 4.24 X107 1.24
0.125 5.18 x 10-° 1.24
0.15 6.28x 10=° 1.23
0.2 8.06x 10-° 1.17
0.3 1.25 x1072 1.14

The « viscosity parameter is given in the first
column. The growth rate Of the niode iS given
in column 2 in units of the rotation rate at the
inner radius $in = Qi (r = Rin). The rotation
period of the mode(p=2n/f} is given in the
last column in unit of the local Keplerian rotation
period of the inner radius (27 /82, ).



TABLE 2
GROWTH RATES AND MODES FOR
DIFFERENT VALUES OF THE VISCOSITY

Cx WQ/QUI m
0.1 4.24 X10° o
0.1 8.83 X102 4
01 1.25 x1072 6
01 1.54 x10~2 s
0.1 1.82 X102 10
0.1 2.19X 102 »
0.01 8.86 X 1072 o*
0.001 3.89 x 1072 19%
0.001 6.45 x 1072 24"

|
|

Thea viscosity parameter is givenin the first
column. The growth rate of the mode is given
in column 2 in units of the rotation rate at the
inner radius Qin = Qp(r = ti n). The order
of the modem is given in the last column. An
asterix denotes that the modewasthe dominant
onein the run.



TABLE 3
FFFECGTS OF THE VI SCOSITY ON THE
ORDER OF THE D OMIN ANT MODE IN A
CooL DISC

a m A XM

0.1 2 61X32
0.01 8-5 256X32
0.001 >20 256 X64

T'he o viscosity parameter is given in the first
column. The order of the dominant modes is
given in column 2. Theresolution is given in
column 3. N is thenumber of points in the ra-
dial direction and M is thenumber of points in
the angular direction.
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