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Introduction 

Motivation - need  to  understand  cis-regulatory logic 

The central dogma of molecular biology states that information is stored in DNA, transcribed to messenger RNA 
(mRNA) and then translated into proteins. The human genome project is expected to determine the complete sequence 
of all human genes, and the genomes of several other organisms are already completely sequenced. Much of the work 
in computational biology focuses on understanding what  mRNA  and proteins will be formed from a given length of 
DNA, how the proteins will fold, and so on. In this chapter, we consider a different problem, the question of which 
mRNA and proteins are present at what concentrations in a given cell at a given time. This will involve understanding 
transcription and translation, as well as the cellular processes that control those processes. All of these elements fall 
under the aegis of gene regulutiun. 

We may ask: What genes are expressed in a certain cell at  a certain time? How does gene expression differ from cell to 
cell in a multicellular organism? Which proteins are important in regulating gene expression? From questions like 
these, we hope to understand which genes are important for various macroscopic processes. Nearly all of the cells of a 
multicellular organism contain the same DNA. Yet  this same genetic information yields a large number of different 
cell types. The fundamental difference between a neuron  and a liver cell, for example, is which genes are expressed. 
Thus understanding gene regulation is an important step in understanding development. Furthermore, understanding the 
usual genes that are expressed in cells may give important clues about various diseases. Some diseases, such as sickle 
cell anemia and cystic fibrosis, are caused by defects in single, non-regulatory genes; others, such as certain cancers, are 
caused when the cellular control circuitry malfunctions - an understanding of these diseases will involve pathways of 
multiple interacting gene products. 

We shall concentrate mostly on transcriptional reg,ulation, as that is the mainstay of gene regulation modeling. 
Translational and post-translational regulation are typically considered as a separate problem. For a given gene, there 
are two types of regulatory elements - trans-regulatory elements, which are diffusable proteins that affect $ranscription, 
and cis-regulatory elements, which are the DNA sites (often  upstream of the gene in question) where the trans-regulatory 
elements bind. Much work  has  been done to understand cis-regulatory logic, i.e. how proteins bind to DNA and affect 
the expression of given genes. 

Model  characteristics 

Rather than advocatinga single, definitive model of gene regulation, we  will describe a variety of modeling approaches 
which  have different strengths and domains of applicability. There are,trade-offs between  model precision and 
computational complexity, for example. A model whose goal is to have tremendous precision may require significant 
amounts of supercomputer time to simulate, while a model whose goal is to get a simple representation of a system to 
aid in reasoning may be computationally efficient but less precise. Some of the model characteristics to consider when 
choosing an approach are: 

- Level of detail. Depending on the level of detail of the model, certain approximations can be made, 
whereas others are not valid. For example, 
- Time. The time scale is absolutely crucial in determining what type of model to use. At very short 

time scales (seconds or less), the low-level details of bindinghnbinding and protein conformational 
changes have to be modeled. At longer time scales, these can be considered to be in equilibrium, and 
certain average values can be  used (we shall discuss this in more detail later). At very long time 
scales (e.g. days), processes such as cell division may  be  very important, which can be ignored at 
shorter time scales. 



- Number of molecules. If the number of molecules is very small (i.e. in the 10s or low lOOs), 
stochastic models may  need to be used. However, once the number of molecules becomes very large, 
differential equations become the method of choice. 

- Computational complexity. The more detail and the longer one wants to model a process for, the 
higher the complexity, and hence the longer it takes computationally. 

- Available data. For many systems, there is a lot of high-level qualitative data, but less quantitative, 
detailed data. This is particularly true of complex eukaryotes. The nature of the data which may  be 
required by a model before it can make predictions is in practice an important property of the model, which 
may also depend on the power of the data-fitting algorithms available. 

- Predictive ability. To begin modeling, one must focus on what type of predictions are sought. For 
simple predictions, simple models are sufficient. For complex predictions, complex models may  be 
needed. 

Understanding the biology 

Physical  chemistry 
To understand the mathematical models of gene regulation, let us review some of the main ideas of physical chemistry. 
In particular, we shall discuss kinetics, equilibrium, free energy  and the concept of partition functions. 

Kinetics 
Consider the chemical equation 

which deals with two chemical species, A and A'. According to the equation, A is transformed to A' at a rate of k,  in 
other words, the concentration of A, denoted [A], obeys the differential equation 

AAA~ 

(Notice the signs, because [A] is decreasing as A is converted to A', while [A'] is increasing.) Solving these equations, 
we get 

[A],  = [ ~ ] ~ e - ~ ,  and [ A ' ] ,  =[A'] ,+[Al( l -e-k ' ) .  
where [A],  is the concentration of A at time t. For more complicated chemical equations such as 

A+ B A A B  or 2A -+A2 
we  get differential equations such as 

Typically, writing these equations and finding the correct values of the rate constants k are the interesting parts - in 
most actual gene regulatory systems, the equations become too complicated to solve analytically and so must be solved 
numerically. For that reason, we shall usually be content to write the equations, rather than provide a detailed solution. 

Example (Gene Regulation) 
Suppose that protein X is the product of gene X .  Assume protein X is synthesized at a constant rate k,, i.e. a rate that 
doesn't depend on the amount of X present. Further, assume protein X is degraded at a rate k, proportional to its 
concentration. Then [X] obeys the differential equation 

" d [ X 1  - k, - k [ X ]  subject to some initial condition [X],. 
dt 

Equilibrium and Free Energy 
Consider a certain DNA binding protein X. Its binding and unbinding to DNA will follow simple and complementary 
chemical kinetics, i.e. 



X +  DNA &X * DNA (1) 

X *  DNA > X +  DNA (2) 
Where X*DNA means "X  bound to DNA." We can  write  the differential equation  that describes the amount of X bound 
to DNA as a  function of time, namely: 

d[X*DNA1  =k,[X][DNA]-k- ,[X*DNA] 
dt 

Note that  the right hand side has  two terms: the first one is production of new X*DNA due to equation (l), the second 
is degradation of existing X*DNA due  to  equation (2). With the  additional constraints 

[X l to tu l  = [X lfiee + [ X  * DNA1 
[DNA 1 toto1 = [DNA ] f ree  + [ X * DNA 1 

and  values  of [X],,, and [DNA],,,,,  we could solve this differential equation as a function of time. Typically, however, 
we are  not interested in these dynamics, which are fast  compared  to  other reactions involved in gene regulation. We 
assume that on the time scale we're interested in, these  two  competing processes have  reached equilibrium, i.e. there are 
no further net changes.  Thus, 

d[ X * DNA] 
dt 

O =  =k,[ XI[DNA] - k-,[X * DNA] 

or, equivalently, 

where Keq is called  the equilibrium  constant of this reaction. The pair of equations (1) and (2) can  be abbreviated as 

X + DNA-X * DNA (4) 
It is possible to go directly from the chemical equation (4) to  the algebraic equation (3) by multiplying all the 
concentrations of the  products  (in  this  case  only  [X*DNA])  together  and  dividing by the  product of the concentrations of 
the  reactants  (in  this  case [XJ[DNA]). 

Suppose now, in addition to equation (4), we  have  the  additional equilibrium equation 

X * D N A I X ' * D N A  (5) 
which could mean  that X undergoes a  conformational  change to X' while  bound  to DNA.  The  equilibrium  equation in 
this case is 

[X'*DNA] 
[ X  * DNA] = K e q ,  

Now notice that 
[X'*DNA] - [ X *  DNA]  [X'*DNA] 
[ X ]  [ DNA] - [X  ][DNA] [X * DNA] = K e g  K e g  2 

This is an important property  of equilibria: if A and B are in equilibrium and B and C are in equilibrium, then A and C 
are in equilibrium, and the resulting A-C equilibrium constant is simply the product of the A-B and B-C equilibrium 
constants. . .  . 

From  thermodynamics in dilute solutions [Hill 19851, it follows that 
AG 

where AG is the difference in free energy between  the initial and final states, R is the ideal gas  constant  and  T is the 
absolute temperature. Typically, values of AG are  reported  instead of the values of Keq. 

Partition  Functions 

We shall introduce the concept of partition  functions by means  of a detailed biological example.  Consider  a  piece of 
DNA  and a protein P, which can bind  at either (or  both) of two sites on the DNA (see Figure 1). 



State 0 

State 1 

State 2 

State 3 

Figure 1 - Binding states of protein P 

Let [DNA],, be the concentration of DNA in State 0, and let [PI  be  the concentration of free (i.e. unbound) protein P. 
Then, there are equilibrium constants K,, K, and K,, such that 

Using the fact that 
[DNA],,,/ = [DNA], + [DNA], + [DNA], + [DNA], 9 

[DN4,,fo/ = [DNA], + q p 1  [DNA], + K ,  [ PI [ DNA1 + K3 [PI2 [DNA], 
= [ DNA], 2 

Z = l +  K1[P]+K2[P]+K3[P]2 

we get 

where 

is called the partition function. It follows that 

The biology 

Proteins that regulate gene expression come in many types; some regulate transcription, others translation, still others 
degradation, RNA splicing, etc. Most work in the mathematical theory of gene regulation focuses on transcription 
factors (TFs), which are proteins that bind to DNA and control the rate of transcription. The DNA to which TF’s bind 
to control the expression of a particular gene can be called the “promoter”, though sometimes that term is reserved just 
for the TATA box initiation site for transcription. Transcription factors work something like the protein P in Figure 1 
above. The binding and unbinding processes can be  written out as chemical kinetics or approximated as equilibrium 
processes, depending on the time scale of the model. However, severe complications ensue when interactions with 
other transcription factors in a large “transcription complex” become important. 

Transcription occurs when RNA Polymerase (RNAP) binds  to the DNA, forms a transcriptional complex and moves 
step by step along the DNA copying it  into mRNA (see von Hippel). TFs may affect the rate of binding and/or the rate 
at which RNAP begins transcribing DNA into mRNA. After the mRNA transcript is made, ribosomes bind to it and 
begin translation. Like transcription, this is a step-by-step process. Both mRNA and proteins can be degraded once they 
are created. RNA is degraded by ribonuclease,  and  proteins are degraded by cellular  machinery including proteasomes 
signalled by ubiquitin tagging and regulated by a variety of more specific enzymes (which may differ from one protein 
target to another). The rates of transcription and translation vary depending on experimental conditions (Davidson, 
Watson et al.). 



Many TFs bind to DNA in a multimeric state, e.g. as homodimers or as heterodimers. It is important to know how 
many copies of which proteins bind together before the protein is in  an active DNA-binding state. Furthermore, the 
monomer and dimer forms of a protein  may  be  degraded at different rates. Also, there may  be extensive cooperativity 
between binding sites, even  in prokaryotes - for example one dimer may  bind  at one site and interact with a second 
dimer at a second site. If there were no cooperativity, the binding at the two sites would  be independent, so we would 
have K1,,=K,K,. Instead, cooperativity would tend to stabilize State (1, 2), so K,,,>K1K2. Competition is also possible 
particularly for two different transcription factors binding at nearby sites. 

Eukaryotes 

Eukaryotic promoters may have large numbers of binding sites occurring in more or less clustered ways. For N binding 
sites an equilibrium statistical mechanics treatment (possibly oversimplified) will have at least 2N terms in the partition 
function, one for each combination of bound  and  unbound conditions at all binding sites. The most advantageous way 
to simplify this partition function is not known, because there are many possible interactions between elements of the 
transcription complex (some of which  bind directly to DNA, some bind  to each other). In the absence of all such 
interactions the partition function could  be a simple product of N independent two-term factors, or perhaps one such 
sum for each of a global “active” and “inactive” state. 

The “specific” transcription factors are proteins which  can  bind to DNA and/or interact with one another in poorly 
understood ways, and it is these protein-protein interactions inside the transcription complex which really cloud the 
subject of building models for eukaryotic gene expression. A further complication is the “general” transcription factors 
such as TFIID which assemble at the TATA sequence of eukaryotic transcription complexes, building a subcomplex. 
Finally signal transduction (e.g. by MAP kinase cascades [Madhani and Fink 19981 ) may act on the transcription factor 
by the phosphorylation of constitutively bound transcription factors, converting a repressive transcription factor into an 
enhancing one. 

Many binding sites occur in spatial and functional clusters such as the 480 base pair eve stripe 2 “minimal stripe 
element” in Drosophila [Small et al. 19921, which  has five activating binding sites for the bicoid (bcd) transcription 
factor, one for hunchback (hb), and three repressive binding sites for each of giant (gt) and Kruppel (Kr). It acts as a 
“module” which suffices to produce the expression of eve in stripe 2 out of its seven stripes in the developing 
Drosophila embryo. Similar modules for stripes 3 and 7 would  be less tightly clustered, if they can be properly defined 
[Small et ai. 19961. These promoter “regions” or “modules” suggest a hierarchical or modular style of modeling the 
transcription complex and  hence single gene expression, such as provided by [Yuh, Bolouri and Davidson] for End016 
in sea urchin, or the Hierarchical Cooperative Activation model suggested in Chapter XXX [Mjolsness, this volume]. 
A different way  to think about these binding site interactions is provided by [Gray et a1 .1995] who hypothesize three 
main forms of negative interaction between sites: 

competitive  binding, in which steric constraints between neighboring binding sites prevent both from 

quenching, in which binding sites within about 50 base pairs of each other can compete, and 
silencer regions, promoter regions that shut down the whole promoter when cooperatively activated. 

being occupied at once, 

Given these observations, we can see that the biological understanding of eukaryotic cis-acting transcriptional regulation 
is perhaps ... “embryonic”. We  now  turn  to trans-acting regulation. 

Feedback  and  Gene  Circuits 

With only the complexity we’ve introduced so far, gene regulatory networks would  be complicated, but it would  be a 
relatively straightforward (albeit difficult experimentally) exercise to tease apart the details. The key point we have 
avoided is feedback. Simply stated, the TFs are  themselves subject to regulation. This leads to interconnected systems 
that are more difficult to analyze than the feed-forward systems we’ve discussed so far. There are two major kinds of 
feedback - positive and  negative. 

Negative feedback is the way a thermostat works: when the room gets too hot, the cooling system kicks in and cools it 
down; when the room gets too cool, the heater kicks in  and  warms it up. This leads to stabilization about a fixed 
point. More complicated negative feedback is also possible, which leads to better control. We shall leave the complete 
discussion of control systems to the chapters on robustness. 

/ ’  



Positive feedback causes amplification and dichotomies. Suppose your thermostat were  wired backwards, in the sense 
that if the room got too hot, the heater would  turn on. This would make it even hotter, so the heater would turn on 
even more, etc., and soon your room would  be  an oven. On the other hand, if your room got too cold, the air 
conditioner would kick in, and cool it down even more. Thus, positive feedback would  amplify the initial conditions - 
a small hot temperature will lead to maximum heat, a small cold temperature will lead to maximum cooling. This 
results in two stable final states - a dichotomy of states, as it were - very hot and very cold. In a very hand-waving 
way, this is how it is possible for cells to pick different fates. 

In part B of this section of the book, several models of multiple genes will  be presented. In these models, feedback will 
be key. 

Modeling Methods 
Let us now look at several different modeling methods. Although this list is by no means complete, it should serve as 
a good comparison of different types of models and as a jumping-off point for further investigation. 

Differential  equations  when  details  are  known 
We first consider the Ackers et  al. (‘82, later extended in Shea and Ackers ‘85)  model of a developmental switch in 
lambda phage. The model is similar to the equilibrium binding and unbinding model above in the Physical Chemistry 
section. They consider three proteins - RNAP, repressor and cro - which  bind to three DNA sites - OR,, OR, and 
OR,.  In lambda, these sites control equilibrium production of both repressor and cro, so that the model will contain 
feedback. 

In principle, each site can be in one of four states - unbound, bound-RNAP, bound-repressor or bound-cro. If the sites 
were completely independent, there would  be 43=64 states. In practice, several of the states are not possible, so their 
total number is merely 40. For each state, the free energy is measured experimentally. For each transcriptionally active 
state, the rate constants for transcription initiation of repressor and/or cro are measured. Using a physical chemistry 
approach completely analogous to the one above, one  may  use the experimental data to calculate the probability P, that 
the DNA is in a certain state s as a function of the concentration of RNAP, repressor and cro. In particular 

P s  = [DNA], 
[ DNA toto, 

Then: 

< raterepre,sxw >= raterepressor ( s > p , s  and < ratecro >= ratecro (SI P s  . 
Y S 

The sums run over all states s, and the terms in the,  sum,  can  be read .‘‘(,@e rate of repressor transcript initiation given 
state s) times (the probability of state s).” Given these’terms, they write two differential equations of the same form as 
one of the equations in the chemical kinetics section, namely 

d[repressor] - 
dt 

-< raterepressor > -k,[repressor ] , 

(where kd is the degradation constant for repressor) and  the analogous cro equation. Using  numerical methods, they solve 
these equations to get the concentrations of repressor and cro as a function of time. 

This model requires an enumeration of the states of the system and a selected set of reaction rates for transitioins among 
the states. 

Small  number of molecules - probabilistic  framework 

Reinterpretation of Ackers  model  as  probabilistic 
It is interesting to note that the Ackers et  al. model makes correct predictions in the regime where it  is used (namely 
lysogeny maintenance) but, because it is deterministic, would  make completely incorrect predictions when applied to a 
different regime - establishment of lysogeny or of lysis. The key difference is that the former process involves more 
molecules (200+ molecules of repressor) and occurs on a longer time scale (30-40 minutes): thus it is relatively 
deterministic. The latter involves relatively few molecules (10-50 of repressor), occurs on a short time scale (the 



1ysisAysogeny decision is made within 10-15 qninutes)  and is probabilistic. Analyzing probabilistic behavior requires a 
different mode of thinking. See, for example, McQuarrie (‘67), McAdams and Arkin (‘94) or  Van Kampen. 

Where does this probabilistic or stochastic behavior come from? ‘As we mentioned in the introduction to the chapter, 
there are trade-offs to consider in modeling. In the limit of low numbers of molecules and short time steps, the 
behavior of systems behaves stochastically, while in the limit of high numbers of molecules and long time steps, 
certain averaging occurs and there is a deterministic outcome. Consider an E. coli cell, which acts as the host for 
lambda. It is a rod shaped bacterium 2pm long with a diameter of lpm (Watson et al.). Thus it has a volume of 
n?l=?~/2xlO”~ liters. From the Ackers model, significant differences in binding occur in the range 10.’ M to 10” M. 
Consider the number of molecules that corresponds to 10.’ M. 

In the lambda model, we are dealing with 1 molecule (in the case of DNA) or a few molecules (in the case of mRNA) or 
even 10s to 100s of molecules (in the case of proteins). Differential equations assume that the concentrations vary 
continuously, or equivalently, that the fluctuation around the average value of concentration is small relative to the 
concentration. For the very small number of molecules in the first couple of minutes of lambda infection, those are not 
good assumptions, thus the need for stochastic models. Later in the chapter, we’ll discuss the conditions under which 
those assumptions are met, and differential equations are appropriate. 

(7~/2xlO”~ liters)( 10” moles/liter)(6x1023molecules/mole) = 10 molecules 

Bindinghnbinding with  kinetics (Le. Markov chain) 
The key  to the stochastic framework is dealing with probabilities rather than concentrations. For example, in the 
bindingtunbinding example given under the section on Physical Chemistry, we should now consider the probability that 
the single molecule of DNA is in each of the four possible states. In fact, the equilibrium limit is  just that - we 
change the words “fraction of DNA in state s” to “probability that DNA is in state s.” However, the stochastic version 
of kinetics is more complicated. 

nwdt  
State 0 L 
t 

State 1 

nco2dt 1 1 w d t  
cIndt 

( n - l ) w  dt 1 l c 3 1  dt 

(n- I )c 23dt 

t 
State 2 State 3 

Figure 2 - Kinetics of binding 

Consider the more detailed diagram of state transitions for proteinDNA binding in Figure 2. Let P(0,t) be the 
probability that the single molecule of DNA is in state 0 at time t. Assume there are n molecules of protein P present. 
Then, the stochastic theory of chemical kinetics assumes that for a small time increment dt, 

P(1,t +dt I O , t ) =  nco,dt 9 

where c~,, is a microscopic rate constant. It is related to the macroscopic rate constant k,),  in a straightforward way. The 
key assumption is that the probability of a molecule of P binding to the DNA is constant in time. Equivalently, the 
solution in which the reaction occurs is well-stirred, i.e. the mean time to a collision that results in a reaction is large 
compared to the mean time to a collision that does not. This is assumed to be the case in E. coli; it may not be the 
case in larger cells, so care must be taken to adjust models accordingly. For the system in Figure 2,  we can write a 
system of differential equations 

rP(o, t+ b j 

P(t + At) = P ( l , t + b )  
P(2, t+ A t )  

= Ap( t )  

where 



1 1 -nco,At -nco2  At Cl& c20 At 0 
nc,, At  l-c, ,Al  -(n  - l)c13b 0 
nco2At 0 1 - cz0 At - ( n  - l)c,,At ‘32 

0 
This leads to the differential eauation 

‘3 1 At 

(n - 1)c13b (n - 1)  cz3At 1- qlAt -e3& 

where I ,  

4 0  GO 0 1  

This type of system is called a continuous time Markov  chain, because the probability of the next transition depends on 
the current state only, not on the history of states (Feller). Given the number n of molecules of P, we can solve this 
system of differential equations using standard methods. This is  a relatively simple case, in that there is precisely one 
molecule of DNA. If  we were modeling a different process  with two substances, each of which could be present in 
multiple copies, the approach would  be similar, but the number of states would  grow quickly. 

There are efficient algorithms available to simulate chemical reactions in the stochastic framework. See Gillespie (‘77) 
and  McAdams  and  Arkin (‘98). 

Other  processes 
For more examples of processes in the stochastic framework, see the next chapter. 

Formal  basis of the relationship  between  low-level  models  and  higher 
The stochastic methods just mentioned are important for some systems. For others, they can be supplanted with 
differential equations. Differential equations are an idealization  in  which the concentration of a certain substance varies 
continuously; stochastic methods model the number of molecules of the substance, which varies discretely. In the limit 
where the number of molecules is large, it  is common  to  perform time- or ensemble-averaging and  use differential 
equations to model the dynamics of the average. This procedure can fail. For example, if the output of a system is 
stochastic with substantial variance or higher-order moments, a strictly deterministic model may  be completely 
inadequate. There are, however, numerous important cases that have legitimate averaging limits. 

Large  number of molecules:  central  limit  theorem 
From the Central Limit Theorem of probability theory (Feller), we know  that the sum of a sequence of independent, 
identically distributed (i.i.d) random variables with finite mean  and variance converges to a normal distribution. 
Suppose the i.i.d. variables in question are the number of molecules that undergo a certain process. For example, we 
start out with n molecules of a certain protein (where n is large). Suppose each molecule behaves independently, and 
may degrade or not degrade according to stochastic kinetics. By  the central limit theorem, it is legitimate to average and 
write this as a differential equation for concentration degradation. The same is true of more complicated reactions, 
provided that  many molecules are involved, and  those molecules act independently and identically. 

Transcription, translation: limit of a  Poisson  process 
How about transcription and translation? We  mentioned a model of those processes, which involved a number of steps 
along the DNA or mRNA. These are not independent, in the sense that the second one can only occur after the first has 
occurred, etc. However, if we rephrase the question as “how long will it take before we make n steps?” we may apply 
the Central Limit Theorem. In other words, each individual step takes some amount of time, and the times are 
distributed according to a common distribution (namely an exponential). These times are independent, so the total time 
will have the sort of average behavior one  would expect. This is the reason that differential equations models work well 
at long time scales, but not so well at very fast time scales. 



Longer  time  scales:  equilibrium  binding, li*t of Markov chain 
Many types of Markov chains converge to the equilibrium behavior we assumed in the physical chemistry section. In 
particular, Markov chains with a finite number of states, where it is possible to get from every state (through a series of 
transitions) to every other state, will converge to the equilibrium limit. The proof introduces some new concepts to 
classify the states of a Markov chain, but ultimately it, too, rests on the Central Limit Theorem. 

A Counterexample 
With all the examples we have given of times where averaging is appropriate, one might be tempted to think that 
averaging is always valid. Here is  a simple example that illustrates some of the problems with averaging. Suppose we 
have two different species of protein, A and B, which are being  produced stochastically at the same rate. We are 
interested in the question of whether there is more A or more B in a given cell at a given time. Because of the 
symmetry of the problem, we can use an averaging argument to show that in a population of cells, roughly half of the 
cells will have more A than B and roughly half will have more B than A. Similarly, in a single cell over a long time, 
there will  be more A than B roughly half of the time, and more B than A roughly half of the time. However, it is not 
true that in an individual cell, there will typically be  nearly equal amount of A and B, with small fluctuations. In fact, 
there are likely to  be arbitrarily large disparities in the number of molecules of A and of B. Thus, when we talk about a 
single cell over a  long time, the amount of time we  mean is very long, much longer than might be guessed using 
intuition alone. See Feller, Chapter 3, for a more detailed discussion of the problem of incorrect averaging based on 
false intuition. 

The  Fokker-Planck  Equation: An Intermediate  Formalism 

In  between fully averaged formalisms such as deterministic differential equations (see below), and fully stochastic ones 
such as the use of master equations and a full transition probability matrix, lies a useful level of modeling. This level 
is described equivalently by either a differential equation  with a stochastic noise term added (the Langevin equation) or a 
deterministic differential equation for the dynamics of a probability distribution of state values (the Fokker-Planck 
equation). For example, it is sometimes possible to solve for a time-varying mean and a time-varying variance in  a 
Gaussian distribution. The Fokker-Planck formalism and some conditions for its validity are introduced e.g. in [Risken 
19891. It holds some promise for modeling the dynamics of chemical species (including many gene products) where the 
number of molecules involved is perhaps 10-1000, in  between  “a few” and “large numbers”. 

Differential  equations  when  details  are  sketchy 

When the relevant states and transition rates are unknown or only known to a very limited extent, as  is likely for large 
protein complexes such as subcomplexes of the eukaryotic transcription complex, coarser and more phenomenological 
alternative models may  be required as  a matter of practicality. Differential equations intended to describe the dynamics 
of the time-averaged concentration of gene product are a common choice. It is justifiable whenever it agrees with 
laboratory experiment, but one might expect it to work  best  when deviations from average concentration are relatively 
small as predicted from underlying Markov chain or Fokker-Plank models, where available, or  when the typical 1/m 
noise in a stochastic process is sufficiently small e.g. for N 2 100 - 1000. Whether N is best taken as the number 
of mRNA’s or the number of protein molecules in a cell  may  depend  on nonlinear gene circuit feedback effects 
including autoregulation. Fortunately we can also appeal to experimental data, rather than further modeling, to settle 
the question of model applicability. 

From quantitative immunoflourescence measurements of hunchback and Kruppel protein expression levels in 
Drosophila syncytial blastoderms [Kosman et al. 19981, variations in measured flourescence between nuclei occupying 
similar positions on the anterior-posterior axis of a single blastoderm would seem to be about 10% of the average value 
for an “on” signal and 50-100% of the signal average when it is very low, or “off’. These values would seem to  be 
consistent with the requirements of differential equation modeling, and indeed differential equation models have high 
predictive value in this system. 

One example of a phenomenological model for gene regulation is the proposal by [Savageau 19981 to use “Generalized 
Mass Action” with nonintegral exponents 

xxx . .  



as a model of transcription as  well as other regulatory processes. <Another approach, which has  been applied to real gene 
expression data in several cases as described in Chapter XXX of this volume, is to use analog-valued recurrent Artificial 
Neural Network (ANN) dynamics with learnable parameters: 

xxx 
The parameters T, d t ,  1, and h XXX have  been successfully “trainea’from spatio-temporal patterns of gene expression 
data. Each of these ODE formulations generalizes immediately from  one gene to  many interacting genes in a ged-back 
circuit. 

Two further models can be mentioned as attempts to incorporate promoter-level substructure into gene regulation 
networks which are otherwise similar to the ANN approach. In Cliapter XXX of this volume, “Sigma-Pi units” [PDP 
XXX] or “higher-order neurons” are introduced to describe  promoter-level  substructure:  regulatory  “modules” in sea 
urchin Endo16 promoter. In Chapter XXX, partition functions for promoter regulatory regions, dimerization, and 
competitive binding are proposed  as a way to  expand a single-node description of selected genes in a regulatory circuit 
into  a subcircuit of partial activation states within a eukaryotic transcription complex. 

Other  approaches  when  details  are very  sketchy 

Logical  models 
There are numerous “Boolean network”  models  based on Boolean logic [Kauffman 1993, 19691. The simplest consist 
of statements of the form “If gene A is expressed now,  that  will cause gene B to be expressed.” Expression levels of A 
and B are thus represented as  Boolean  values - 0 for “not-expressed”  and 1 for “expressed.” Interactions are then  Boolean 
functions - for example, “C is expressed if A AND B are expressed.” This kind of reasoning induces a finite state 
machine (FSM), which consists of all possible n-tuples of values 0 or 1 (where n is the number of proteins considered) 
and transitions from one state to another, which are consistent with the Boolean functions. This FSM gives a very 
rough notion of the behavior of the gene regulatory’system through time. 

One step up the ladder, both in terms of complexity and  in terms of predictive value, is the work of Thomas et al. (’90 
and ’95). They have expanded the notion of logical models to include multi-state logic, thresholds and asynchronicity. 
So instead of 0 and 1, they consider levels 0, 1, 2, 3, etc., which might correspond to “no expression,” “low level 
expression,” “medium expression” and “high expression.” The interactions between  genes now becomes more complex 
- a typical example might be: 

c ={ Oif A 2 1  and B 1 2  
1 otherwise 

This type of model aids in enumeration of interactions, and helps in the analysis of steady states. Another key point of 
the Thomas et al. formalism is that genes act independently and asynchronously, so in other words, C might change 
from 0 to 1, then B change from 3 to 2, but these two are not necessarily at the same time. This is  a reflection of the 
fact that rates of gene production are not  uniform across chemical species. 

Hybrid IogicaYdifferential-equations models 
A further modification to the Thomas et al. work  which moves in the direction of differential equation models is the 
work of [Mestl et al. 1995, 19961.  They have taken a simple differential equation for gene production, namely 

” d[X’ - 4 - k * [ X ]  
dt 

and let k, and k, be functions of the concentrations of [X], [Y], [Z] and  any other proteins present in the system. To tie 
this in  with the algebraic (logical) formalism, they assume that the functions are piecewise constant in the discrete 
ranges of “low,” “medium,” etc. Such functions can specialize to boolean-valued functions. This formalism also 



allows one to calculate steady states and more complete trajectories than are possible in the strictly algebraic approach 
(Boolean networks or their generalization to multiple discrete values).  It  may require more detailed data to determine the 
dynamics from rate parameters. 
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