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Abstract: 

In this paper, we present a  mathematical foundation, including a  convergence  analysis, for cascading 
architecture neural network.  Our  analysis  also  shows  that  the  convergence of the  cascade  architecture 
neural network is assured because it satisfies Liapunov  criteria,  in an added  hidden  unit domain rather 
than in the time  domain.  From  this  analysis,  a  mathematical foundation for the  cascade  correlation 
learning algorithm can  be  found. Furthermore, it becomes  apparent  that  the  cascade  correlation  scheme 
is a special case from mathematical  analysis  in  which  an eficient hardware  learning algorithm called 
Cascade Error Projection( CEP) is proposed. 
The CEP provides  eficient learning in hardware and it is faster  to train,  because part of the  weights are 
deterministically  obtained,  and  the learning of the remaining weights from  the inputs to the  hidden  unit is 
performed as a  single-layer  perceptron learning with  previously  determined  weights  kept frozen.  In 
addition, one  can start out with  zero  weight  values (rather  than random finite  weight  values)  when the 
learning of  each  layer  is  commenced. Further, unlike cascade  correlation algorithm  (where a pool of 
candidate  hidden units is added), only  a single hidden unit is  added at a  time.  Therefore,  the simplicity 
in  hardware  implementation is also achieved. 
Finally, 5- to 8-bit  parity and chaotic  time series prediction problems are  investigated;  the  simulation 
results demonstrate that  4-bit  or  more weight quantization is suficient for learning neural network using 
CEP. In addition, it is demonstrated that  this  technique is able to compensate for less  bit  weight 
resolution by incorporating additional hidden units. However,  generation result may suffer  somewhat 
with  lower bit weight  quantization. 

I-Introduction 
Many ill-defined problems in areas 

such as pattern recognition, classification, 
vision, and speech recognition require a 
practical solution. Typically, these problems 
are too complex to  be solved by a linear 
technique thus non-linear methods, such as 
neural network methods are used. Usually the 
practical value of a neural network method  is 
closely related to  the paradigm used  to  train 
the neural network. Currently, there are 
several neuromophic learning paradigms 
reported in literature [l-131 which are widely 
used. The majority of them are supervised 
learning techniques. The Error 
Backpropagation (EBP)[8] learning algorithm 
is one of the most popular supervised learning 
technique. In the real  world applications, EBP 
often suffers convergence problems [ 1 I]. 
Recently, a learning technique called “cascade 
correlation” (CC)[ 11,141  has  shown 
encouraging results. This method appears to 
be fast and reliable in learning, but thus for 
only empirical studies of its convergence 
properties have  been provided. A 

mathematical foundation for this algorithm is 
urgently needed so that from this a 
convergence analysis can  be developed. 
Such an analysis is herein provided for a 
learning algorithm, called cascade error 
projection (CEP), of  which cascade correlation 
is a special case. CEP is a simple learning 
method  using a one-layer perceptron approach 
followed by a deterministic calculation for 
another layer. This simple procedure offers a 
very fast, reliable, and implementable learning 
algorithm in hardware. The architecture for 
CEP is given in  Figure 1. 
Shaded squares and circles indicate frozen 

weights; squares indicate calculated weights, 
and circles indicate learned weights. The 
analysis is based only on the set of weights 
that is connected to  the  new hidden unit (n+l).  
In this case, only the blank squares and circles 
must  be determined in order to decrease the 
energy level. 

In the following sections of this paper 
an analysis of the structure and a learning 
technique is presented. Next, a difference 
energy function AE between layers n and 
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(n+l)  is introduced. This function contains 
two sets of variables: (1) the set of weights 
between the input (including previously 
expanded inputs) and the current hidden unit, 
namely W,h; (2) the set of weights between the 
current hidden unit  and the output unit, namely 
w h o .  These two sets of variables are treated 
sequentially (not simultaneously). First, the 
difference energy function is maximized with 
respect to w h o  thus obtaining maxwho(AE). 
Note that, the maxwho(AE) is also a function of 
W,h. We will show that there exists a solution 
set y,*, obtained from an affine space which 
guarantees that the network reduces (or at least 
maintains constant) the present energy level 
when the new hidden unit is added. Thus, we 
can conclude that the network converges in the 
Liapunov's sense as new  units are added. 
From this we propose that the solution which 
is obtained in a non-linear space by learning 
techniques such as gradient descent, conjugate 
gradient, correlation, covariance or Newton's 
second order may be suitable. The problems 
that are used  to simulate the CEP are 5- to 8- 
bit parity problems. 

Output units 

Calculated weights who(n+l) COP 'It: ) 

Current hidden 
unit 

Previous hidden unit 

Learned welghts, Calculated 
Frozen Wthjn) Learned 

weight block frozen w,, 
weights, 

W t h ( n + l j  

J I 

Figure 1. The architecture of cascade 
error projection includes inputs, hidden 
units, and output units. The shaded 
circles or squares indicate the learned or 
calculated weight set which  were 
computed and frozen. A circle indicates 

that perceptron learning has  been 
applied to obtain the weight, and a 
square indicates that the weight set is 
deterministically calculated. 

I1 STRUCTURE OF CASCADE ERROR 
PROJECTION: 

We start this section with a definition 
which  will  help  to define the general structure 
of our neural network. 
Definition: 
For any k E N, Ak is the set of all affine 

functions from 3' to 3, that is, the set of all 
functions of the form 
A(X) = WTx + b where W and X are vectors 

in 3' , and b E 3 is a scalar. 
In this paper, X will correspond to input of the 
network and W corresponds to the weight set 
which  will  vary  with the dimension of the 
required cascade network. We start with the 
neural network in Figure 1 where we assume that 
the network contains n hidden units. We also 
assume that the learning cannot be further 
improved; that is, the energy level cannot be 
further reduced. At this point, the new  hidden 
unit (n+l)  is added to the network and we 
choose the  new weights to further reduce the 
energy level. 
Let E be the input space and E c  [-1,1] , Y be 

an output space and Yc[-  1, I]", and L2 be a 
hidden output space and L2 c[-l, 11'. Thus, 
Ed2 forms the input space of the newly  added 

hidden unit which is [-1,1INtq where N is the 
dimension of the input space, q is the dimension 
of the expanded input space (N+q is the 
dimension of the total input space to hidden unit 
n+l) ,  and m is the dimension of the output 
space. Let us define 

N 

f h  : [-l,lIN'4 xnNtq "-+[-1,1] 

f ,  : [-1SI Ntqtl x 3Ntq+l >y 

Where sN+' is the weight space of N+q 
dimensional real elements and similarly for 
nNtq+l  . Finally, the components f ,  and f ,  
are sigmoidal transfer functions which are 
defined by: 

f ( x >  = 
e x  - e-' 
e x  + e-x  

Other notation we use are defined as follows: 
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E: = t,” - o,”(n) denotes the error between 
output element o and training pattern p with 
target t and actual output o(n) where n indicates 
that the output has n hidden units in the network. f’: (n)  denotes the output transfer function 
derivative with respect to input of the output 
element o and the training pattern p. 

f,” (n  + 1) denotes the transfer function of 
hidden unit n+l and training pattern p. 
xp denotes the input pattern p and 1x1 denotes 

the Euclidean length of vector X. 

1. CONTINUOUS  WEIGHT  SPACE: 
In continuous weight space, weight 

component and weight updating can be any  real 
number  with unlimited bit weight quantization. 
In this section, there are no constraints of  weight 
space. 

Theorem 1: In cascade architecture, the 
maximum energy reduction between hidden  unit 
n and (n+l)  with respect to who is 

P m  

E y , ”  fhp(n + 1) 
p=l u=l  

where the energy function of the network is 
defined as 

E= E P  = (t: - 0,”)’ =y, x (E:)2 

Proofi 
Let t,” be the target output of  unit o given input 
pattern p ,  and let the actual output of unit o be 
given by: 

P P m   P m  

p=l p=l o=l p=l o=l 

fl+l 

O,” = f<<x,“ 1’ y o  + f,” ( j > w h , ( j > >  

with 

x; = 

j=l 

; X,”(. + 1) = 

(dimension (n+l)xl) denotes an expanded input 
vector  with (n+l)  hidden units, 
and let 

where f,” ( j  + 1) denotes the output of hidden 
unit j +  I with the input pattern p .  
Let E(n) and E(n+l) be the energy level of the 
network with n and n+l hidden units, 
respectively. The desire in learning is to reduce 
the energy from E(n) to E(n+l) as much as 
possible (ignoring the overlearning 
phenomenon). The ideal case would be 
max{E(n) - E(n + 1)) = max AE 
Then, we have 

m P 

AE = -e wi0 C[fLp f [  ( n  + I)]’ 
o=l p=l 

m P 

o=l p=l 

(1) 
The sufficient condition for equation (1) to  be 
maximum with respect to who is 

P r n  

p=l o=l 
P 

p= l  

Theorem 2: The projection of the error surface 
onto the output of a new hidden unit always 
guarantees that there exists a weight subspace of 
the learning weight space, which can be obtained 
from the affine space. These cascading 
sequential subspaces ensure that the network 
converges in the Liapunov sense. 
Proof 
Let 

x: (dimension (N+l)xl) denotes the original 

input  vector of pattern p ,  and x:(n + 1) 
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Then, I?€ Y. and - - 
fib + 1) 

F,(n + 1) = .. . . . . . . . . .  
. . . . . . . . . . .  

. . . . . . . . . . .  

-fh'(n + 1)- 
We  can rewrite equation (2) in a matrix  form as 
follows: 

AE = d " F , ( n  + 1) 
Now let 

but 

with 

I =  

< ( n + l ) = r  (3) 

F,(n + 1) = F(ZY,(n + 1)) (4) 

- 
(i' (n>>' 
........ 
........ 
........ 

(iP(nNT- 
From (3) and (4), we let K;(n + 1)be a solution 
in affine space; then we have 

ZY, ( n  + 1) = Fil (r) (5) 
Finally, the solution is 

~ , * ( ~ + 1 )  = z+F,"(r) 
where  Z'is the pseudo-inverse of I. 
The existence of Yi (n  + 1) depends on the 

non-zero column matrix I +  Fil (r) , and the 
rank  of I is at least 1 because of the non-linear 
combination of all previous dimensions (z=l,n). 
At the same time, the error surface still exists (if 
it is zero, then the energy is already zero). 
Therefore, the existence of qi ( n  + 1) is always 
guaranteed. As shown, the existence in affine 

space is demonstrated; however, we are 
interested in a non-linear space. 
For (3) and (5), we apply the mean value 
theorem: 
r - F,*(TZ + 1) = F', (c){P(r) - zy&+ 1)) 

with 

F', (c) = 

f ', (C')O ... 0 1 
0 f ', (c" ... 

and 
............... 
o...o f ', ( 2 )  

1 "  

m o=l 

Note  that the dimension of F ' ,  (c) is PxP. 

c p  E (  ( ip) 'y l (n+l)  , f - ' { - C f ' , P E , P }  ) 

Now let 

r* = &(ny;(n + 1)) = 

In other words, we have 
r - r* = F',  (c){P(r) - P( r*) )  
We see that 

In other words. 
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a reduction of the energy or at  worst the same 
energy with  the addition of  the hidden unit 
(n+l). From the network viewpoint, the energy 
decreases or remains the same when the number 
of hidden units increases; therefore the network 

rTFh*(n + 1) 2 
2 

Also we have 

p-1' + ( F ; ( ~  + I)(' converges (in the Liapunov sense). 
rTFh*(n + 1) I 

2 2. DISCRETE  WEIGHT  SPACE: 
From the hardware implementation viewpoint, Finally, we have 

IF;(n + lrI2 + IF,* (n  + 9 1 '  the weight space has discrete and finite 

2 
I rTFh*(n+ I) I precision. The conversion from continuous 

We should note that 
0 

> 0 ,  because 
L 

the rank of I is at  least  1 (it is noted  that the 
output of hidden unit n is a non-linear 
combination of the all the previous outputs of 
hidden units and the original inputs and  this 
output of hidden unit n ensures the rank of I to 
be  at least 1). However, the inverse of the 

sigmoidal function is used  to obtain ( n  + I), 
so it is possible to encounter the null space in 
affine space. Therefore, the precise inequality is 

From (lo), there exists at least one solution 
obtained by the pseudo-inverse technique in 
affine space. This solution also indicates that the 
lower  bound of reduction in energy that can be 
obtained by the hidden unit (n+l). Therefore, in 
non-linear space it can be shown there always 
exists a solution space when the error surface is 
projected to the new hidden unit  for learning and 
the lower bound energy reduction is 

r n l  F; (n  + 1)l' 

2 
. To obtain the maximum 

energy reduction, a straight forward approach is 
to obtain the closest match between IFh ( n  + I)/ 
and r, one can use gradient descent, maximum 
correlation, covariance, Newton's second order, 
or conjugate gradient techniques to obtain this. 
Finally, AE(n) 5 0 , 
with AE(n) = E(n + 1) - E(n).  

In conclusion, we have shown that there exists a 
weight set y ,*(n  + 1) obtained by the pseudo- 
inverse technique, and this weight set guarantees 

learning space into the discrete space must  be 
done for hardware implementation. As shown in 
[ 14,17,19], the weight space plays very 
important role in learning convergence. In this 
section, we want  to extend the learning theory 
further so that the convergence network is 
guaranteed in discrete and finite precision weight 
(limited weight quantization) space. Typically, 
the conversion from a real number from 
continuous space into a finite precision number 
is done by  two techniques: round-off and 
truncation [ 151. The theory below will provide 
us the effect of CEP learning in finite precision 
weight space especially the network will  be able 
to converge in a limited weight space when the 
round-off technique is applied. 

Theorem 3: In cascading architecture, the 
convergence of the network that is achieved in  a 
high weight quantization space can also be 
obtained in limited weight quantization space (B 
is weight bit quantization available) such that: 

The network with the limited weight 
quantization space converges in mean square 
sense which is 

- p 2 - ( B + ' )  _< 6 _<p'(B'l) and @(6} = 0; 

qlF,,yn+1)1 1 1 2 q r ~ F ; ( n + l ) }  
2 

0 is a statistical mean operator. 
p i s  a dynamical coefficient. 

F is a transfer function of inner product of 
input  and discrete limited weight vectors. 
Proofi 

As proved above for theorem 2, the network 
converges in Liapunov's sense. In this section 
we want  to show further that the CEP learning 
approach has the capability to learn in the 
discrete limited quantization space. The 
requirement for this learning capability is the  use 
of the dynamical step size that can be obtained 
from the previous energy level. In Figure 1,  with 
a new hidden unit (n+l) ,  the output o for pattern 
input p can be expressed as: 

w 
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0: ( n  + 1) = f (net: + who f :  ( n  + 1)) 
In equation (2), who is calculated; hence, it has 
very little effect on the learning capability, and it 
is ignored. However, the main focus of this 
study in the learning capability of the network is 
the determination of vb. It can be expressed as 
follows: 

y,=q,+a 
and 
-stepsize(n + 1) stepsize(n + 1) 1 6 <  

with stepsize(n + 1) = p2-B 

where y, is a weight vector in discrete limited 
weight space, and 6 is a noise vector that may 
come from the round-off technique. 
We have 

2 2 

- 

f,”(n + 1) = f h ( iP (qh(n  + 1) + 8)) (12) 
If 6 is sufficiently small, equation (12) can be 
written as: 

f , ” ( n + 1 ) = f h ( i ~ q h ) + f ) , ( i ~ q h ) i p a  

Let U p  = f,”(n+l)-f;(n+l) be an error 

between the hidden output with infinite weight 
resolution and the hidden output with limited 
weight resolution of hidden unit (n+l). Then, 

- 

u p  = f ’ ,  ( I  . p @ , ,  l i p 6  
From the previous proof (Eqn lo), we obtain 

L 

- 
i’6 

. . . . . . . . . 
- - . . . . . . . . . 

. . . . . . . . . 
- y7[ i ‘E 

Let us introduce the statistical mean opyqqtyr 0. 

In the process of obtaining the weight set y,, 
the learning is repeatedly applied. This 
technique can be viewed as a statistical mean 
process, then (14) becomes 

- 

+ o{llyllZ I 20{rTF; (n  + 1) + rTy  1 
But, Y is independent to r and &* (n  + 1).  
In the round-off technique, Y can be considered 
as white noise and 0(Y) = 0. Then inequality 
(15) becomes 

The result of inequality (16) guarantees the 
learning capability of the network if 
&*(n + 1) is not zero, but it does not e 
same achievement of energy level as does the 
infinite weight resolution. As analysis, 
inequality (16) only guarantees that the learning 
in limited weight quantization can be done, given 
the assumption 8<<Wih. The remaining question 
is how small 6 can be compared to Wih,  or how 
can we obtain information about 6 through 
known information? We can observe that the 
smaller 6 is, the closer the reduction between 
energies in limited weight quantization and 
infinite weight resolution is. 

( ‘ t s y  the 

Steusize 
The conversion between the continuous(@ the 
limited weight quantization weight space 
requires the scaling factor known as stepsize. 
With the fixed weight quantization levels (2B 
levels, and B is bit quantization), this stepsize is 
proportional to the energy reduction level 
(ignoring the non linear factor which is come 
from non linear transfer function). The 
summarization can be described as follows: 

W,, ( n  + 1) = stepsize(n+ I )  
, and 

q b ( n  + 1) = & (n  + 1) (Roughly estimated 
and ignored the non linear factor) 
& (n  + 1) = AE(n) = E(n) 

then, stepsize(n+l) = E(n) 
Therefore, stepsize(n+l) = aE( with a 
constant (see Table  I below) 
As it is shown, the weight set wi, ( n  + 1) can 
be obtained directly from affine space by using 

- 

914) 
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the pseudo-inverse technique, which  has  been 
thoroughly studied [16]. However, in our 
present approach, we are interested in a non- 
linear solution space in which the solution 
weight set can be obtained directly from a 
learning technique using analoddigital hardware. 
This learning approach will offer a better 
solution from both the theoretical and 
implementable point of view. First, the solution 
which  is obtained in non-linear space has 
compactness of the network and smoothness of 
the transformation because the data distribution 
is always in the non-linear domain. Second, it is 
hard  to solve a singular-valued decomposition 
problem in a linear hardware network, even 
though the solution is deterministically defined, 
but the cost of the complicated hardware 
required by the network may exceed the 
available resources. 

I11 SIMULATION 

a )  The Cascade  Error  Projection Learning 
Alnorithm  Procedure 

1. Start with the network which  has 
input and output neurons. With the 
given input and output patterns and 
hyperbolic transfer function, one can 
determine the set of weights between 
input and output by  using pseudo- 
inverse or perceptron learning. The 
weight set yo is thus obtained and 
frozen. 
2. Add a new hidden unit with a zero 
weight set for each unit. In each loop 
(contains an epoch) an input-output 
pattern is picked up randomly in the 
epoch (no pattern repeated until every 
pattern in the epoch is picked). Use the 
perceptron learning technique of 
equation (a) to train yh (n  + 1) for 
100 epoch iterations. 
3. Stop the perceptron training. 
Calculate the  weights who ( n  + 1) 
between the current hidden unit  and the 
output units from equation (2). 
Cross-validate the network. If the 
criteria is satisfied, then stop training, 
and test the network. Otherwise, go to 
step 2 above until the number of hidden 
units is more than 20; then give up and 
quit! 

b) Conversion  technique 

The updating weight hw is converted 
into the available weight quantization which is 
Aw*. The conversion can  be summarized as 
follows: 

stepsize(n) = clE(n - 1) with 
a constant 

Round-off techniaue: 

I stepsize(n) * int( + 0.5) 
stepsize(n) 

Otherwise 

c )  Parameters 

The learning rate q is used and is set to 
decrease linearly as: q,,, = qold -.01* 
where To = initial learning rate. 
For our simulation, the parameter Values of 
Table I are 

Table I: Values of initial learning rate 
and a used in simulation for different 
parity problems and  bit-resolution of 

synpases. 

&& 
parity parity parity parity 

- 64-b-ba 

r1,=1.0 q o = l . O ;  ?jo=I.O; qo=l.o; && 
a=N/A a =N/A a=N/A a=N/A - W 
qo=O.4 %=0.4 qo=1.0 qo=I.O 

W a=.0025 a=.0167  a=.0087 az.0041 

d )  Problems: 

Parities problems: 
The problems that are solved in this paper are 5- 
to 8-bit parity problems (1) with no limited 
weight quantization (The weight resolution is the 
same as the floating point machine which  is 
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about 32-bit for floating point or 64-bit for 
double precision); and, (2) with limited  weight 
quantization from 3-to 6-bits. The details of 
simulation can be found else where[ 17-18] Test Resulls (4-, 6., and "bit Weight Round.Of) 

N # of 
hidden 

3-bit 4-bit  5-bit 6-bit 64-bit 
w w w w w  
N # of bit resolution synapse 

Figure 2: The chart shows CEP 
learning capability for 5- to 8-bit parity 
problems using round-off technique. x 
axis represents limited weight 
quantization (3-6 and 64-bit) and y axis 
shows the resulting number of hidden 
units (limited to 20). Each hidden unit 
has 100 epoch iterations. As shown, the 
lager number of hidden  units 
compensate for the lower weight 
resolution. 

Figure 2 refers to simulation results with  round- 
off technique. Even with 3-bit weight resolution 
the network is able to learn 5- to 7-bit parity 
problems with no error within the 20 hidden 
units limit. For weight quantization of 4-bit or 
more, the network reliably demonstrates the 
capability of learning from 5- to 8-bit parity 
problems. 
Chaotic Time  Series  Problem: 
The data in  this problem represents chaos and is 
never repeated. However, this data between 
past, present, and future are correlated in  high 
order. To validate the capability of CEP as 
shown in theory, we use CEP learning technique 
under constraints of limited weight quantization 
(4-, 6-, and 64-bit weight resolution) to capture 
the high order correlation of this problem. 
In this experiment, we use xi .   x i+] ,  xi+2,   x ,+j  and 
the target is xi+4 . The number of training data is 
35 1 and test data is 65  1 and no cross validating 
data is applied in  this phase. 

0 100 200 300 400 500 600 700 

Errof of Test Results (4; 6., and 68-bit Weight Round-OfJ 
Number  of S a m  les 

0 
Number 01 Samples 

Error of 6-bit W Error of 4-bit W 

Figure 3: Simulation Results of CEP 
for chaotic time series prediction 
problem. Top trace contains four 
curves: ideal data, 64-bit, 6-bit and 4-bit 
prediction results. Bottom trace 
contains : errors between ideal data and 
64-bit, 6-bit, and 4-bit generalization 
data. 

The results in Figure 3 show that the error 
between ideal data and prediction with 64-bit 
weight learning network is within +/-0.01 and is 
similar to white noise, whereas, 6-bit error is 
more harmonic than 4-bit error prediction. 
These results can be interpreted to infer that the 
more bit weight quantization is available for 
learning the better and smoother the transform 
would be. In addition, the better and smoother 
transformation will help network to interpolate 
for predictions. 

IV. Conclusions 
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In this paper, we have shown that CEP is feasible 
for both a software- and a hardware-based 
learning algorithm. From this analysis, the way 
CC  works can be understood in depth. Moreover, 
the theoretical analysis provides us  with the 
general framework of the learning architecture, 
and the particular learning algorithm can be 
independently studied for its suitability in a 
given application associated with some 
constraints for each problem. (For example, in 
the hardware approach, CEP is  most 
advantageous, and for software, Covariant or 
Newton’s second order method is more 
advantageous). 
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Appendix A: 

The energy function of the network can 
be defined as 

p=l p=l o=l 

Assume that the network currently has n hidden 
units, and the energy no longer improves with 
any search techniques (gradient descent search, 
or exhausted search, etc.). The new hidden unit 
is now added to the network. The expected 
result is 
E(n+l) < E(n) 
This is equivalent to 

P m  c tZ  - f<net:  + w h o f , ” ( n + 1 ) ) ) 2  

p=l o=l 

with 0: = f(net,”) 
Expanding and rearranging, we have 

P m  

p=l o=l 

with f ’(net: ) = f ’,” 
or 

In  this proof, the output of the network belongs 
to [-1,1]. However, it is easier to conduct this 
proof through Taylor’s expansion, the desired 
outputs of the network are scaled down further 
by some scaling factor. By scaling the desired 
outputs, the quality of the network remains the 
same as before. By doing in so, the proof can be 
achieved tremendously simple. 
Let 

and 

r =  
............ 
............ I =  ............ I 

r* = ~ , ( n y ; ( n  +I)) = 

with 

and 

eYi - e-yt 
eY, + e-Y, @ .  = 

Qi and Q; is expanding around zero and can be 
obtained as follows: 

Qi = -yi  +-yi 1 3  + 6 
3 

0; = -y; +-(y;)3 1 + 5* 
3 

with C,<* =: 0 
y Tis a component ifh of f i ’ ( @ ; )  which is a 

pseudo-inverse solution of element f i l  ( Q i )  
From equation (S), it can be reduced 

or 
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Since  and (yT)3 are very small to 

compare with y i  and y t  respectively, and 

F"(r*) and { F" (r) - F" (r* ) 1 are 
orthogonal vectors [ 151. S can be simplified as 
below 

D 

i=l i=l 

Therefore, s 2 0 
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