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ABSTRACT 

The fundamental performance limits and channel capacity of optical communications systems operationg over the free 
space channel will be examined using quantum detection theory. The performance of the optimum quantum receiver for 
on-off keying (OOK) and optical binary phase shift keying (BPSK) is first examined as a pure state (no noise) problem. 
The classical capacity of the binary symmetric channel for these two modulation schemes will be evaluated for the 
optimum quantum receiver by making use of the concept of quantum measurement states. The performance of M-ary 
pulse position modulation, which requires a product state representation, will be evaluated along with the performance of 
certain "dense signal sets". Performance comparisons with classical techniques shows over 5 dB improvement in some 
cases when quantum detection is employed. As a further application of the quantum detection theory, the capacity of the 
binary channel with on-off keyed modulation and quantum detection is evaluated, and shown to exceed the capacity 
obtained with classical photon counting. 

1. INTRODUCTION 

At present, modulated optical fields are generally detected by means of energy detectors either directly or by the use of 
phase-sensitive coherent detection techniques. At the extremely high frequencies of optical signals energy detection 
becomes a viable option that can even be used to discriminate between individual photons, due to the high energy of 
photons in the optical regime. It is well known that "photon-counting'' can overcome thermal noise in the detection 
electronics, leading to "shot-noise'' limited performance, where the only uncertainty is the inherent quantum-mechanical 
randomness in the weak optical fields. Coherent detection relies on the addition of a strong local optical field to generate 
a large cross-term between the received and local fields which, when detected using a suitable optical energy detector, 
can also overcome thermal noise and achieve shot-noise limited performance. While these detection techniques are very 
sensitive, they cannot realize the full advantages of "optimum quantum detection", which typically performs much better 
in terms of the signal energy required to achieve a given detection performance. 

The principles of quantum detection have been developed by Liu, Helstrom, Kennedy, Yuen and others during the last 
decades, and reported in numerous journal articles and books [l, 2,3,4]. Their results on the detection of coherent-state 
signals by means of optimum quantum measurements have been summarized in a recent review article [5 ] ,  where 
quantum detection techniques have been applied to well-known optical modulation schemes such as on-off keying 
(OOK) binary phase-shift keying (BPSK) and pulse-position modulation (PPM), and compared to classical techniques 
such as photon-counting and coherent detection. While classical schemes rely on photon-counting or coherent 
measurements, optimum and near-optimum quantum measurements typically require both photon-counting and coherent 
techniques, together with real-time signal processing to control the amplitude and phase of the local field. In this way, 
improvements of a factor of two (3 dB) can often be achieved over classical detection in the absence of background 
radiation. Here we extend these results to a new class of signals called "dense" signal sets, where a large number of 
signals are packed into a given classical signal-space dimension, and compare the performance of optimum quantum 
detection with that of more familiar classical techniques. Examples of "dense" modulations include ternary and QPSK 
modulations, as well as compound signals formed by combinations of different modulations, such as BPSK-PPM. We 
shall show that quantum detection of these "dense" signal sets often provides very significant (5 dB or more) 
improvement over classical detection techniques. 



2. QUANTUM OPTICAL COMMUNICATIONS 

We begin by describing the quantum mechanical representation of a single mode of a coherent optical field, which can 
be modulated in various familiar ways to carry information from the transmitter to the receiver in an optical 
communications system. 

2.1 Definition of Quantum States 

At any instant of time, the state of a quantum system is completely specified by a state vector I v )  in a Hilbert space 
over the field of complex numbers [4]. The state vector, or "ket" I v) , can be thought of as a column vector of infinite 
dimension. An equivalent "row vector" representation of the state is denoted by ( v I in Dirac notation. The state is 
normalized if ( ly I v ) = 1 . If I v, ) and I w2 ) are orthonormal and I v ) is normalized, then their overlap is defined 
as 

2 2 where I a, I + I a2 1 = 1, and I a, l2  and I u2 l2  can be interpreted as the probabilities that the system is found to be 

in states I ) and I wZ ) , respectively, after a measurement. The overlap between two normalized states can also be 
interpreted geometrically as the cosine of the angle, e,, , between the vectors representing the states in Hilbert space: 

(w, I w2 ) = cos(8,,). Generalization to a superposition of an arbitrary number of possible states follows as 

n n 

2 with the interpretation that I a,, I 
provided the states are orthonormal so that ( f,!f, I w, ) = 6,,, . 

is the probability that the system is found in state I v, ) after a measurement, 

There are situations where a single Hilbert space is not sufficient to describe the signal. An example of this is M-ary 
pulse position modulation, or PPM, where an optical pulse is placed into one of M consecutive slots. This kind of 
modulation requires a "product-state'' description of the form 

where each of the I vj ) are coherent states associated with the individual modes. For product-states, the overlap is 
computed by the rule 

These concepts will now be applied to the quantum description of coherent optical fields, represented as a superposition 
of "number states" familiar from the quantum mechanical solution of the harmonic oscillator. This model will first be 
applied to problems involving the detection of single mode optical fields, followed by more complex signal models 
requiring a product-state description of the signal set. 



2.2 The Coherent-State Representation of Optical Signals 

Coherent states, representing electromagnetic radiation produced by physical devices such as lasers, are an important 
class of states for optical communications. It has been shown [6] that the coherent states of a single mode of radiation 
I a) can be expressed in the form of a superposition of orthonormal eigenstates I n )  , known as the number 
eigenstates: 

Each number eigenstate I n )  contains n photons, and hence the probability of obtaining exactly n photons as the 
outcome of an experiment can be computed as 

For any n, these are recognized as Poisson probabilities for the number of photons, with the average number of photons 
equal to I a 1'. Coherent states are not orthogonal, as can be seen by considering the overlap between two arbitrary 
coherent states, la } and 1 p } . Orthogonality requires that the overlap vanish altogether, however for coherent states 
the squared magnitude of the overlap is not zero but instead is given by 

where we made use of the orthogonality of the number states to simplify the expression. Equation (8) demonstrates that 
there is always some overlap between coherent states, regardless of how great the average photon count in each state 
may be. 

2.3 Classical and Quantum Mechanical Derivation of Photon Counting Receiver (On-Off Keying) 

The concept of "measurement states" used extensively in the quantum mechanical derivation, can be illustrated by the 
following example employing on-off keying (OOK) modulation. This modulation can be described classically as "one of 
the signals has zero amplitude, while the other signal has complex amplitude d'. Suppose there are two hypotheses, 
H ,  and H ,  , denoting absence and presence of signal, respectively. If the background radiation can be neglected, then 
either no photons or an average of A =I a Iz > 0 photons are received. The received field is assumed to be from a 
coherent laser, hence the photons are Poisson distributed with conditional densities 

1,  n=O /2" -A ; P ( n I H , ) = l e  . 
0, n l l  n.  

(9) 

At the end of each signaling interval the receiver records the total number of detected photons, and decides which 
hypothesis is true by computing the two likelihood functions Ai P(n I Hi), i = 0,l and selecting the hypothesis 

corresponding to the larger of the two. In the absence of noise H ,  is always decoded correctly, so 

P(C I H , )  = f'(0 I H,)  = 1. H ,  is decoded correctly if at least one photon is detected: P(n ' ' I H l )  = ' - e 

With equal a-priori probabilities, P(H,)  = P ( H , )  = +, the probability of correct detection becomes 

-1 



-a yielding the average probability of error P( E) = 1 - P(C) = e . 

In the quantum mechanical formulation, the received field is in one of two states, I ly, ) = I 0 )  or I ly, ) =I a )  , 
corresponding to hypotheses Ho and H ,  . The signal field is assumed to be in a pure coherent state, which can be 
expressed in the number representation as 

where ais a complex number, the set {I n)} are the number eigenstates, and I alz again represents the average number 
of photons in the signal. A measurement that determines whether or not the received state is the ground state corresponds 
to an application of the detection operators ITo and IT,, defined as 

=a 

no = ] O ) ( O l  and IT, =c ln)(nl=1-10)(01. 
n=l 

where 1 is the identity operator with number eigenstate basis. When the projection operator no is applied to the 
ground or "vacuum" state (the state of the received field under hypothesis H o )  the ground state is recovered, 

where we define I w, ) as the "measurement state" corresponding to I v0 ) . The probability of observing zero photons 

given that H ,  is true, is 

which can be interpreted as the squared magnitude of the projection of I ly0 ) onto I wo ) . When the received field is in 

a coherent state, application of the projection operator nl yields 

Note that I ) is not normalized. Denote the normalized version of I 6 ) as I w, ) , with the interpretation that it as a - an c- ( 0  I n )  = 0 it follows that the measurement states "measurement state" for I ) . Since ( wo I W, ) = 
n=l Jnr 

I w0 ) and I Wl ) are orthonormal. The probability of obtaining an eigenvalue greater than 0 when observing the 
received coherent state is: 



Again interpreting this as the squared magnitude of the projection of I ly,) onto I W , ) ,  it follows that 

p ( c )  = p ( c  I H,)P(H, )  = 1 -+e-' , yielding the probability of error P(E) = 1 - P(C) = 3 e-', exactly the same as 

with the classical derivation. We can see, therefore, that the detection operation can be interpreted as the projection of 
the signal states onto a properly chosen set of orthonormal measurement states. 

2 

1 4  

2.4 State-Space Derivation of Quantum Receiver Performance with Binary Signals 

In the quantum formulation, the two signal states characterizing OOK modulation, I $Yo ) =I 0 ) and I $VI ) = I  a )  , 
define a plane in Hilbert space. We have shown that the states produced by the application of the photon counting 
projection operators to the signal states can be referred to as "measurement states" which span the two-dimensional 
subspace of Hilbert space defined by the two signal states. The measurement states are orthonormal, and for photon 
counting one of the measurement states is lined up with the ground state representing the null hypothesis, while the other 
measurement state is orthogonal to it in the plane defined by the two signal states. Note that the ground state is always 
detected correctly, since with photon-counting the ground state is colinear with one of the measurement states and 
therefore its projection onto the corresponding measurement state is one. However, since the signal state is not 
orthogonal to the ground state, but instead is at an angle cos(@ = (0 I a) , there is a nonzero projection onto both 
measurement states: this is the reason for the occurrence of detection errors in the reception of optical OOK signals even 
in the complete absence of background light. 

Operating entirely in the two-dimensional signal subspace of Hilbert space, it is possible to find the minimum average 
probability of error by rotating the measurement states within this "signal plane" and calculating the error probability for 
each rotation until a minimum is reached. Representing the plane defined by two signal states and also containing the 
two measurement states I wo ) and I W ,  ) as in Fig. 1, the angle 0 is defined as 8 = COS-' (I (v, I Y o ) ) ,  and 

corresponds to the overlap between the two signal states. We start with Po = 0, representing photon-counting 
detection, and rigidly rotate the measurement states. 

I w1) 

Fig. 1. Signal and measurement states 
for the binary OOK problem. 



The conditional probabilities of correct detection are given by 

The maximum value of the probability of correct detection can be found as a function of the rotation angle PI, by 

differentiating P(C) with respect to (Dl and equating to zero: 

yielding the optimum rotation angle as PI* = a / 2 = +(: - 6 )  Substituting (D,* into the expression for P(C) yields the 
maximum value of the probability of correct detection as 

where we let s i n ( B ) = d - = , / m  in the last step. Using the maximum value of P(C), the 
minimum probability of error can be expressed as 

P* ( E )  = 1 - P'(C) =+ 11 - J - - j  
which agrees exactly with the independently derived performance in [4]. Therefore, the operation performed by the 
optimum quantum receiver can be viewed as a rotation of the measurement states in the plane defined by the signal 
states. The error probability of the optimum quantum receiver for OOK can be further expressed in terms of the average 
number of photons in the signal averaged over both hypotheses, K, = 3 I CX l2  , as 

Another binary modulation format of interest for deep-space optical communications is "optical BBSK", which can be 
described quantum mechanically as two coherent states with the same average photon energy, but nradians out of phase. 
For optical BPSK the signal states are defined as I yo ) = I a ) I y/, ) = I -a ) where the average number of 

signal photons (averaged over both symbols) is K, =I @ I 2 .  Therefore, I (yo 1 y1 ) 1 2 =  e-4K* for optical BPSK, and 

the error probability is given by P' ( E )  =f [I - ,/TI. Signals that employ phase modulation, such as BPSK, 
require phase sensitive coherent measurements to distinguish the symbols: such measurements can be implemented by 
adding a strong local field that is in phase with the optical field to the received signal, and detecting the resulting sum 

and 



field using classical energy detection. For optical BPSK, the error probability for this coherent receiver is given by the 

following expression [4]: P ( E )  =e(,,/-)= Q(m). where e(x> e-’*’*dY 
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Fig. 2. Performance of optical OOK and BPSK signals 

Performance curves for binary OOK and BPSK formats using both quantum and classical detection are shown in Fig. 2. 
Note that photon counting exhibits the same exponential behavior as optimum quantum detection (both curves have the 
same slope), implying that photon counting is nearly optimal for the detection of OOK signals. However, quantum 
detection of optical BPSK signals is exponentially 3 dB better than coherent detection, practically achieving 2.6 dB 
reduction in the required signal energy at an error probability of lo5. 

The binary signals considered above spanned a one-dimensional classical signal space, since both OOK and BPSK can 
be represented classically as points on the real line: thus OOK is represented by the points (0, a), and BPSK by the 
points ( - sa) .  If the number of signals in this one-dimensional classical signal space is increased by adding another 
signal with amplitude (-a), for example, then we obtain a “dense signal set“ characterized by the classical amplitudes 
(-a 0, a) .  We define a signal set as dense if its classical representation contains more signals than dimensions. Since 
distinct coherent states are linearly independent, the corresponding quantum signals I -a), I o), I a )  span a three- 
dimensional subspace of Hilbert space. Therefore, three measurement states are needed to decode these signals 
optimally. A graphical representation of the subspace spanned by the three signals is shown in Fig. 3, along with the 
orthonormal measurement-states that must be rotated to achieve optimum detection. 

Fig. 3. Signal and measurement states 
for the temary problem. 



The probability of error for this ternary problem has been calculated by Helstrom in 141, and shown to be of the form 
P ( E )  = 1 - $ ( a 2  + 2c2 ) = 3 exp( -N, ) , where "a" and "c" are complicated algebraic expressions. For comparison, the 

performance of the classical coherent detection receiver is given by P ( E )  = $ e r f c ( g ) ,  which is asymptotically 
proportional to exp(-K, / 2) . The error performance of these two receivers is shown in Fig. 4, where it can be seen that 
quantum detection enjoys a significant, nearly 3 dB, advantage over classical detection for ternary signals. 
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Fig. 4. Performance of temary signals with optimum quantum and classical detection. 

The state-space solution to the ternary problem is similar to the binary problem discussed above, except now three 
orthonormal measurement states must be rotated until the maximum average detection probability, or minimum average 
error probability, is found. 

3. ERROR PERFORMANCE OF PPM AND DENSE SIGNAL SETS 

In order to evaluate the error performance for higher dimensional signal sets, an optimization algorithm was developed 
to find the orientation of the orthogonal measurement states that yield the minimum probability of error. The algorithm 
determines the solution to the M hypotheses problem by rotating the measurement states in an M dimensional space. The 
solution is iterative, starting with the known optimum solution for the first two signals selected at random and 
progressing up to M dimensions [7]. 

First we examine PPM signals, which require a "product-state" representation in the quantum model as described in [4, 
51. As an example of product-state signals, the description of binary PPM with complex amplitude cz is of the form 
J ly, ) = I  a )  IO), I ly2 ) = I  0) I a )  . This signal-set spans a two-dimensional subspace of the product space, as illustrated in 
Fig. 5. Using the expression for the magnitude squared of the overlap between two coherent product states as in equation 
( 8 ) ,  the overlaps are ( t,V1 I v / , )  = ( t,Vz IW,) = 1, (VI IWz) = ( W 2  It,V,) = e-Ks . It has been shown [3, 41 that for 
equally likely signals, the minimum symbol error probability for the optimum quantum receiver is 

For M = 2, which may represent binary PPM, the overlap can again be interpreted as the cosine of the angle 8 between 
two states in state-space. 



Fig. 5. Signal and measurement states for 
binary orthogonal modulation. 

The probability of correct decision is maximized by rotating the two orthogonal "measurement states" so that they are 
symmetrically placed around the si nal states in the plane defined by the signals. The error probability is then given by 

P ( E )  =+ll- ,/- B as before, but now I ( fyl I ly, ) 1 2 =  e - 2 K z ,  as compared to e-K' for the 
corresponding overlap with on-off keying. The performance of quantum and classical receivers is compared in Fig. 6 for 
M = 2 and M = 8, where it can be seen that optimum quantum detection is approximately 3 dB better than classical 
detection in both cases. 
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Fig. 6. Performance of PPM signals with optimum quantum and classical detection: M = 2,8.  

3.1 QPSK signals 

The classical description of QPSK signals includes a pair of orthogonal waveforms together with their negatives, such 
as, for example, the following set of four sinusoidal waveforms that also use the negative of each orthogonal component: 
{sl(t)  = sin(wt), s Z ( t )  = cos(wt), s3( t )  = -sin(wt), s 4 ( t )  = -cos(wt)). Since there are four signals in two 
dimensions, this is an example of a dense signal set by the above definition. The quantum description of coherent-state 
QPSK is of the form { I Vl ) = I a) ,  I Wz ) = I -a), I ly3 ) = I ia), [ W4 ) = I -icX)), with the pairwise overlaps 

(Wl I w z > = ( ~ l - a > = e  tla+al* - - = e  , the four remaining overlaps are -+ia+ia12 -2@z . 
; ( w  3 I ly4 ) = e 



-$afic$ +a2 
(Wl  I V 3 > = ( W l  I W 4 > = ( W 2  I W 3 ) = ( W 2  I W 4 ) = e  . Using the rotation algorithm described in 
[7] for optimally aligning the four orthogonal measurement states with the QPSK signal states yields the error 
probability performance shown in Fig. 7, (denoted by large circles). AS shown in [4], the exact error probability can be 
computed by finding the eigenvalues of the overlap matrix with elements as defined above, and substituting into 

. For the case of large signal energy the error probability for quantum detection 

, K ,  >> 1, whereas in the same limit the classical receiver performs as 

= e 

= 1 - M -2 x& L 1' '('1 quantum 

1 -2Ks 

, K ,  >> 1 .  The quantum receiver is exponentially better by a factor 4, or 6 dB, than the 
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Fig. 7. Performance of QPSK and BPSK-2PPM signals with quantum and classical detection. 

coherent classical receiver: it can be seen in Fig. 7 that even at an error probability of w 3 ,  the optimum quantum 
receiver outperforms the classical receiver by 5.3 dB. 

3.2 BPSK3PPM signals 

This signal set is defined as {s1 ( t )  = (0, a), s2 ( t )  = (@-a), S3 (t) = (a$), S4 ( t )  = (-a,())}, where the notation 
(0, a) refers to "no signal in the first T-second slot, and a signal with amplitude a in the second slot", etc. It is a dense 
signal set because two PPM symbols define two dimensions in signal space, but contain four symbols. The quantum 
states corresponding to this signal set are product-states, with 
I W1 ) =I 0) I a),  I W z  ) =I 0) I - a )  , I W3 ) =I a )  Io), I W4 ) = I  - a )  I 0). Pairwise overlaps must be computed 
using the tensor-product rule defined in equation ( 5 )  resulting in the following overlaps: 

-I a+a 
(v3 I v , > = ( ~ l - a > ( o l o > = e  2 '  ' 2 = e - 2 ~ * ; ( ~ , ~ l y 3 ) = ( l y , ~ l y q ) = ( ~ 2 ( ~ 3 ) = ( ~ Z ( ~ 4 ) = e  2 . NO& that 
this overlap matrix is identical to that of QPSK signals, therefore optimization of the product-states yields the same 
performance as QPSK, despite the different state descriptions. The performance of the coherent receiver observing 
BPSK-2PPM signals is also exactly the same as for QPSK, since both signal sets can be represented as biorthogonal 
extensions of orthogonal signals in classical signal space, and hence the results of Fig. 7 apply. 



4. CAPACITY OF THE BINARY CHANNEL WITH QUANTUM DECODING 

As an interesting application of state-space optimization, we compute the capacity of the binary OOK channel with 
quantum decoding, and compare to the capacity obtained with classical photon counting. Note that for the "noiseless" 
quantum model photon counting leads to a "2-channel" whereas optimum quantum decoding results in a binary 
symmetric channel (BSC). For an arbitrary rotation of the measurement states with respect to the signal states, the 
transition probabilities are not equal, and hence a generalized (asymmetric) binary channel model must be considered. 
Our approach for determining the capacity of the binary channel is to compute the mutual information between input and 
output for each rotation of the measurement states, starting with photon-counting where one of the measurement states is 
aligned with the ground state, and compute the mutual information as a function of symbol input probability, j? , for each 
rotation away from this configuration. For each rotation, the maximum of the mutual information as a function of /3 is 
recorded. The global maximum of the mutual information over all input probabilities and rotations, is the capacity of the 
binary channel. 

The input alphabet is denoted by A, and the output alphabet by B. The input alphabet consists of the two symbols 
a, = 0, b, = 1 . The probability that a 0 
is transmitted is j?, whereas the probability of a transmitted 1 is 1 - p = p . The probability that b, is received given 
that a, was transmitted is p ,  while the probability that b, is received given a2 transmitted is q. These relationships are 

a2 = 1. Likewise, the output can take on one of two values, namely b, = 0, 

illustrated in Figure 8. 
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1 

According to Shannon's first theorem, an average of H(A)  bits of information is needed to specify one input symbol, 
where H(A)  is the entropy of the source defined as H ( A )  = P ( a )  log [I / P(a) ]  . However, if we are allowed to 

observe the output symbol produced by that input, then we need only H ( A  I B )  = P(a,b)log [I / P(a J b)] bits to 

specify an input symbol, on the average. It follows, therefore, that observation of a single output symbol provides us 
with H(A) - H(AIB) bits of information, on the average. This difference is the called the mutual information between 
input A and output B, denoted by I(A; B )  . It is non-negative and symmetric so that Z(A; B )  = Z(B; A) , hence we can 
also write Z(A; B )  = H ( B )  - H ( B  I A )  . Writing the conditional output entropy, H ( B  I A ) ,  explicitly yields 

A 

A 

The output entropy can be expressed as 



where we made use of the fact that P(b) = P(b I a,)P(a,) + P(b I a2)P(a , ) .  Combining equations (26a) and (26b) 
yields the mutual information for the binary channel as 

Note that for the z-channel 4 = 0 and for the BSC q = p .  

Our approach for determining the capacity of the quantum channel is to start with a rotation angle of zero between the 
ground state and its measurement state (corresponding to photon-counting, as we have shown above), and compute the 
mutual information defined in equation (27) as a function of p, 0 I p I 1  for each rotation in the signal-plane, until the 
measurement state corresponds with the signal state. Since different rotations yield different projections onto the 
measurement states, the values of p and q change with each rotation. The process of determining the maximum of the 
mutual information therefore corresponds to an optimization over the two-dimensional (p, p )  plane. 

I I I I 
I I I I 
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input probability (of "0")  

Fig. 8. Mutual information and capacity of the binary channel, with quantum and "classical" detection. 

An example of determining the mutual information and capacity of the binary channel is shown in Fig. 8, as a function 
of the input probability p, for an average value of one photon per symbol (or two photons per signal pulse). From Fig. 2, 
the error probabilities are approximately 0.04 and 0.06 for quantum and direct detection, respectively, obtained when the 
measurement states are rotated 18 degrees from the ground state. Both optimum quantum measurement and photon- 
counting measurement are shown: the maximum for the quantum measurement occurs at p=  0.5, as expected for a 
BSC due to symmetry. For photon-counting detection, for which the asymmetric the z-channel is the correct 
representation, the maximum occurs at a higher value of the input probability, closer t o p  = 0.6. The value of the 



maximum mutual information is 0.7 for quantum decoding and 0.61 for photon-counting, verifying that optimum 
quantum detection achieves higher capacity as well as better average error performance than photon-counting. 

5. CONCLUSIONS 

In this article, we have examined the improvement that can be gained over classical detection techniques by the use of 
"optimum quantum detection". The basics of quantum theory were reviewed and applied to determine the performance 
of several optical modulation schemes. The performance of an OOK optical receiver was evaluated both classically and 
quantum mechanically to introduce the concept of quantum-mechanical "measurement states" starting with familiar 
photon-counting detection. To evaluate the optimum quantum detector, a state-space solution was applied. The concept 
of "dense" signal states was introduced and the performance of the optimum quantum measurement compared to the 
corresponding classical solution. In all cases evaluated, namely OOK, ternary signals, QPSK, and BPSK 2PPM, the 
optimum quantum receiver performed significantly better than its classical counterpart, with improvements of over 5 dB 
demonstrated in some cases. Finally, the rotation algorithm was applied to determine the capacity of the binary channel 
when optimum quantum detection is used: it was found that the optimum quantum approach attained higher channel 
capacity than the classical receiver. We conclude, therefore, that the optimum quantum receiver performs better both in 
terms of average error probability and channel capacity than its classical counterpart. 
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