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Abstract—Top-level reliability models have been developed
for several recent configurations of the Space Interferometry
Mission (SIM) and the results used in the decision process
for selecting viable configurations for further study. For one
configuration, closed-form solutions were obtained. For
three configurations, Excel-based Monte Carlo models were
developed. The agreement between the closed form and the
Monte Carlo models was excellent, verifying that the Excel-
based approach had been successfully implemented. The
Excel model has the flexibility to extend the model to more
complicated arrangements for which it would be impractical
to develop closed-form solutions.

The Space Interferometry Mission in NASA’s Origins
Program is a 10m-baseline space-based Michelson
mterferometer scheduled for launch in 2009. This large
instrument will measure the angles between stars to an
accuracy of about one billionth of a degree of arc. This is an
improvement of about two orders of magnitude over current
astrometric instruments.
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1. INTRODUCTION

The Space Interferometry Mission (SIM) is a joint effort of
NASA Jet Propulsion Laboratory, California Institute of
Technology, Lockheed Martin Missiles and Space, and
TRW. SIM will use Interferometry to measure the angles
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between pairs of stars to the unprecedented accuracy of
about 1 p arc second (uas). Analysis of these measurements
will enable several scientific objectives to be realized. A
key objective is to infer the orbital parameters of planets
around nearby stars based on the reflex motion of the star.
SIM should be able to detect planets as small as the earth in
favorable orbits, and will easily detect Saturn mass planets.
These measurements will complement radial velocity
measurements already made using earth-based telescopes,
but will extend to smaller masses in longer orbits, and will
resolve the inclination of the orbits, something that cannot
be done using the radial velocity technique. Besides planet-
defection, SIM will investigate many other celestial
phenomena [1]. Additional general information about SIM
can be found at the SIM Website: http://sim.jpl.nasa.gov [2].

SIM is currently in Phase A (Conceptual Design). In this
phase, many different configurations are assessed at a fairly
high (coarse) level. At this stage, it is not appropriate to
develop very detailed reliability models. The overall design
changes too rapidly and the changes are so great that it
would be both impractical and too costly to develop very
detailed models. However, it has been very useful to
develop high-level reliability models, which can be used to
compare the relative reliability of different configurations.
The models are composed of a handful of large blocks. At
this level of modeling, reliability databases do not exist, so
actual probabilities cannot be used. However, by varying
the reliability parametrically over a reasonable range, one
can identify arrangements that are particular sensitive to
failures or that are particularly insensitive to failures. Even
though the actual probability numbers that come out of the
models cannot be considered realistic estimates of the actual
mission success probability, the relative reliabilities among
various arrangements of the elements are useful in a
comparative sense. This information has been used as part
of a larger decision making process to select among various
configurations. Also, within a configuration, it is possible to
consider different arrangements of the elements to enhance
reliability or to identify deficiencies that should be
addressed.


http://sini.ipl.nasa.gov

2. OVERVIEW OF SIM

SIM performs astrometry {measurement of star locations) by
using a white light Michelson interferometer with a 10 m
baseline. Groups of optical elements (similar to telescopes)
are located 10 m apart on opposite ends of a Precision
Support Structure (PSS) to collect the starlight. Light from
these telescope-like assemblies is combined in an
Astrometric Beam Combiner (ABC) in the middle of this
large instrument. Optical Delay Lines (ODLs) are used to
adjust the path length followed by the starlight so that the
wavefronts from both arms of the interferometer arrive at the
detector at precisely the same time. The path lengths within
the instrument are then measured to a precision (not
accuracy) of a few tens of picometers (1 pm = 10"'?m) using
infrared lasers metrology gauges. Based on these
measurements and other laser gauge measurements of the
baseline length, the angle between the target star and the
baseline is determined. In order to determine the orientation
of the astrometric baseline, two other similar astrometric
interferometers are used. The baselines for all the
interferometers are kept as parallel as possible. The laser
metrology system measures the small amount of deviation
from parallelism to make corrections to the results.

The laser gauges are not absolute gauges. They do not
measure the actual distances involved, but rather the changes
in the distances with a precision of tens of picometers. The
absolute lengths are basically calibrated by using
measurements of stars around the sky. We measure a
gridwork of stars spanning a large part of the celestial
sphere, and then adjust the scale factor for the instrument to
“close the grid.” This is somewhat analogous to a surveyor
measuring angles around a full circle and verifying that the
total is equal to 360° and adjusting the scale factor to make
it so.

More description about SIM and how it performs astrometry
can be found in previous IEEE Aerospace Conference
papers, “SIM Configuration Evolution” [3] and “Space
Interferometry Mission Instrument Mechanical Layout” [4].

3. RELIABILITY MODELING

High-level (i.e. coarse) reliability models were developed
for three competing configurations for SIM. The reliability
models were used to help chose among these various
options. The design of SIM has now evolved away from any
of these designs, but the examples are still illustrative of the
value of the relatively simple reliability models. They also
illustrate that the methods presented here can be applied to
reasonably complicated situations successfully without a
tremendous expenditure of resources.

The three configurations modeled were named SIM Classic,
Shared Baseline, and ParaSIM. At the time, SIM Classic
was the reference design and the other two were proposed
alternative designs. There were also several variants on

each of these, but the three basic arrangements were
modeled to help understand the aspects that might be
sensitive in a reliability sense. This paper will focus on the
SIM Classic Models.

Figure 1 SIM Classic

The current SIM Configuration is a variant of Shared
Baseline and it is being described in a companion paper in a
different session at this same conference [5].

The first reliability model developed was for SIM Classic.
At first, we did not plan to develop a reliability model, per
se. Instead, we were trying to break down the system into
relatively large logical blocks and looking at the interactions
to get a sense for how they interacted from a reliability point
of view. We expected only to develop a qualitative feel for
these interactions. One of the authors (Kim Aaron)
developed a block diagram showing some connectivity
(series and parallel) among the various elements discussing
how the system could continue to operate in the face of
various types of failures. Another of the authors (Don
Ebbeler) realized that it might be possible, at least in
principle, to develop a closed-form solution for the
reliability of the overall system based on assumed values for
the individual blocks. After a significant effort with a fair
amount of review and revision, a closed-form solution was
actually developed for SIM Classic. The resultant equation,
while not being trivial and obvious, was not as formidable as
we had expected it to be. A second closed-form solution
was also developed for SIM Classic, but with a different set
of assumptions about which of the many redundant
arrangements of the metrology kite could actually be
considered operational. It turned out to be much more
difficult to develop the closed-form solution for that case,
but in the end, this problem also succumbed. However, it
was clear that if we tried to increase the complexity of the
model much beyond the point we were at, analytic solutions
would rapidly become intractable.

Because we expected to need more complicated reliability
models eventually (and because the commercially available



reliability models were not set up to handle the unusual
connectivity among the SIM elements) we decided to
develop an Excel-based Monte-Carlo simulation instead.
George Fox had been developing such capability for other
projects and had created several macros/subroutines/add-ins
for Excel. Starting with the same SIM block diagram, he
was able to develop a model in Excel very rapidly (in just a
few hours). This was particularly impressive since it had
taken weeks to get the closed-form solution to the point that
we believed it was correct. A little debugging was required,
but very soon, the results from the Monte Carlo model were
matching the predictions of the closed-form equations.
Furthermore, it was reasonably easy for George to modify
the connections of the elements in the model to represent the
more complex alternative.

Having gained some confidence in the results of the Excel
modeling approach, we developed similar Excel models for
the other two SIM design configurations (Shared Baseline
and ParaSIM).

Because we do not have any true reliability data for the
kinds of blocks used in these models, we simply varied the
reliability values for each block parametrically over a
reasonably representative range. The model was exercised
and the predicted overall reliability calculated for various
combinations of parameters. This provided us with useful
sensitivity data. In fact, some design changes were made as
a direct consequence of seeing these results.

4. SIM BUILDING BLOCKS

The reliability models comprise several large blocks. Each
will be described briefly here. A schematic, Figure 2 below,
shows how these elements are connected together in the
reliability model for SIM Classic.

Siderostat Bay

The Siderostat Bay, or Sid Bay for short, is a combination of
major optical elements mounted on a very precise and stable
optical bench. In the version of SIM Classic modeled here,
there are seven Sid Bays. The Sid Bay is not one of the
reliability model blocks, but it is an important structure
housing some of the reliability model blocks, so it is
mentioned here.

Beam Compressor—A major subassembly mounted within
the Sid Bay is the Beam Compressor. A beam compressor is
similar to a telescope in that it has several powered optics.
However, a telescope typically focuses the incoming light to
form an image on a detector. In contrast, a beam
compressor is afocal; instead of focusing the beam, it merely
reduces the size of the beam. The output of this assembly is
a smaller bundle of parallel light rays that are much easier to
manipulate and guide throughout the rest of the instrument
using small flat relay mirrors.

Siderostat Mirror—A Siderostat is a large flat mirror
mounted on gimbals. It is also a major element mounted in
the Sid Bay. It takes light from the target star of interest and
reflects it along the optical axis of the Beam Compressor. A
Siderostat is so named because it keeps the pointing
direction stationary in sidereal space.

Residual Siderostat Bay Elements

After starlight has bounced off the Siderostat Mirror, it
follows a path dictated by many successive optical elements
(starting with the Beam Compressor). Since these elements
are all in series, in both an optical sense and a reliability
sense, they are lumped together as a single reliability block
and called Residual Siderostat Bay Elements. In a more
detailed reliability model, one might choose to model the
actuators for the fast steering mirror, for example. In the
current model, that level of detail would have been
inappropriate and unwieldy.

Optical Switchyard

SIM operates by combining starlight from two Sid Bays in
an Astrometric Beam Combiner (described below). In SIM
Classic, there are seven Sid Bays and three interferometers
must be formed. The Optical Switchyard is a set of rotating
flat mirrors that can used to channel the light from three
pairs of Sid Bays into any three of the four Astrometric
Beam Combiners in any combination desired. Provided the
Switchyard itself is highly reliable, this arrangement
provides system level robustness. The extra Sid Bay and
extra Beam Combiner are included to provide redundancy.

Optical Delay Line

An Optical Delay Line (ODL) is a group of optical elements
mounted on a moving trolley. Its purpose is simply to
change the path length followed by the starlight. It is
sometimes referred to as a trombone. Delay Lines are used
to adjust the distance traveled by starlight in the two arms of
the interferometer. In order to form white light fringes in the
Astrometric Beam Combiner, the light must travel exactly
the same distance from the source (the star) through each
arm of the interferometer to the fringe detector. The ODL
performs this function for SIM. In principle, only one delay
line is required. However, in SIM, the delay line operates at
a sufficiently high frequency that it can actively damp
vibrations due to the spacecraft and instrument. We have
chosen to split the function of the delay line into two halves:
one handles the low bandwidth long stroke portion, which is
a few meters; the other handles the high bandwidth short
stroke motions. This way, the voice coil and piezoelectric
actuators on the high bandwidth delay line do not travel over
several meters, trailing cables as they go. Instead, they are
mounted in a fixed location. The long stroke low bandwidth
device carries only optics, and so the cable handling is
simplified. Another advantage of having two delay lines,
one in each arm of the interferometer, is that the light will
then experience exactly the same number of reflections in



exactly the same sequence in each arm. This is desirable for
matching polarization and intensity of the starlight in the two
arms.

In SIM, there are eight total delay lines, four low bandwidth
and four high bandwidth. There are also four Astrometric
Beam Combiners (ABC). In SIM Classic, a particular low
bandwidth delay line and a particular high bandwidth delay
line are always connected to a specific ABC. In reliability
terms, these elements are in series.

Astrometric Beam Combiner

After the starlight has progressed past all the Residual
Siderostat Bay elements and Optical Delay Lines, it
eventually enters the Astrometric Beam Combiner (ABC).
This device is a further collection of optical elements,
detectors, etc. and forms the heart of the astrometric
interferometer. It takes the star light from two different
Siderostat Bays and combines them in an interferometric
manner and focuses the light onto detectors. By measuring
the phase difference between the starlight from the two
arms, one can deduce the angle to the star. The ABC also
houses internal metrology beam launchers, which measure

Metrology Kite

Lower Switchyard
Mirrors
Delay Lines 1.
L= Low Bandwadth
H = High Berdlwidth
Beam Combiners

Internal Metrology
Beam Launchers 1

Figure 2 SIM Classic Reliability Model Schematic

the internal path length from the beam combiner to the
Siderostats.

Triple Corner Cube

A corner cube is an arrangement of three mirrors, each
perpendicular to the other two. The point of intersection of
the three planes is called the vertex of the corner cube. A
corner cube has the property that any beam of light entering
the corner will undergo three bounces, one from each
surface, and the outgoing beam will then be parallel to the
incoming beam. This characteristic holds for any direction
of the incoming beam entering the corner. A single corner
cube is mounted on the face of each Sid Mirror. This
Corner Cube must be mounted precisely so its vertex is
within a few um of the reflective surface of the Sid Mirror.

A triple corner cube (TCC) is an arrangement of optical
prisms with mirrored surfaces and arranged to form three
different corner cubes all sharing a common vertex. There
are several ways of achieving this. SIM Classic uses an
arrangement in which three 30° wedges with their transverse
surfaces coated with reflective material (bare gold for SIM)
are bonded onto a reflective optical flat. This triple corner




cubes resembles three wedges of cheese, sitting on a flat
platter, with their points meeting in the center. In SIM
Classic, a triple corner cube is mounted at each of the four
corners of the External Metrology Kite.

Beam Launchers

A beam launcher is an optical device used to measure the
distance between two corner cubes. Actually, in SIM, the
beam launchers only measure changes in the distance
between the corner cubes precisely. There are many beam
launchers in SIM. Laser light (infrared light, actually, with a
wavelength of 1.3 um) is fed into the beam launcher using
optical fibers. The light from the fiber tip is collimated and
“launched” out of the beam launcher. The light is aimed
towards a corner cube. After hitting the corner cube, the
beam returns to the beam launcher along a direction parallel
to the outgoing beam. A similar beam is launched from the
beam launcher in the opposite direction towards a second
corner cube, which also returns the beam parallel to the
incident beam. The two returning beams are combined
inside the beam launcher with a reference beam at a slightly
shifted wavelength to produce a heterodyne signal. The
beam launcher operates as a laser interferometer. The phase
of the heterodyne signal (effectively the fringe position) is
resolved to about 1 part in 10,000 of a wavelength. Thus,
changes in the distance between the two corner cubes is
measured with a precision of 1.3 un/10,000/2 = 65 pm. By
sampling the detectors as frequently as 100,000 times per
second and averaging, the effective precision is reduced to a
few picometers, assuming the noise in the system is
uncorrelated, incoherent and stationary (in a statistical
sense).

Kite Beam Launchers—Many Beam Launchers are used in
SIM. Kite Beam Launchers are used to measure the
distances between various pairs of triple corner cubes, which
are situated at the vertices of the External Metrology Kite on
SIM Classic.

Siderostat Bay Beam Launchers—Four beam launchers, as
described above, are mounted in each Siderostat Bay. These
beam launchers resolve changes in the distances between the
corner cubes attached to the Siderostat Mirrors and the triple
corner cubes located at the vertices of the External
Metrology Kite. Sid Bay Beam Launchers (SBBLs) and
Kite Beam Launchers (KBLs) are physically identical, but
they are used differently in the reliability model, and so they
are named differently here to distinguish them.

Kite Triangles

The External Metrology Kite on SIM Classic is a flat square
perpendicular to the baseline of seven Siderostats. At each
corner (or kite vertex) is a triple corner cube (TCC). Six
Kite Beam Launchers (KBLs) measure the intravertex
distances between vertices.

The distances from the kite vertices to the corner cube on
each Siderostat Mirror are measured using the Sid Bay
Beam Launchers (SBBLs). These distances are used to
triangulate the position of the Siderostat with respect to the
plane of the kite. Only three of the four kite vertices are
required for SIM to operate. These three vertices would
naturally form a triangle. There are only four ways to form
a triangle connecting the corners of a square. Fach of these
triangles contains exactly three TCCs and three KBLs.
Although it now seems obvious, it was the recognition that
we could break the square down into these triangles that
enabled us to proceed with the closed form solution. Prior
to that, the connectivity among the various elements forming
SIM seemed too complicated to deal with in a simple
manner.

These kite triangles are not independent, and they are not
treated as being independent in the reliability model. Still, it
was helpful to decompose the elements into these triangles
and consider the logical connections of these kite triangles
to the Siderostats.

Triangle Usage—Any triangle can be used as a base for
triangulating the positions of all the Siderostat Mirrors. If
one measures the distances from each of the three corners
down to a Sid Mirror, then one can determine the x, y, and z
coordinates of that Sid Mirror with respect to a local frame
of reference attached to the triangle. Of course, these three
measurements can only be made if the three Sid Bay Beam
Launchers (SBBLs) aimed at the three comers of the
triangle are still operating.

Initially, there are four operational SBBLs in each Sid Bay.
In this initial condition, the coordinates of the Siderostat
Mirror can be found using any of the four triangles.
Throughout the mission, it is possible that some of the
SBBLs might fail. This is undesirable, but one can never
guarantee there will be no failures. In fact, it is to protect
against such failures that redundant SBBLs are used.

If two SBBLs fail in any particular Sid Bay, then that Sid
Bay is effectively inoperative because it is not possible to
determine all three coordinates of the Sid Mirror using just
two linear measurements. Even in this unlikely situation, the
whole system can continue to operate because there are still
six operational Sid Bays. The design of the instrument
includes redundancy at several levels.

There is a question as to whether the positions of all Sid
Mirrors must be related to the same triangle, or if it is
possible to use different triangles for different Sid Bays.
The closed-form reliability expressions are derived to cover
each of these situations.

5. CLOSED-FORM RELIABILITY EQUATIONS

Reliability Equations are derived for SIM Classic for the
two operational constraints: 1) All Sid Bays must use the



same External Metrology Triangle; 2) Sid Bays can use any
triangle available to them.

The four vertices of the External Metrology Kite are
nominally in the same plane, but small deformations of the
structure are unavoidable due to temperature differences in
the structure, for instance. By just measuring the in-plane
distances, it is not possible, to first order, to determine the
out of plane displacement of the vertices. However, if at
least one Sid Bay has all four SBBLs working (a very likely
situation), then it is possible to determine the out of plane
displacements of the kite and thus relate any triangle to any
other triangle. When this work was first performed, it was
not clear that this would give acceptable accuracy in the
knowledge of the positions of the Sid Mirrors. A later
analysis confirmed that the knowledge of Sid Mirror
positions only degrades about 10% when more than one
triangle is used versus the situation in which all Sid Bays use
the same triangle. Because we were unsure about the ability
to use multiple triangles, we developed the closed-form
equations for both cases. Allowing the use of multiple
triangles improves the probability that the system will
remain operational.

Reliability

Since we will be using the term, “reliability” frequently in
this paper, we will describe what we mean by the term. We
mean the probability that something is (still) working.
Usually, we will mean the probability that the device or
system is still functioning at the end of the nominal space
mission 5% years after launch. The expressions, however,
do not include time dependence. The expressions we derive
are simply combinations of the reliabilities of the various
blocks. The expressions could just as easily be evaluated at
any intermediate point in the mission (using appropriately
higher component reliabilities consistent with that point in
the mission lifetime).

We’'ll use “R” to denote reliability. Although we will
sometimes use P to mean probability in a general sense,
often we will use it as the complement of R: (R =1-P).

Thus, P will represent the probability that the device or
system has failed.

In our analyses here, we assume that if a device fails at some
point in the mission, it remains inoperative for the remainder
of the mission. In reality, there is some chance that a
defective device might recover.

Triangles Available

In deriving the reliability relations, we started with the kite
triangles. We found it helpful to consider the possible states
of the External Metrology Kite in terms of the number of
triangles available (i.e., operating).

A Kite requires three triple corner cubes (TCC) and the three
specific corresponding Kite Beam Launchers (KBLs) all to
be operational for the triangle to be available. This can be
seen by examining any of the four larger triangles in Figure
3 below. For example, triangle 1-2-3 will only be available
if TCCs 1, 2, 3 and KBLs A, B, C are all operational.

pF Fite Beam Launchers

Figure 3 External Metrology Kite

Triple Corner Cube Reliabilit—Let Pr be the probability

that a TCC fails. There is a TCC at each of the four corners
of the Met Kite, and three are required to form any triangle,
so the useful states of the Met Kite are zero TCC failures
and one TCC failure. If two or more TCCs fail, then the
entire system fails. The probability of zero TCC failures is

RT4 =(1—PT)4 and of exactly one TCC failure is

4P-(1 —PT)3. Thus, from the view of just availability of

triangles based on TCCs, the probability of being in a useful
state is

P{useful state} = (1- Pr)* +4P-(1- P)°

This is illustrated schematically in Figure 4 and Figure 5
below.

(1- Byy?

TR
a4

4 Pr(1- Py

TCC
354

Figure 4 Reliability Diagram for Triple Corner Cube

(1-Pp)* +4 Pr (1- Pr)’

Usefial
TCC
State

Figure 5 Equivalent Combined Block for Triple Corner
Cube Reliability



Kite Beam Launcher Reliability—Let Py be the probability

that a KBL fails. Each KBL is shared by exactly two
different triangles. If a KBL fails, then two of the triangles
will become unavailable. There is no state in which exactly
three triangles are available. The only states are 0, 1, 2, 4
triangles available. We found it easiest to consider the
conditional probabilities of the KBLs being in a useful state
given either of the useful states based on the TCCs.

If one of the TCCs has failed, then the three associated
KBLs must be operational. The probability that three

specific KBLs is operational is R K3 =(1-Fy )3 . We use

this as a conditional probability in the overall reliability
expression.

When zero TCCs have failed, there are three mutually
exclusive states of the KBLs that will still enable the
interferometer to work (one, two or four triangles operating).
The probability that all four triangles are available (all six

KBLs operational) is (1— Py )6. The probability that two
triangles are available (exactly five KBLs operational) is
6P (1- Py )5 . The probability that one triangle is
available  (three KBLs
4(1- P[P +3 P2(1- Py)]. Kite reliability for
the three triangle operational states is shown in Figure 6.

or four operational) s

(1- PP
4iriangles  (1- Pp* X (1-Pf
(1-Ppy* 6Py (1- Py
2 triangles (1-Pp* X 6 Py (1-Pyy

TCC KBL
44 506

4(1-Pef [P+ 3B (1-Py)]

1 triangle

4 Pp(i- Pp? (1- Py

(1P XA PP BE+H3PA (- P+
4Pp(1- P (1- Pp)?

Figure 6 Reliability Diagram for Metrology Kite
Operational States

The reliability for each branch is found by multiplying the
TCC probabilities by the probabilities of the KBL states
conditional on the TCC states. The overall reliability of kite
availability is then found by summing all the branches on the
right hand side of Figure 6.

Siderostat Bay Reliability

In this section, we discuss the probability that a Sid Bay is
considered functioning conditional on the various states of
the Metrology Kite. Here, we assume that if a Sid Bay can

“see” any triangle, then it is functional. In a later section,
we will derive a different expression based on the
assumption that all Sid Bays must use the same triangle.

In each Sid Bay, there are four Sid Bay Beam Launchers
(SBBLs). Each SBBL is aimed at a different corner of the
Met Kite. If just one particular triangle is available, then the
three SBBLs aimed at the corners of that triangle must be
operating for the Sid Bay to be considered operational.

Let Pp be the probability that a SBBL fails. Let
Rg =(1—PFg) be the probability that the rest of the Sid

Bay elements are working.

Four Triangles Available—If four triangles are available,
then the Sid Bay will be operational if any three of the four
SBBLs are operational. This can be decomposed into two
zero failures and one failure of a SBBL. The

cases:
probability of zero failures is (1— Py )4 . The probability of
exactly one failure out of the four SBBLs is

4 Py(1— Pg)*. Thus, the probability that the Sid Bay is

working conditional on four triangles being available is
P{Sid Bay Working | 4 Triangles Working}
(=R +4 RA-PY |- Ry)

For notational convenience, we will define this expression to
be equal to (1—()4). Since this is the probability that a Sid
Bay can be considered operational given that four triangles
are available, then (J, is the probability that a Sid Bay has

failed, given that four triangles are available. There are
seven Sid Bays, and only six are required for the SIM
Instrument to be considered functional. The probability that
six out of seven Sid Bays are working (given four triangles)
is 1-04 )7 +7 041 —Q4)6 . We will keep this more

compact notation, but it would be easy to expand this to
display the full expression.

Two Triangles Available—If two triangles are available, the
corresponding probability that the Siderostat Bay is working
is (1— Po)[(1— Pg)* +2 Py(1—Py)*]. The factor of 2
occurs because there are just two ways to select the SBBLs
that can interact successfully with the two available
triangles. We define this expression to be (1—(),). The

subscript on the Q refers to the number of triangles
available. The probability that six Sid Bays are operational,
conditional on exactly two triangles being available is

1-0,)" +7 0,(1-0,)°.

One Triangle Available—If only one triangle is available,
the corresponding probability that the siderostat bay is



working is (1— Pg)[(1—-Py)* + Py(1-Py)*]. This, in
turn, is defined to be (1—(J;). The probability that

at least six of the siderostat bays are working, given that
only one triangle is available, is:

1-0) +7 0 (1-0)°.

Optical Switchyard

The Optical Switchyard is composed of two banks of
steering mirrors. The upper bank has seven steerable
mirrors. The lower bank has eight steerable mirrors. Each
of the upper switchyard mirrors takes the output of one of
the seven Sid Bays and diverts it down to any of the eight
lower switchyard mirrors. Each lower switchyard mirror,
receives the beam of light from an upper switchyard mirror
and diverts it into one of the eight optical delay lines. Each
upper switchyard mirror is always associated with a specific
Sid Bay. Similarly, each lower switchyard mirror is always
associated with a particular delay line. Pairs of delay lines
are always associated with a particular Astrometric Beam
Combiner (ABC). Rather than defining separate reliability
parameters for the switchyard and delay line elements, we
have lumped them with the major elements with which they
are in series. The upper switchyard reliability is
incorporated into the Sid Bay residual elements reliability,
defined above. Similarly, we lump the reliability of the
lower switchyard mirrors and delay lines into the Beam
Combiner Reliability,

Let the probability of a Beam Combiner Assembly (beam
combiner, delay lines and lower switchyard mirrors) failure

be PC- At least three of the four Beam Combiner

Assemblies must be working for the system to be
operational. The probability of that event s

(- PC)4 +4 F-(1- PC)3 . The resulting Classic SIM
reliability structure is given in Figure 4.

(1- Q7 +7Q, (1- Q°
Sid
Sox?1t

(1- Q7 + 70, (1- QF

(-

(1-Pey+
4. (1-P8  l-Pw

Rest
BC
of
3ord/ S

4Pp(1- By

(1B

Figure 7 Reliability Diagram for SIM Classic assuming
Sid Bays can use any Met Triangle

The Optical Switchyard does not explicitly appear in the
reliability diagram. However, it manifests itself as the
confluence of the three branches on the right hand side of

the diagram. We have added a block representing the
probability that the Rest of SIM is operating: (1— £, ). The
full reliability expression can be generated from the
reliability diagram. Elements in series are multiplied,
whereas branches in parallel are summed. The full
expression for SIM Classic assuming Sid Bays can use any
available triangle is given by:

(1= P (1= POST-04) +704(1-04)01+
6(1- P Pe(1- PO’ [(1-0y) +70,(1- 0,)° 1+

41-P) (1= B [P +3RE (- PONA-0) +70,(-0)°]+

4P-(-F )Y -P ) I0-0) +70,0-0)°)
x [(A-Po) +4P(1- Py 1(1- Py)

All Sid Bays Must Use the Same Triangle

Now we consider the constraint that all Sid Bays must use
the same triangle.  The derivation of the reliability
expression was more challenging for this case. We used a
different approach based on the union of four events, as
described in the following section.

Union of Events—We need a general expression for the
probability that at least six Siderostat Bays can all see at
least one of the available triangles. As a step along the way,

let E; be the event that at least six Siderostat Bays can all

see the 1 th triangle. The notation is a little confusing. This
subscript refers to a specific triangle (1 to 4) rather than to
the number of triangles available. The union of the four
events B, E;, E;, and E, is exactly the condition for which
we wish to assess the probability. Of course, there are
intersections among these events, which must be accounted
for. We will use symmetries to simplify the solution. For
instance, P(E,) = P(E,) = P(E;) = P(E4). The following is a
general expression for the probability of the union of {E;}

as a function of their intersections when there is symmetry of
the four events:

4P(E,)-6P(E, N Ey) +4P(E, " Ey " Ey) = P(E; N Ey A By A Ey).

If we develop expressions for the appropriate intersections,
then we will be able to evaluate the probability of the union.

It is helpful to consider different states of the Metrology
Kite in terms of the number of triangles available.

One Triangle Available—If Sid Bays are constrained to use
a common triangle and only one is available, then obviously
they must use that one. The result is thus identical to the
previous case with one triangle available as we will see
towards the end of this section. However, for the cases of
two and four triangles available a different approach is now
necessary in order to derive the closed form expression for
reliability. We will introduce and apply a consistent notation



for all three cases under the constraint that all Siderostat
Bays must use the same triangle.

Let (1—S)) be the probability that a given Sid Bay can see

a specific single triangle. The subscript, 1, refers to the
number of triangles specified and not to a specific triangle.

This is the same as the probability (1—();) developed

earlier:

(1=8) = (1= P~ Pp)* + Py(1-Fp)’).
That is, in order to see a specific triangle, the residual Sid
Bay elements must be working and either 4 SBBL must be
functioning, or else the right 3 must be functioning and the
fourth one failed. Actually, an equivalent approach is

simply that the correct three right SBBLs must be working,
so the term in square brackets could be replaced by

[A-B)].
manipulation, the original expression in square brackets can
be reduced to this form, but we have maintained the original
form to maintain consistency with the general form of the
similar expressions elsewhere that do not reduce in this
fashion.

One can see that with very simple

The probability that a least six Sid Bays can see this specific
triangle, in this notation, is (1—S1)7 +785 (1—S1)6.
This is the probability that six or seven Sid Bays can see one
specific triangle without regard to whether or not that
particular triangle is actually available. This expression
depends only on the state of the Sid Bay. There are four
triangles. When it is known that exactly one triangle is
available, then the probability that a specific triangle, say
triangle 3, is operational is 1/4. Thus, given that one
triangle is available, the probability of E; is

P(E;))=025[(1-5,) +7 S,(1-5)°]

When this is substituted back into the expression for the
union of four events, it is multiplied by 4, and so the factor
of 0.25 disappears yielding exactly the same expression
found earlier with S replaced by Q.

When only one triangle is available, the intersection terms in
the expression for the union are all zero. When only one
triangle is available, it is obviously not possible to see
triangles 1 and 3 for example. Therefore

P(E,NE;)=P(E;NE,)=0.
Similarly, the probabilities of the higher order intersections

are all zero. With one triangle available, the probability of
the union is:

P(E,VE,VE,UE)=[1-5) +7S,(1-5,)°]

Two Triangles Available—As before, we define (1—S§)) to

be the probability that a given Sid Bay can see one specific
triangle. The probability that six or seven of the Sid Bays
can see this one specific Triangle, say triangle number 3, is
P(Es) =[(1"’S1)7 +7S1(1_S1)6]

However, this assumes that triangle 3 is functioning. This is
a conditional probability. We need to multiply by the
probability that this particular bay is indeed functioning
given that two triangles of the four are working. This
probability is 0.5. Thus, the correct expression to use in the
equation for the probability of the union is

P(E,)=0.5[1-S8,)" +78,(1-5,)°]
Recall that by symmetry, P(E,) =P(E,) =P(E,)=P(E,).

Next, we need expressions for the intersection terms.

If only two triangles are available, then there is no way that
three or four triangles can be seen by even one Sid Bay,
never mind six or seven. Therefore, the triple and quadruple
intersection events have zero probability (given that only
two triangles are available). That is,

P(ElmEz r\E3)=P(ElﬁE2 ﬁE3 ﬂE4)=0.

This leaves just the double intersections to be evaluated.

A Siderostat Bay can see two triangles only if all four
SBBLs are working. Let (1—.5,) be the probability that a
given Sid Bay can see two specific triangles:

(1-8,)=(1-R)(1-B,)"
Note that this is just an expression about the state of he Sid
Bay; it does not include the probability that triangle 1 and 2
are actually operational. That will be factored in later. The
probability that six or seven Sid Bays can see these two
specific triangles is

(1-S8,) +78,(1-S,)°
However, this is only part of the term P(E, N E,) .

Event E; is six or seven Sid Bays being able to see triangle 1
and event E, is six or seven Sid Bays being able to see

triangle 2. The intersection of these two events, (E, NE, ),

also occurs when five Sid Bays can see both triangles, the
sixth Sid Bay can see triangle 1 and the seventh Sid Bay can
see triangle 2. At first, this particular term eluded us and the
closed form solution gave different results from the Monte
Carlo model. By carefully enumerating states for a test case
with fewer Sid Bays, we were able to identify the missing
term.

The probability that five Sid Bays can each see two specific
triangles is

(1 - Sz )5 :
The two extra Sid Bays that can see only one triangle are in
a state such that their Sid Bay Residual Elements are



operational and one SBBL has failed. For one bay, the
probability of being in this particular state is

3
(A-F)F(1=F)
There are two Sid Bays in this state, so this term will be
squared.

Next we need to understand the combinations. There are
five Sid Bays able to see two triangles. The number of such
combinations is 7 taken 5 at a time, or 7!5!/2!=21.
Then there are two Sid Bays each able to see one triangle.
There are 2 combinations. The extra term is thus

21(1-8,)’ x2[(1- P) B (1- )T
The overall expression for P(E, N E,) is
(1-8,) +78,(1-8,)° +21(1-S,)’ x2[(1- P)P,(1-B,)’T
given that triangles 1 and 2 are actually operational. .

When two triangles are available, it will be two specific
triangles depending on which Kite Beam Launcher has
failed. There are six different ways of selecting the two
particular triangles, and each is equally likely to occur.
Thus, given that there are two random triangles available,
P(E,NE,)=

%{(I—Sz)7 +78,(1-8,) +42(1-8,)° x[(1- P,)P,(1- P,)’T*}.
Recalling that P(E;,nE,nE;) and P(E;nE,nEsnE,) are
zero, and substituting back into the expression for the
probability of the union of the four events E;, we have the
probability that at least six Siderostat Bays can all see at
least one of the available triangles, when two triangles are
available, is

P(ELVE,VE VUE,)=
4x0.5[(1-S,)" +75,(1-S)°1-

6><%{(1—52)7 +78,(1=5,)° +42(1-8,) x[(1- R)P(1- )T’}

=2[(1-8,) +75,(1-8)°]-
{(1-5,) +78,(1-S,)° +42(1- 8,)’ x[(1- B)P,(1- B,)’T’}.

Four Triangles Available— A siderostat bay can see all four
triangles only if all four SBBLs are working. This state of
the Sid Bay is identical to the state discussed in the previous
section. That is, if a Sid Bay can see two different triangles,
it can also see four triangles. The difference now is the
number of triangles available. We can reuse several of the
results from that section.

As before, the probability that a Sid Bay is in a state such
that it can see a specific triangle, say triangle 3, is (1-57).
The probability that a least six Sid Bays can see this specific
triangle is (1 _Sl)7 +7 S;(1- 51)6 . Now, however, all
four triangles are available. Therefore, the probability that

six or seven of the Sid Bays can see a particular triangle just
equal to this expression:

P(E) = P(E;)=(1-8)7 +7 $;(1- §))°.

Continuing to recycle expressions from above, the
probability that a Sid Bay can see two specific triangles is

1-S,)=01-P)(1-P)*".
Continuing as above, we arrive at the same expression as for
when two triangles were available but this time, given that
all four are operational, the probability that any particular
two are operating is 1 so there is no extra adjustment.:

P(E NE,)=

1-s,y +7SZ(I—SZ)6 +42(1—Sz)s[(l—Ps)PB(l—PB)3]2
As mentioned much earlier in the paper, there is no way for
a Sid bay to be able to see exactly three triangles. If it can

see three triangles, then it can also see four triangles. A
consequence of this is that when four triangles are

available, P(E, N E,NE,)=P(E,NE,NE,NE,).

Let (1-S,) be the probability that a given Siderostat Bay
can see all four triangles:
4
(1-8,)=(1-P)(1-B)" =(1-5,).
This is identical to the expression for seeing two triangles
because everything in the Sid Bay must be operational to see

two different triangles. The probability that six or seven of
the Sid Bays are in this state is:

P(ENE,NE)=P(EENE,NE,NE)=
(1-8,) +75,(1-5,)".
The various expressions are substituted into the expression
for the union to yield the probability that at least six

Siderostat Bays can all see at least one of the triangles, when
all four triangles are available:

4{1-5)7 +7 $(1-8)°} -

6{(1-8,)” +78,(1-$,)° +42(1-8, )’ [(1- P )Py (1- Py’ TP} +
4{(1-84)7 +78,(1-84)°} -

{(1-84)7 +75,(1-54)°}

This expression is simplified and Sy is replaced by Sy:

4{(1-5)7 +7 8,(1-5)°} -
3{(1-5,)7 +78,(1-5,)° +84(1-8,)°[(1- Py) Py (1= Pp)' T}
The analytical expression for SIM Classic optical

interferometer reliability when all siderostat bays must use
the same triangle is then given by:



< (1= Pr)* (1= Py )[4 triangles] +

6(1— Pr)* P (1- P )’[2 triangles]+

41— Py (1= Pe) (B3 +3P3 (1= PO+ 4P (1~ B Y (1- P %)
[1 triangle] >

x [(1=P)* +4P.(1- P-)’ 11— Py)

where the square bracket terms are replaced by the
appropriate term for the number of triangles specified,
yielding the following expression:

<(1=B) (- B)[4{1-8) +7 S,(1- 8% -

3{(1-8,) +78,(1-8,)° +84(1 - 8,)°[(1- Py) Py (1- P )* P} +

6(1-Pp)* e (1= B [2[(1- 8,) + 78,1 5)° )=

{(1-8)7 +78,(1=8,)° +42(1-8,)° x[(1- Py P (1= Py 'V} 1+

{412 (1= Pe)® (B> +3P2 (1= B+ 4P (- B )3 (1= P )
x[(1=8)" +7 8,(1-5,)°1>

x (1= Poy* +4Rc(1- P’ 11 - Pr)

Figure 8 illustrate a simple case in which the component
failure rates were all set to the same value. This value was
then varied over the range 0 to 2%. The overall system
reliability was calculated using the closed form solution for
the case when all Sid Bays must use the same triangle and
when the Sid Bays can use any triangle. As expected, the
reliability is a little lower with the more restricted constraint
that all Sid Bays must use the same triangle. However, if
one imposes this constraint, it does not drastically reduce the
overall system reliability.

In order to use more than one triangle at the same time, the
project would have to perform some additional analysis and
develop algorithms, along with testing and verifying this
approach. Depending on how risk averse the project wishes
to 