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An application of the new optimization algorithm called Static/Dynamic 
Control (SDC) to  design low-thrust escape and capture trajectories is pre- 
sented. SDC is a general optimization method that is distinct from both 
parameter optimization and the calculus of variations. Trajectories are in- 
tegrated with a multi-body force model and feature solar electric propulsion 
with a specific impuise that is a function of the engine throttie. 1 he test 
problems include interplanetary scale trajectories that capture or escape at 
one of the inner planets. Optimizing capture and escape trajectories with 
a multi-body force model results in a significant improvement in the mass 
delivered compared to  existing two-body formulations. SDC is robust for 
this application and does not require a good initial guess. 

-. 

Low-thrust electric propulsion is increasingly being selected as the propulsion system of choice for 
future interplanetary missions. The higher efficiency of electric propulsion compared to  traditional 
chemical propulsion results in larger payload delivered or shorter flight times. The successful Deep 
Space 1 mission demonstrated the reliability of electric propulsion. 

Optimizing low-thrust trajectories, and in particular, trajectories that include escape and capture 
is inherently difficult. Low thrust engines typically operate for days, months or even years. This is in 
contrast to chemical systems that operate for minutes. The continuous operation associated with low 
thrust significantly increases the optimization complexity. Continuous thrust renders approximations 
and tools used for chemical propulsion (and ballistic) trajectories inaccurate or useless. High fidelity 
modeling of escape and capture requires a multi-body force model. However, a multi-body force 
model will only further compound the optimization complexity. To fully optimize an escape or 
capture trajectory, the origin or destination of the trajectory must be taken into account. Typically 
this involves an interplanetary scale trajectory leg. However, optimizing a trajectory involving both 
an interplanetary leg and a planet centered spiral introduces two very different time and distance 
scales into mathematical formulation. Widely varying time and distance scales are known to create 
difficulty for optimization. 

Previous work sought to avoid many of the aforementioned difficulties by using a two-body 
approximation and/or a divide and conquer approach for escape and capture7. For example, an 
Earth to  Mars capture trajectory can be approximated as two separate problems. First, an optimal 
interplanetary trajectory from Earth to Mars is obtained such that  the incoming V, at Mars is 
zero. Second, a Mars centered spiral problem is solved (with only Mars gravitating). The spiral 
problem begins with two-body energy of zero and ends with the target capture orbit around Mars. 
Although Two-body formulations are much simpler to  solve, they do not take advantage the strong 
multi-body effects that occur near zero energy, and they can not optimize the trajectory end-to-end. 
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The high fidelity optimization of low-thrust escape and capture with a multi-body force model 
is the main objective of this research. It is also an objective of this research to  optimize trajectories 
that involve both an interplanetary leg and planet centered spirals without dividing the trajectory 
up into subproblems (based on length and time scales) and optimizing each independently. 

APPROACH 

Existing methods for optimizing low-thrust trajectories are classified as either direct or indirect. 
Direct approaches parameterize the trajectory and solve the parameterized problem using a gradient 
based nonlinear programming method, or a hueristic method such as simulated annealing. Direct 
methods typically remove the explicit time dependence in the optimal formulation by parametrizing 
the trajectory as a series of impulse burns and conic coasts. Indirect approaches are based on the 
calculus of variations, resulting in a two point boundary value problem'. Indirect methods do not 

control problem. Calculus of variations methods are usually limited to  a single body (Sun or planet) 
force model due to the sensitivity of the method. Intermediate planetary flybys can be modeled by 
instantaneous rotations of the velocity vector. 

rerL$yz the rxp!ic;t tirLe dependence cf the tya;ectcry p r & $ q  rather it is so!-& zs sn optims; 

The optimization method used in this research is called StaticlDynamic Control or SDC'. SDC 
is a new, general optimization algorithm which was derived to  address a general class of problems 
with the same structure as low-thrust optimization. SDC best fits into the direct method category. 
However, unlike other direct methods, the explicit time dependence of the optimization problem is 
not removed by parameterization. The SDC optimization algorithm is a form of optimal control. 
Unlike many other optimization approaches, SDC can be used with the highest fidelity space flight 
simulators available. 

SDC is a robust optimization method that can handle the large changes in length and time scales 
that occur in problems with both interplanetary legs and planet centered spirals. In the process 
of performing this research, it was found that SDC is capable of optimizing end-to-end trajectories 
with an escape spiral at one planet, followed by an interplanetary leg, and ending with a capture 
spiral at a second planet. 

SDC does not require a good guess to  begin the optimization. It is this feature that is used to  
explore the complex optima space of capture and escape. A large number of poor initial guesses 
and different initial conditions were generated to  begin separate optimizations. The purpose of this 
procedure is to  investigate (with as little bias as possible) the range of available, locally optimal 
trajectories. Hundreds of different optimal escape and capture trajectories were obtained in this 
way. A classification system was developed and all trajectories were classified as to  one of several 
distinct minima types. Escape and capture exhibits a symmetry in that,  most escape minima types 
have analogous capture minima types. 

The trajectories considered include Earth launch to  capture into various orbits at Mars, escape 
from a fixed high Earth orbit to  capture into Mars circular orbits at various altitudes, Earth launch 
to Venus flyby to capture into various orbits around Mercury, Earth launch to  capture into various 
orbits around Venus, escape from a fixed, high Mars orbit to capture into various Earth orbits, and 
escape from various high Earth orbits t o  a rendezvous with Mars. Whenever possible, two-body 
optimization performance results are compared to multi-body results. 

The General SDC Problem Structure 

SDC is a general optimization method designed to  solve a class of mathematical problems. The 
SDC optimization algorithm is based in part on the Hamilton, Bellman, Jacobi dynamic program- 
ming equation'. Unlike traditional differential dynamic programming methods, SDC is constructed 
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to solve highly nonlinear and non-convex problems with a dual dynamic and parametric structure. 
Optimal solutions generated by SDC satisfy both the necessary and sufficient conditions of optimal- 
ity. 

Three distinct classes of variables are recognized by SDC. The first is the dynamac control which 
are functions of time. Dynamic control variables are analogous to  control variables in optimal control 
theory. The vector v ( t )  is used to represent the dynamic control at time t .  The second variable class 
is the static control which can be thought of as parameters in the ordinary parameter optimization 
sense. The vector w is used to represent the static control. Both the static and dynamic control 
variables encompass design variables that are under direct control by the engineer. In addition to  
the static and dynamic controls, SDC recognizes time dependent state variables. The state vector 
encompasses variables not under the direct control of the engineer. The vector z ( t )  is used to 
represent the state at time t .  

The general objective or cost function of SDC can be written as the addition of a time-integrated 
cost and a sum of point-in-time costs: 

N 
J = lotN F ( x ( t ) ,  v ( t ) ,  w ,  t ) d t  + G ( x ( t i ) ,  v ( t i ) ,  w , t i l  i). 

i= 1 

The goal of SDC is to  optimize J by choosing the optimal or “best” dynamic control vector v( t )  
at all time instants t E ( t o , t ~ )  simultaneously with the optimal static parameter vector w .  The 
cbjective “7 can be either minimized or maximized in value. The general functicns F and c-‘ ir, En Y‘ 

(1) are selected to  best represent the design and control objectives for a specific application. The 
times ti are assumed to  lie between t o  and t,v for i = 1 , 2 ,  ..., N - 1. The functions F and G are 
required to  be twice continuously differentiable with respect to  x ,  v, and w. The functions F and G 
do not need to be continuous in time t .  

In addition to  the objective Eq. (l), SDC requires an ordinary differential equation which 
describes the time evolution of the state vector x ,  and a function that specifies the initial state 
x ( t  = to): 

d t  = q z ( t ) ,  v ( t ) ,  w ,  t )  x ( t  = to) = q w ) ,  ( 2 )  

The state function T is required to  be twice continuously differentiable with respect to  x ,  v, and 
w .  However, the state function T does not need to be continuous in time t. The vector function T 
is selected to  best represent the time evolution of the state vector z( t )  under the influence of the 
current state, the current dynamic control vector v ( t ) ,  and the static parameter vector w at time 
instant t .  The initial condition can be given and fixed, or it can be a function of the static control 
vector w.  The function I‘ is required to  be once continuously differentiable with respect to  w.  

SDC optionally allows two types of constraints on the formulation Eqs. (1) and (2). The first 
type are ordinary constraints of the general form: 

L ( x ( t ) ,  v ( t ) ,  w ,  t )  2 0 and/or K ( x ( t ) ,  v ( t ) ,  w ,  t )  = 0 ,  (3) 

The linear or nonlinear vector functions L and K are selected to represent practical or physical 
constraints on the engineering problem. An example of a constraint of this type is a minimum 
allowed distance between the Sun and a spacecraft to  avoid spacecraft overheating. 

The second type of constraint SDC allows are “control dynamic” constraints. Control dynamic 
constraints represent any physical or practical engineering constraints on the time evolution of the 
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dynamic control vector v ( t ) .  The control dynamic constraints have the general form: 

1 f ( w , w , t , l )  for  t = t o  to  tl 1 
(4) 

i f ( U N t w , t , N )  for  t = t N - 1  to t N .  1 
The vector functions f (ut ,  w,  t ,  i )  are selected to  properly represent the limitations on the time evolu- 
tion of v ( t ) .  The number of periods N may be chosen arbitrarily. The functions f are parameterized 
by a parameter vector ui, the static parameter vector w, and time t .  The functions f can be used 
to  effectively limit or constrain the SDC algorithm to consider only solutions v( t )  which are of the 
form of Eq. (4). The time intervals ti to  ti+l are called “periods.” The dynamic parameter vector 
ui is constant within each period i, i = 1 , 2 ,  ..., N. For example, the simplest useful set of functions 
f is f (ui, w ,  t ,  i )  = ui. The dynamic control vector v ( t )  may be optimized such that  v ( t )  is con- 
stant over each period, allowing changes only at period interfaces ti. Alternatively, w ( t )  may be 
subject to a dynamic limitation that allows ~ ( t )  to vary within each period, either continuously or 
discontinuously. 

If SDC is used with control dynamic constraints, then the algorithm is called the period formu- 
lation of the SDC. If no control dynamic constraint is used then the algorithm is called the fully 
continuous formulation of SDC. In this research, the period formulation of SDC was used to  con- 
strain the trajectory optimization to  only allow changes in the thrust direction and magnitude at 
regular time intervals. The regular time intervals represent the practical limitations of spacecraft 
control resulting froni communications and/or duty cycles. 

Application of SDC to Trajectory Optimization 

The first step in applying SDC to the problem of low-thrust trajectory optimization requires 
defining the state and control variables. The state vector x ( t )  is defined to  be the spacecraft state 
at  any given time t .  The components of the state vector ~ ( t )  are defined as follows, 

x ( t )  = 

x coordinate of spacecraft 
y coordinate of spacecraft 
z coordinate of spacecraft 
x velocity of spacecraft 
y velocity of spacecraft 
z velocity of spacecraft 
m a s s  of t he  spacecraft. 

( 5 )  

The dynamic control w ( t )  is defined to  be the electric propulsion thrust vector as a function of 
time. The components of the dynamic control vector v( t )  are defined as follows, 

x component of thrust  
y component of thrust  
z component of thrust .  
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The components of the static control vector w are defined to be 

Date of Ear th  launch 
total flight t i m e  
x component of launch V, 
y component of 1 aunch V, 
z compon,ent of launch V, . 
Date of f i r s t  intermediate f l y b y  

7 

Date of nth intermediate f l yby .  - 

= 

The SDC algorithm is not limited to the definition Eqs. (51, (6), and (7). These definitions were 
used to perform comparisons between SDC and existing programs. Additional control and state 
dimensions can be added. For example, the static control w could be augmented with design 
parameters like solar array size. The state vector x could be augmented with a state representing 
the total spacecraft radiation dose. 

- x velocity of spacecraft  
y velocity of spacecraft 
z velocity of spacecraft 

x acceleration of spacecraft 
y acceleration of spacecraft 
z acceleration of spacecraft 

- mass  flow rate 

The second step in applying SDC is to provide an initial condition function x ( t 0 )  = r(w). The 
following definition is used to provide a launch from Earth as the initial condition. The initial 
mass of the spacecraft is obtained from a launch vehicle performance curve depending on the launch 
v, = ( W 3 , W 4 , % ) .  

initial position. xi (tu;) 

initial m a s s  mlvc (w3:5 j 
r ( w )  = { initial velocity } = { K ( w l )  + w3:5 } (8) 

The  vector functions X,(wl> and Ve(wl) are the Earth's center location and velocity at the launch 
date w1. The function mlv,(w3:5) is the launch mass for the launch energy C3 = llw3:51j2. The JPL 
Lunar and Planetary Ephemerides are used to define X,(wl j and Vi(w1). Note that the trajectory 
begins at the center of a massless Earth. This simplification was necessary to make comparisons 
with existing two-body low thrust optimization programs which make the same launch approxi- 
mation. More realistic launch conditions involving multi-body propagation have been successfully 
incorporated using SDC. 

The state equation used to describe the time evolution of the state is 

dx 
dt 
- = T ( x ,  v ,  w, tj = 

The mass flow rate m is provided by a polynomial fit to the performance of the NSTAR 30-cm ion 
thruster3, a version of which is in operation on Deep Space 1. The specific impulse is not constant, 
but depends on the engine throttle level. 

Constraints of the form of Eq. (3) are used to constrain the thrust and reach intermediate and 
final target bodies. The maximum thrust is constrained by the performance of the thruster(s) and 
the power available from the solar array at a given heliocentric radius. The target final state used in 
this research is either an orbital energy, a circular orbit, or a massless rendezvous type constraint. 



The form of the fixed final energy constraint used in this analysis is 

The energy EtaTget is the final orbital energy with respect to the target body. The relative ve- 
locity between the spacecraft and the target body is v, ,~ = uSpacecra~t  - 'Ubody where uspacecraft  = 
{xd(t~), z s ( t ~ ) ,  z ~ ( t ~ ) } .  The parameter p b o d y  is the gravitational constant of the target. The 
variable r,,l = r,pacecraft - r b o d y  is the separation between the spacecraft and target body. When 
constraint Eq. (10) is enforced, the Optimization will generate an optimal trajectory that achieves a 
specified orbital energy Etarget. This constraint is equivalent to fixing the semi-major axis, with all 
other orbital elements free. 

The circular orbit constraint used in this analysis is achieved by using three separate constraints 
of the form of Eq. (3). The first constraint requires the circular orbit radius: 

1 Irrel 1 1  = I l r s p a c e c r a f t  - T b o d y l  I = R t a r g e t  , (11) 

where RtaTget is the specified circular orbit radius (scaler). 
relative velocity magnitude between the spacecraft and body is consistent with a circular orbit: 

The second constraint requires the 

The third constraint requires the relative velocity to  be perpendicular to  the separation vector: 

The form of the ma-ss!ess rendezvous constraint (two-body capture) is 

2 1 : 3  (tN) = r b o d y  

Z 4 : 6 ( t N )  = 'Ubody 

where the vector position of the target body r b o d y  and the vector velocity 'Ubody are given by the 
DE405 ephemeris. The constraint Eq. (14) is used to  approximate capture in two-body models. For 
example, a capture at Mars can be approximated by using Eq. (14) with a massless Mars. This 
constraint is used to  compare the performance of optimal two-body capture to  optimal multi-body 
capture. 

The objective used for all comparisons was to  maximize the final spacecraft mass or  net mass, i.e. 
maximize x7 ( t ~ ) .  This objective takes into account the launch vehicle performance and propellant 
usage. 

RESULTS 

Earth Launch to Mars Capture Spiral 

The Earth launch to  Mars capture prnblem has a fixed launch date of April 22, 2003. The flight 
time was 280, 300, 320, 330, or 400 days. The launch vehicle used is a Delta 7326-9.5 with a 10% 
launch vehicle contingency. The launch V, direction and magnitude is free for optimization. A 
single NSTAR 30-cm ion thruster is available on the spacecraft. The solar array is assumed large 
enough so that  the engine can operate at full power (92.3 mN at 2.6 kw) anywhere between the Earth 
and Mars. The target orbit at Mars is either a circular orbit with radius 60,000 km, or an orbit with 
the equivalent energy. The results are compared to the optimal two-body rendezvous. The optimal 
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two-body rendezvous uses flight times equal to the time of capture for the corresponding optimal 
multi-body result. For example, when the flight time is fixed at 350 days, the optimal trajectory to 
a circular orbit around Mars uses 350 days but achieves capture on day 312.56. A fixed flight time 
of 312.56 days is used to  obtain the two-body capture solution (491.36 kg) based on a massless Mars 
and the constraint Eq. (14). 

Table 1 

EARTH LAUNCH - MARS CAPTURE 

Time Mars Final Final Capture Capture 2-Body Multi-body 
of Orbit Mass orbit Day Mass Capture Performance 

Flight Type (kg) & !kg) Mass Improvement 

280 Circular 351.22 0 254.621 357.43 297.65 59.78 kg (20.1%) 
280 Fixed E 352.21 0.2934 254.861 358.37 298.49 59.88 kg (20.1%) 
300 Circular 415.25 0 269.503 422.72 351.21 71.51 kg (20.4%) 
300 Fixed E 417.02 0.4400 269.916 424.45 352.74 71.71 kg (20.3%) 
320 Circular 473.10 0 284.817 481.71 408.77 72.94 kg (17.8%) 
320 Fixed E 474.48 0.3307 285.359 482.96 410.81 72.15 kg (17.6%) 
350 Circular 497.56 0 312.560 506.56 491.36 15.20 kg (3.09%) 
350 Fixed E 497.56 0.2655 313.097 506.57 492.03 14.54 kg (2.96%) 
400 Circular 500.02 0 338.361 507.79 501.63 6.16 kg (1.23%) 
400 Fixed E 500.75 0.57168 339.082 507.67 501.69 5.98 kg (1.19%) 

( k d  (4 

The final mass in Table 1 is the spacecraft mass in orbit around Mars at the end of the flight 
time. The capture mass in Table 1 is the Spacecraft inass at the irlstalit of hhrs Ldpiure (two-body 
energy = 0). The value of E is the final orbit eccentricity (zero for constrained circular orbits and 
non-zero for fixed final energy orbits). In Table 1, optimal multi-body performance is always better 
than optimal 2-body performance. Further, the advantage increases with shorter flight times to  a 
plateau around 20%. This is easily understood because the gravity of Mars can be used to  increase 
the spacecraft energy with respect t o  the Sun, helping to  match the energy of the orbit of Mars. 
This “terminal gravity assist” helps meet the rendezvous condition. Despite Mars’ small mass, the 
multi-body solution is significantly better for short flight times. 

Notice in Table 1 that all fixed energy final masses are larger than or equal t o  the circular orbit 
final masses with the same time of flight. This is expected because the fixed energy solutions allow 
more freedom in the shape of the final orbit around Mars. First solving for the optimal fixed energy 
solution will provide a baseline to judge the performance of solutions with more constrained final 
orbits. In this case, there is only a small penalty for constraining the final orbit around Mars to  be 
circular. 

Notice in Table 1 that the eccentricities of the final orbit around Mars for the fixed energy 
solutions are 0.29, 0.44, 0.33, 0.27, and 0.57 for the flight times of 280, 300, 320, 350, and 400 days 
respectively. No particular trend in eccentricity verses flight time is apparent. It turns out that  the 
solutions with high eccentricity belong to  one class of local minima and the solutions with lower 
eccentricity belong to  a second class. The two minima classes merge as the flight time is reduced. 
For example, we can expect a local minima solution for the 350 day flight time with eccentricity of 
about 0.5. A more detailed analysis of the minima classes is addressed in later subsections. Later 
subsections demonstrates the coexistence of both high and low eccentricity local minima for a wide 
range of flight times. 
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Earth Spiral Escape to Mars Capture Spiral 

This problem involves a spiral escape from a high Earth orbit, an interplanetary leg to  Mars, and 
a capture a,nd spiral into Mars circular orbits with various radii. Solving this problem demonstrates 
the ability of SDC to deal with multiple length and time scale changes in a single trajectory. The 
initial Earth orbit is circular with a radius of 90,000 km. This starting point may be obtained 
by spiraling out from a much lower Earth orbit. The initial spacecraft mass is 500 kg. and two 
NSTAR engine G thrusters are available. In all cases the flight time was fixed at 300 days. All 
the planets and the Earth's Moon are gravitating. No significant lunar flyby occurs in this series of 
solutions. The usefulness of the Moon for Earth escape is highly dependent on the initial condition. 
In this case, the single initial condition used was selected so that it is not advantageously timed for 
lunar interactions. The added complexity of lunar interactions is addressed in later papers. Table 2 
summarizes the impact of targeting ever lower circular orbits around Mars, given a fixed total flight 
time from Earth orbit. Figure i is a ploi of tiit! optiniai trajectory to it circular orbit around iviars 
with radius 25,000 km. Figure 2 plots the escape and capture portions of the optimal trajectory to  
a Mars circular orbit of radius 17,000 km. 

The Mars spiral is on the order of lo4 kni whereas the interplanetary trajectory from Earth to  
Mars is on the order of 10' km. SDC converges reliably for the complete trajectory despite a scale 
change of 10,000. The top graph in Figure 3 plots total propellant required for the  transfer from 
Earth orbit to circular orbit at Mars verses the Mars orbit radius. The bottom graph in Figure 3 
plots the number of revolutions at iLlars verses the Mars orbit radius. 

Table 2 

EARTH ESCAPE - MARS CAPTURE 

Mars Circular Propellant Revolutions Capture Capture 
Orbit [km] Mass [kg] at Mars Mass [kg] Day 

65,000 94.44 1 412.31 289.97 
60,000 
50,000 
40,000 
35,000 
30,000 
25,000 
22,000 
20,000 
18,000 
17,000 
16,000 
15,000 
14,000 

95.01 
96.55 
98.96 
100.73 
102.97 
106.06 
108.76 
111.12 
113.95 
115.68 
117.74 
120.15 
123.03 

1.2 
1.6 
2.4 
3.1 
4.2 
6.0 
7.6 
9.2 
11.3 
12.5 
14.1 
15.9 
18.2 

411.70 
411.04 
409.96 
409.08 
407.87 
406.16 
404.44 
402.87 
400.87 
399.64 
398.11 
396.26 
394.01 

287.83 
284.45 
281.72 
279.89 
277.78 
274.97 
272.94 
271.34 
269.58 
268.62 
267.54 
266.37 
265.12 

The propellant mass in Table 2 is the total propellant required to achieve the specified circular 
orbit around Mars beginning in Earth orbit. 

Earth Launch to Venus Flyby to Mercury Capture Spiral 

This trajectory is well known to be difficult to  optimize, even if the Mercury capture spiral 
is replaced by the simpler two-body rendezvous condition Eq. (14). The Mercury spiral and the 
heliocentric spiral to  reach Mercury introduces two very different scale spirals. Since Mercury is 
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Earth Escape Spiral to Mars Capture Spiral 

Capture day 274.969 mass 

TOF = 300 days 
Mo = 500 kg 
P = 106.0594 kg 
Earth Orbit R = 90,000 km 
Mars Orbit R = 25,000 km 

i 
?(c i 

Escape day 51.6604 mass 475.2059kg 
G. Whiffen 

I I I 

-1 -0.5 0 0.5 1 1.5 
OLDRUNSP.ESMS6 x (A.U.) 

Figure 1: SDC optimal trajectory for the Earth escape spiral to  Mars capture spiral problem. 
The arrows almg the spacecraft trajectory indicate the thrust direction. The lack of arrcws alcng 
the trajectory indicate coasting periods. 
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Earth Escape Portion of Trajectory: R = 90,000 km 
x i o 5  0 

-6 

O t  

- 
Escape day 51.5784 mass 475.22 kg 

I I I I 

> E -4 -'I 

h 

E -5- s 
>. -10- 

-15- 

-20 

Earth 

- c - .  

Propellant from Earth Escape to Mars Capture = 75.58 kg / \ 

Propellant from Mars capture to Clrcular orbit = 15.32 kg i ' Mars 
4 12.5 Revs 
I 

J 

Final  Mass in Mars orbit = 384.32 kg 

/ 
/ 

/ 
1 

/ 
rc Capture day 268.621 4 mass 399.64 kg 

/ 
/ - - - - c c c c  

- -  - -  - -  - - -  - 
I I I I I 

Escape = 24.78 
Earth 
5.75 Revs 

Figure 2: SDC optimal trajectory for the Earth escape spiral to Mars capture spiral problem: 
Earth escape and Mars capture portions. The final Mars orbit radius is 17,000 km. The arrows 
along the spacecraft trajectory indicate the thrust direction. 
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Earth Escape Spiral to Mars Capture Spiral (TOF = 300d) 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 
Final Mars Circular Orbit Radius (km) x i o 4  

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 
x i o 4  Final Mars Circular Orbit Radius (km) 

Figure 3:  SDC optimal trajectory for the Earth escape spiral t o  Mars capture spiral problem. 
Propellant from Earth orbit and revolutions required in Mars orbit are plotted verses the final Mars 
orbit radius. 
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less massive than Mars, the advantage of multi-body optimization over two-body optimization is 
generally smaller than for Mars capture trajectories. 

The base case problem requires a launch on August 29, 2002, Venus flyby on February 11, 2003, 
and arrival in Mercury orbit on December 24, 2004. Other comparisons involve freeing the launch, 
Venus flyby, and choosing different arrival dates. The launch vehicle used is the Delta 7326-9.5 with 
a 10% launch vehicle contingency. The launch V ,  direction and magnitude are free for optimization. 
A single NSTAR engine G thruster is available on the spacecraft. The power available to  the thruster 
at 1 A.U. is 1.3 kw. With this array, the thruster can operate at  its maximum rated power only 
for heliocentric radii below 0.6455 A.U. At radii above 0.6455 A.U. the engine must be throttled. 
The base case orbit at Mercury is either a circular orbit with radius 30,000 km, or an  orbit with the 
equivalent energy. 

p/Ii;!ti-bc;&. captiire optimization is coiiipared to t*-o-bo(-j5; captiire optimization, The two-body 
optiniization of rendezvous uses flight times equal t o  the flight time to capture for the corresponding 
optimal multi-body result. Note that in both the two- and multi-body formulations, the flyby of 
Venus is integrated using multi-body force laws. The only difference between the two- and multi-body 
formulations is the mathematical form of the terminal state constraint corresponding to whether or 
not Mercury is gravitating. Figure 4 is an example of an optimal trajectory to  a circular orbit around 
Mercury of 19,000 km. Table 3 summarizes the results for the base case: launch date, Venus flyby 
date, and arrival date fixed. 

Table 3 

EARTH LAUNCH - VENUS FLYBY - MERCURY CAPTURE 
Launch Date Fixed and Venus Flyby Date Fixed 

Time Mercury Final Final Capture Capture 2-Body Multi-body 
of Orbit Mass Orbit Day Mass Capture Optimization 

Flight Type (kg) € 0%) Mass Improvement 

826.763 324.27 288.47 35.80 kg (12.4%) 847.325 Circular 319.24 0 
847.325 Fixed E 319.87 0.2843 827.135 324.81 288.98 35.83 kg (12.4%) 
857.325 Circular 334.53 0 835.465 339.87 300.69 39.18 kg (13.0%) 
857.325 Fixed E 334.65 0.2500 835.449 340.00 300.67 39.33 kg (13.1%) 
887.325 Circular 345.35 0 861.888 351.56 333.22 18.34 kg (5.50%) 
887.325 Fixed E 345.37 0.1910 861.688 351.63 333.03 18.60 kg (5.59%) 

(kg) (d) 

Table 3 indicates that  multi-body optimization always results in a larger mass delivered at Mercury 
capture. The largest improvement of 13% occurs around the flight time of 857.325 days. 

Tables 4 summarizes the results when the Venus flyby date is free for optimization. The Venus 
flyby date is optimized separately for the two-body and the mu!ti-body Mercury capture. The flyby 
dates are expected to  be different for multi- and two-body capture formulations. Freeing the flyby 
date removes any bias toward one formulation or the other resulting from a particular fixed flyby 
date. 

Table 4 

EARTH LAUNCH - VENUS FLYBY - MERCURY CAPTURE 
Launch Date Fixed and Venus Flyby Date Free 
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Figure 4: SDC optimal trajectory for the Earth launch to  Venus flyby to Mercury orbit 
insertion. The target orbit around Mercury is circular with a radius of 19,000 km. The arrows 
along the spacecraft trajectory indicate the thrust direction. The lack of arrows along the trajectory 
indicate coasting periods. 
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Time Mercury Final Final Capture Captwe 2-Body Multi-body 
O f  Orbit Mass Orbit Day Mass Capture Optimization 

Flight Type (kg) E (kg) Mass Improvement 

826.745 324.47 289.81 34.66 kg (12.0%) 847.325 Circular 319.44 0 
847.325 Fixed E 320.06 0.2844 827.122 325.00 290.30 34.70 kg (12.0%) 
857.325 Circular 334.65 0 835.473 339.99 301.54 38.45 kg (12.8%) 
857.325 Fixed E 334.77 0.2470 835.459 340.11 301.52 38.59 kg (12.8%) 
887.325 Circular 351.47 0 861.402 357.80 332.85 24.95 kg (7.50%) 
887.325 Fixed E 351.52 0.2513 861.080 357.93 332.56 25.37 kn (7.63%) 

(kg) (4 

Table 4 indicates that the base case Venus flyby date (February 11, 2003) is slightly biased torwards 
the multi-body formulation for flight times 847.325 and 857.325 days because the relative perfor- 
mance of the multi-body formulation (last column) is better in Table 3 than in Table 4. However, 
the base case flyby date is biased torwards the two-body formulation for the 887.325 day flight time. 
Table 4a compares the optimal Venus flyby date and altitude for each formulation. Table 4a indicates 
that  the difference between the two-body rendezvous and the multi-body capture increases with the 
flight time. The number in the Venus flyby date column specifies the last digits of the Julian Date 
2,452,xxx.xxxx. For the longest flight time, the multi-body optimal Venus flyby date and radius 
are more than ten days later and 1,500 km higher than the two-body results. This demonstrates 
the sensitivity of the Venus flyby to  the Mercury capture model - despite the fact that  the Mercury 
capture occurs 700 days and 4.5 revolutions around the Sun after the Venus flyby. The existence 
of this sensitivity highlights the importance of using a multi-body capture model for the accurate 
optimization of the Earth to  Mercury trajectory. 

Table 4a 

EAR,TH LATJNCH - VENTJS FLYBY - MF,R-CTJR-Y CAPTTJR-E 
Launch Date Fixed and Venus Flyby Date Free 

Time Mercury Venus Venus 
of Orbit Flyby Flyby 

Flight Type Date radius 

847.325 Circular 679.0515 7,435.4594 
847.325 Fixed E 679.2873 7,402.8275 

857.325 Circular 683.3509 7,248.4580 
857.325 Fixed E 683.3476 7,251.5866 
857.325 Two-body 674.4275 7,471.2007 
887.325 Circular 693.3322 9,008.4964 
887.325 Fixed E 693.3820 9,005.6482 

(d) (km) 

847.325 Two-body 672.0684 7,163.8497 

887.325 Two-bodv 682.7581 7,473.1845 

The difference between the multi-body circular orbit and multi-body fixed energy results in 
Tables 4 and 4a are small for fixed flight times. The difference grows slightly when the flight time is 
more constrained. The similarity of results indicates that the Venus flyby parameters and over-all 
performance are not sensitive to  the shape of the Mercury target orbit for eccentricities between 0 
and 0.3. 

Table 5 summarizes the results when both the launch date and Venus flyby date are free for 
optimization. Only the final arrival date is fixed. Freeing both the launch and flyby date removes 
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any bias toward one particular formulation. The multi-body capture results optimize both launch 
and the Venus flyby for the multi-body capture. The two-body solutions optimize both the launch 
and Venus flyby for the two-body capture formulation. The two-body optimization uses a fixed 
arrival date equal to the corresponding multi-body capture date. 

Table 5 

EARTH LAUNCH - VENUS FLYBY - MERCURY CAPTURE 
Launch Date Free and Venus Flyby Date Free 

Arrival Mercury Final Final Time Capture 2-Body Multi-body 
Date Orbit Mass Orbit of Mass Capture Optimization 

Type (kg) E Flight (kg) Mass Improvement 

12.24.04 Circular 320.16 0 863.220 325.20 290.68 34.52 kg (11.9%) 
12.24.04 Fixed E 320.76 0.2843 862.779 325.71 291.28 34.43 kg (11.8%) 
1.3.05 Circular 335.13 0 868.451 340.48 302.37 38.11 kg (12.6%) 
1.3.05 Fixed E 335.25 0.2484 868.425 340.60 302.36 38.24 kg (12.6%) 
2.2.05 Circular 352.33 0 894.826 358.66 333.12 25.54 kg (7.67%) 
2.2.05 Fixed E 352.37 0.2312 894.808 358.77 332.85 25.92 ke: (7.79%) 

(6) iw 

Table 5 demonstrates that  even when both the launch and Venus flyby are optimized separately 
for each formulation, the performance of the multi-body capture is still nearly 13% better than the 
two-body capture. Table 5a compares the optimal launch date and Venus flyby parameters for each 
formulation. The two-body and multi-body launch date, launch C3, Venus flyby date, and radius 
differ by as much as 5 days, 2.5 $, .14 days, and 1000 km respectively. 

Table 5a 

EARTH LAUNCH - VENUS FLYBY - MERCURY CAPTURE 
Launch Date Free and Venus Flyby Date Free 

Arrival Mercury Launch Launch Venus Venus 
Date Orbit Date c3 Flyby Flyby 

Type (9) Date radius 
(km) 

12.24.04 Circular 500.2800 -6.8152 672.9315 9,229.2140 
12.24.04 Fixed E 500.7208 -6.7911 673.2774 9,183.3512 

1.3.05 Circular 505.0486 -6.0148 680.8927 8,444.7613 
1.3.05 Fixed E 505.0751 -6.0073 680.9158 8,445.9924 

2.2.05 Circular 508.6744 -5.3480 691.3054 9,491.4400 
2.2.05 Fixed E 508.6917 -5.3472 691.3548 9,491.3368 

12.24.04 two-body 499.1950 -9.3150 663.4840 8,286.4606 

1.3.05 Two-body 499.3135 -8.1002 666.4311 8,995.3090 

2.2.05 Two-bodv 510.9248 -6.2652 681.3673 8,055.3965 

Earth Launch to Venus Capture Spiral 

The mass of Venus greatly exceeds that of Mars and Mercury so it is expected that the difference 
between multi-body and two-body capture optimization will be significantly larger for Venus verses 
Mars and Mercury. To test this hypothesis, a Venus capture trajectory problem was constructed. 
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The Earth launch to  Venus capture problem uses a fixed arrival date in a circular orbit around 
Venus of October 18,2004. The flight time varied from 206 days to  289 days. The launch vehicle used 
is a Delta 7326-9.5 with a 7% launch vehicle contingency. The launch V, direction and magnitude 
is free for optimization. Two NSTAR 30-cm ion thrusters are available on the spacecraft. The solar 
array power available to the engines at 1 A.U. is 4.0 kW. This array allows both engines to operate 
at full power (184.4mN at 5.2 kw) anywhere below a heliocentric radius of 0.821 A.U. The target 
orbit at Venus is a circular orbit with a radius of 100,000 km. The multi-body results are compared 
to the optimal two-body rendezvous. The optimal two-body rendezvous uses the same launch date 
and flight time to  capture as the corresponding optimal multi-body result. For example, for a flight 
time is 246 days, the optimal trajectory to a circular orbit around Venus uses 246 days but achieves 
capture on day 202.46. A comparison is made to  the optimal two-body capture using the same 
launch date and a fixed flight time of 202.46 days. The two-body problem is based on a massless 
Venus and the constraint Eq. (14). 

A typical optimal multi-body Venus orbit insertion is plotted in Figure 5. Figure 6 is the capture 
portion of the same trajectory centered on Venus. The final orbit in Figure 6 does not appear circular 
because the orbit is inclined and the trajectory is projected onto the ecliptic. 

Figures 7 and 8 compare the multi-body mass delivered to  the two-body mass delivered to  
capture. Figure 7 is a plot of the mass delivered verses flight time to  capture at Venus. The 
multi-body optimization mass delivered (upper line) is significantly greater than the two-body mass 
delivered (lower line). Figure 8 is a plot of the percent improvement in mass delivered to  capture by 
multi-body optimization compared to two-body optimization. The maximum improvement of 30% 
is obtained near a flight time of 165 days. The maximum improvement of for Mercury capture was 
13% and for Mars capture it was 20%. The bumpy-ness of the two-body performance in Figure 7 
occurs because the launch and flight time used for two-body optimization is the launch and capture 
time in the corresponding multi-body optimization. The slope changes in the two-body curve are 
due to  new coasting periods appearing in the multi-body solution that make the progression of the 
launch and capture times non-smooth. 

Mars Escape Spiral to Earth Capture Spiral 

A Mars escape to  Earth capture problem illustrates the that at least two local minima exist in 
the the capture problem. The Mars escape to Earth capture trajectory begins in orbit around Mars 
on April 15, 2005. The initial Mars orbit has eccentricity of .05, a semi-major axis of 45,000 km, 
and an inclination of 5" relative to the ecliptic. The spiral at  Mars changes little between test cases. 
Some Mars spirals include a short coast, some do not, but all have the same number of revolutions 
to escape. Figure 9 is a plot of a typical Mars escape spiral. The spiral to  escape Mars is used as a 
plausible trajectory origin (Mars sample return), but was not the central focus of this investigation. 
The focus of this investigation is on the capture into the Earth system. The target orbit at Earth 
was either a captured orbit with a fixed periapsis of 100,000 km or an orbit with a fixed, negative 
final energy of -1.4 $. Figure 10 is a plot of a typical complete trajectory. The initial spacecraft 
mass in Mars orbit is 500 kg. The solar array power available to  the thrusters is 11 kw at 1 A.U. 
Two NSTAR 30-cm ion thrusters are available on the spacecraft. The total flight time is varied 
between 295 and 390 days. 
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Optimal Earth Launch - Venus Circular Orbit Insertion 
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Figure 5: An example of an optimal trajectory for the Earth launch to  Venus circular orbit 
insertion prchlem. The 2rrcws along the spacecraft trajectory indicate the thrust direction. The 
lack of arrows along the trajectory indicate coasting periods. 
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Figure 7: Comparison of SDC optimal multi-body verses two-body mass delivered for the Earth 
launch to  Venus circular orbit insertion problem. 
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Mars Escape Spiral to Earth Capture Spiral, TOF = 320d 
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Figure 10: An example of a complete Mars escape to  Earth capture trajectory. 
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Three-body Capture 

A series of optimal Mars escape spiral to  Earth capture spiral trajectories were generated using 
SDC. This series assumes the Earth is gravitating but the Moon is not (three-body capture problem). 
Four body capture (Moon gravitating) is the subject of an upcoming paper. The target orbit at 
Earth is constrained to  have an energy of -1.4 $. 

There are at least two basic classes of optimal captures for flight time limited (TOF < 385 days) 
three-body capture. One minima type has a high final Earth orbit eccentricity and the  other minima 
type has a low final orbit eccentricity. The relative superiority of the minima types depends on the 
allowed flight time. An example of a low eccentricity type Earth capture is plotted in Figure 11. 
Minima of this type are characterized by continuous engine operation throughout the capture and 
spiral. Figure 12 is a plot of a typical high eccentricity minima. Thrust arcs roughly centered on 
the periapsis characterize this type of trajectory. 

For long flight times (in excess of 385 days) the variety of high eccentricity type minima increases. 
For shorter flight times there seems to be a single high eccentricity minima for each flight time. The 
number of revolutions at the Earth begins at 2.5 for the shortest possible flight times and steadily 
increases to, and plateaus at, 2.75. When the flight time is long enough, there is freedom to add 
additional revolutions to  the capture at Earth, and change the approach. Two examples are provided 
in Figures 13 and 14. The trajectory plotted in Figure 13 has a similar initial approach (inside the 
Moon’s orbit) as short flight time, high eccentricity minima. The only difference is the initial capture 
orbit is much larger and the trajectory involves 3.5 revolutions of the Earth. The trajectory in Figure 
14 has a very different initial approach, far outside the orbit of the Moon. 

Figure 15 is a plot of the optimal three-body performance (final mass) verses flight time. Low 
eccentricity minima are plotted with triangles and high eccentricity minima are plotted with squares. 
Stars are used to  plot the two long flight-time minima corresponding to  Figures 13 and 14. The 
relative difference between minima types for a given flight time is small. However, the ranges that 
different minima occur in have structure. Figure 15 indicates that for short flight times (less than 
331 days), only low eccentricity solutions are obtained. This result is related to  the fact that for 
a highly constrained flight time, the thrusters must operate nearly continuously. If the thrusters 
must operate continuously, then the most efficient spiral shape is as close to  instantaneously circular 
as possible. Figure 15 indicates that for flight times between 331 days and 355 days both high 
and low eccentricity minima are obtained. In this flight-time range, the efficiency of the nearly 
circular spiral creates a minima that coexists with minima that exploit the efficiency of centering 
thrusting arcs around periapsis of a higher eccentricity spiral. The leftmost data point in Figure 15 
represents the minimum feasible flight time trajectory according to  SDC. No trajectory of this type 
exists for flight times less than 295.4 days. Figure 16 is a rescaling of the plot in Figure 15 to  the 
flight-time range in which both high and low eccentricity minima coexist. Figure 16 indicates that 
high eccentricity minima are inferior to low eccentricity minima for flight times less than 338 days, 
but high eccentricity minima become superior after 338 days. The trajectory shown in Figure 11 
is the longest flight time (flight time of 355 days), low eccentricity minima that was obtained. As 
flight time is increased, it is more and more difficult to  choose an initial guess that will converge to  
low eccentricity minima (instead, high eccentricity minima are obtained). This can be understood 
because the low eccentricity minima begin superior, but become inferior to  high eccentricity minima 
as flight time increases. It is likely that the region of influence of low eccentricity minima shrinks 
with increasing flight time. 

Another way to  look at three-body capture is to plot the spacecraft mass at the instant of capture 
verses the time of flight to  the instant of capture. Figures 17 and 18 plot the capture mass verses the 
capture day for the mass-less Moon series. Notice that the difference between the low eccentricity 
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SDC: Mars Spiral Escape-Earth Capture (End Game) 
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Figure 11: An example of a low eccentricity type minima for the Mars escape to Earth capture 
problem without the Moon gravitating (three-body problem). 
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SDC: Mars Spiral Escape-Earth Capture (End Game) 
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Figure 12: An example of a high eccentricity type minima for the Mars escape to  Earth capture 
problem without the Moon gravitating (three-body problem). 
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SDC: Mars Spiral Escape-Earth Capture (End Game) 
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Figure 13: An example of a long flight-time high eccentricity type minima for the Mars escape 
to Earth capture problem without the Moon gravitating (three-body problem). 
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Figure 14: An example of a long flight-time high eccentricity type minima for the Mars escape 
to Earth capture problem without the Moon gravitating (three-body problem). 
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and the high eccentricity minima is again small. The minimum feasible flight time trajectory to  a 
final energy of -1.4 $ (total flight time = 295.4 days) captures on day 273. Figure 18 is a magnified 
portion of the plot in Figure 17. Figure 18 shows that there is a smooth bifurcation in capture mass 
between the two types of minima unlike the bifurcation in final mass in Figure 16. Figures 17 and 
18 show that the capture mass is always higher for low eccentricity minima, however, recall that  the 
final mass is not always better (see Figure 16). The objective is to  maximize final mass in orbit, 
not maximize the mass at the instant of capture. Low eccentricity minima naturally capture at 
higher mass. For short flight times, the higher capture mass of low eccentricity minima exceeds the 
advantage that high eccentricity minima have: higher efficiency thrusting during the spiral in. This 
is because the coasting periods near apogee of high eccentricity minima are short in response to the 
short over-all flight time. The efficiency of the Earth spiral after capture is illustrated in Figure 19. 
Figure 19 is a plot of the propellant mass fraction required from capture to  reach the target final 
energy in Earth orbit of -1.4 $. The mass fraction is measured relative to the spacecraft mass at 
the instant of capture. 'The efficiency of high eccentricity spirals is always better (lower propellant 
mass fraction) than low eccentricity minima. The efficiency of high eccentricity spirals increases 
with flight time because less thrusting far from periapsis is necessary when there is more flight time 
freedom. 

Two-body Capture 

The two-body capture problem was optimized for comparison to  the three-body results presented 
above. The two-body problem treats the Earth and Moon as massless, and the rendezvous condition 
Eq. (14) is used to constrzin the final spacecraft Y" nnsition and velocity to  match that  of the Earth- 
Moon barycenter. Figure 20 is a plot combining the two- and three-body local minima. Figure 
20 indicates that all multi-body minima outperform the corresponding two-body minima - which 
is consistent with the previous investigations in this paper. The minimum feasible flight time to  
capture for the two-body problem is nearly 20 days longer than the minimum three-body flight time 
to  capture. Table 6 provides the relative improvement of multi-body optimization capture mass 
verses two-body optimization capture mass for various flight times to  capture. 
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Figure 18: Capture mass verses flight time to capture for the Mars escape spiral to Earth 
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Mars Escape to Earth Capture: Massless Moon, Earth Spiral Efficiencv 
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minima. 
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Table 6 

MARS ESCAPE TO EARTH CAPTURE 
Flight Optimal Optimal Improvment Over 

Time to Multi-body Two-body Two-body Capture 
Capture Capture Capture 
(days) Mass (kg) Mass (kg) 
333.80 422.44 406.71 15.70 kg 3.9% 
315.20 418.30 400.05 18.30 kg 4.6% 
291.82 407.82 357.28 50.54 kg 14.1% 
289.50 406.00 344.28 61.72 kg 17.9% 
281.61 390.14 INFEASIBLE 390.14 kg ~ 0 %  

CONCLUSION 

Using Lunar Interactions for Earth Escape and Capture 

The remander of this paper will focus on using lunar interactions for both escape from Earth 
and ca,pture at Earth. 

The capture problems discussed up to  this point can be classified as “three-body” problems. 
The significant gravitating bodies during capture are the Sun and the plant at which capture is 
cccurring. A11 other planets are gravitating, but their infiuence diiring capture is very small. Escape 
and capture in the Earth-Moon system can accordingly be classified as a “four-body” problem 
because the list of significant gravitating bodies must now include the Moon in addition to the Sun 
and Earth. Obviously, the four body problem generates a more complex optimization space. 

SDC is uniquely suited to explore the optimal trajectories that exist in the four-body case. SDC 
does not require a good guess to  begin the optimization. It is this feature that is used to explore 
the complex optima space of four-body capture and escape. A large number of poor initial guesses 
and different initial conditions were generated to  begin separate optimizations. The purpose of this 
procedure is to  investigate (with as little bias as possible) the range of available, locally optimal 
trajectories. Hundreds of different optimal escape and capture trajectories were obtained in this 
way. A clarification system was developed and all trajectories were classified as belonging to one of 
ten distinct minima types. Escape and capture exhibits a symmetry in that,  capture minima often 
have analogous escape minima. 

The relative performance of four-body optima can be compared to three-body optima by setting 
the Moon’s mass to  zero and resolving the optimization. Similarly, the multi-body solutions can be 
compared to  the two-body solution by setting both the Earth and Moon mass to zero and using 
constraint Eq. (14) for a two-body capture at Earth. 

CONCLUSION 

SDC is robust for solving multi-body trajectory optimization problems. SDC is able to  investi- 
gate the complex optimization space of capture and escape using low-thrust. SDC converges readily 
even when trajectories have length scale changes of over lo4. Trajectories that involve planet cen- 
tered spirals and interplanetary legs involve large changes in time and length scales. Large scale 
changes are known to cause difficulty for optimization methods. Linking planet centered spirals to  
interplanetary destinations or origins is essential for complete trajectory optimization. SDC provides 
a means for computing optimal trajectories that can begin in orbit around one planet and end in 
orbit around another planet. 
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The two-body formulation of rendezvous is a poor approximation to  the performance of multi- 
body capture. Optimizing a multi-body trajectory was shown to improve performance (mass de- 
livered) by up to  13%, 20% and 30% for the examples that capture at Mercury, Mars, and Venus 
respectively. In addition, two-body rendezvous models predict significantly different optimal launch, 
intermediate flyby, and arrival dates than does SDC with the high-fidelity multi-body capture con- 
straints used in this research. 

The capture problems analyzed in this paper can be classified as “three-body” problems. The 
significant gravitating bodies during capture are the Sun and the plant at which capture is occurring. 
All other planets are gravitating, but their influence during capture is very small. Escape and capture 
in the Earth-Moon system can accordingly be classified as a “four-body” problem because the list 
of significant gravitating bodies must now include the Moon in addition to the Sun and Earth. 
Obviously, the four body problem generates a more complex optimization space. SDC is uniquely 
suited to explore the optiiiial trajectories that exist in tile four-body case. upcoming papers wiii 
present the results of applying SDC to capture and escape from the Earth-Moon system. 
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