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A6strucf- Pseudonoise (PN) code tracking loops in direct-sequence 
spread-spectrum systems are often implemented using digital hardware. 
Performance degradation due to quantization and sampling effects is not 
adequately characterized by the traditional analog system feedback loop 
analysis. A low-complexity digital PN code tracking loop with one-bit non- 
commensurate sampling is analyzed, and the steady-state delay error van- 
ance is derived. The results are compared with that of an equivalent ana- 
log loop. 

I. INTRODUCTION 
In order to extract data or timing information from a direct 

sequence spread spectrum (DS-SS) signal, one must know the 
phase of the received pseudonoise (PN) code with respect to a 
locally generated replica of the code. This process is divided 
into two stages: acquisition and tracking. Code acquisition 
consists of coarsely determining the received code phase (usu- 
ally to within half a chip), while code tracking refines this esti- 
mate and maintains fine alignment between the received and lo- 
cal codes. The code tracking process is typically implemented 
as a tracking feedback loop; the performance of such a loop 
in its idealized form has been analyzed in [l] and [2]. Digital 
hardware implementation of these loops, however, introduces 
performance degradation through sampling and quantization 
that is not reflected in the standard analog loop analysis. In this 
paper we analyze the performance of one such reduced com- 
plexity loop, similar to that introduced by Thomas [3], which 
uses non-commensurate sampling (non-integer sample to chip 
time ratio) [4], one-bit analog-to-digital (AD) conversion, and 
three level quantization of the carrier phase compensation sig- 
nal. 

A brief description of the use of one-bit non-commensurate 
sampling to achieve sub-sample timing accuracy will be given 
in Section I1 followed by the presentation and performance 
analysis of the code tracking loop in Sections 111 and IV. Op- 
timization of this system for a given operating point is demon- 
strated in Section V along with a performance comparison with 
an equivalent analog code tracking loop. 

11. NON-COMMENSURATE SAMPLING 
The sampling and quantization operations of an A/D con- 

verter are typically modeled as an integrate and dump circuit 
followed by a quantizer. If the integration time is significantly 
smaller than the sample time, we can simplify this model to 
that of an ideal sampler followed by a quantizer. If the sample 
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rate is an integer multiple of the chip rate, the timing resolution 
of the PN tracking system with an ideal sampler is limited to 
the sample time. This follows from observing that the sample 
positions of the received signal with respect to the chip tran- 
sition positions are identical for each chip, and that in order 
for the sampled sequence resulting from one time offset to be 
discemible from the sampled sequence resulting from a differ- 
ent time offset (chip transition positions), a shift of up to one 
sample time may be required. 

In order to achieve sub-sample-time discrimination in a PN 
tracking system using ideal sampling, a non-integer sample 
to chip time ratio can be used: this is referred to as non- 
commensurate sampling. By sampling the received signal 
and the local reference PN signal in this manner, sampled se- 
quences that are potentially distinguishable at sub-sample time 
differences are created. To determine the achievable timing ac- 
curacy, both the smallest time offset that is guaranteed to intro- 
duce a difference in the sequences as well as the distinguisha- 
bility of the sequences must be considered. 

With non-commensurate sampling, while the sample posi- 
tions with respect to the chip transition positions will differ 
from chip to chip, these positions are periodic and will eventu- 
ally repeat. If the repetition occurs after N samples, there must 
be at least one chip transition difference between the sampled 
received and reference signals within this period; the minimum 
distinguishable time is thus Tc/N.  The sample position period 
N is the smallest integer k such that k . & = n .  T,, where n is 
also an integer. Provided that T,/& is not an irrational number, 
we can solve for the least integer k to obtain a timing accuracy 
of Tc/k. Note that if TC/G is irrational the sample sequence 
never repeats and infinite accuracy is possible, given infinite 
time. However, as all sequence correlations would then be par- 
tial correlations this is not necessarily a desirable property. 

While non-commensurate sampling allows increased timing 
accuracy, it also results in new sequences that do not possess 
the same correlation properties of the original PN sequence, 
and the ability to achieve this accuracy is compromised. The 
autocorrelation function of the sampled sequence is now given 
by 

N 

where z1 and 72 are the delays in the received and reference 
codes. Note that the sampled code sequences no longer have 
the cyclic shift properties that give rise to a dependence solely 
on the difference of the delays in the original code autocor- 



relation function; it is now a multi-variate function dependent 
on both delay positions. Figure 4 shows the autocorrelation 
function, (l), for a system with non-commensurate sampling of 
a maximal length shift register sequence of period M = 4095 
with T,/T, = 40001/20000 (and hence sampled sequence pe- 
riod N = 40001). Note that the autocorrelation function over 
this period is multi-valued; however, when plotted against 
z2 - 71, the effect is negligible. The choice of the sample to 
chip time ratio, T,/T,, and the length of the correlation time, 
N ,  control the degree to which the function is multi-valued 
and, given hardware constraints, can be chosen to minimize 
this spread to ensure the assumptions on the properties of the 
code sequence are approximately true. 

111. CODE TRACKING LOOP 
The transmitted signal is a PN code waveform with rectan- 

gular chips of duration Tc modulating an RF carrier 0,. This 
signal is transmitted across the channel and received with a de- 
lay and reduced amplitude due to signal path loss. To model the 
thermal noise in the receiver front end an additive white Gaus- 
sian noise component with a flat double sided power spectrum 
N0/2 is added to the received signal. Assuming perfect fre- 
quency estimation and demodulation down to an intermediate 
frequency o b  that is much less than the chip rate, the received 
signal can be written in its low-pass equivalent form as 

m 

n=-- 

where p ( t )  is a unit pulse of duration T,, the delay z is uni- 
formly distributed in [ -T , /2 ,  T , / 2 ] ,  the phase offset w is uni- 
formly distributed in [--n,n), N ( t )  is the complex low pass 
equivalent white Gaussian noise process with a flat power spec- 
tral density of 2N0, and P is the power of the transmitted signal. 

Following the signal path of the receiver structure shown in 
Figure 1, the received signal is sampled at a rate l /G,  which 
gives 

where 8 k  = - z) + y, Nk is a complex Gaussian noise 
process with a flat power spectral density of 4N0W, and W is 
the noise bandwidth of the front end. After sampling, one-bit 
quantization results in hard decisions being made on the real 
and imaginary parts independently. The hard decision outputs 
of the in-phase and quadrature-phase channels, denoted as zk 

and Q k  respectively, may be written as 

where 4 and ef take on unity for a correct decision and nega- 
tive one if an error has been made. 

As we are primarily interested in the steady state perfor- 
mance of the tracking loop we assume that both fine frequency 
estimation as well as carrier phase estimation are made using 
the in-phase and quadrature-phase values of a code correlation 
concurrently with or prior to the convergence state of the code 
tracking loop. We will therefore assume perfect frequency and 
phase estimates are available. 

After the hard decision, the frequency and phase offset is 
compensated for by weighting $e in-p?ase and quadrature- 
phase channels hard decisions, zk and Qk, by the three-level 
quantized phase compensation functions f r ( e k )  and f Q ( e k ) ,  

where 

and fQ(6) = fr(8 + n / 2 ) ,  where a E (o,n/4) is set for the par- 
ticular system. This weighting corrects sign changes due to the 
phase offset and removes the decisions with the highest error 
probability. As we have assumed ?eque;?cy and phase synchro- 
nization the real component of (1, + j e k )  . ( f i ( e k )  - j fa(&)) 
forms our test statistic 

g = n { ( f k  + j & k )  ' ( f i ( e k )  - j f Q ( e k ) ) }  

= f r ( e k ) f k  + f Q ( e k ) & k .  

Note that when e k  falls within [-a,a), fk is weighted by 1 and 
&k is weighted by zero. When e k  is in [a, ; -a) both f k  and &k 

are weighted by unity. Similarly when e k  is in [n - a, n +a), fk 

is weighted by - 1 ,  to account for the sign change in that region, 
and Qk is weighted by zero, since it has a high probability of 
error. There are eight such regions of e k :  

R1= [-a,a) R5 = [n-a,n+a) 
R2 = [a, n / 2  - a)  
R3 = [ n / 2  - a, n / 2  + a) 
& = [ n / 2 + a , n - a )  

R6 = [7T + a, 3n/2 - a) 
R7 = [ 3 ~ / 2  - a, 3n/2 + a)  
&3 = [ 3 @ + a , 2 n - a )  

Since we have phase synchronization, a phase induced sign 
change is compensated for by the weighting function and is 
therefore not an error. Incorporating this into the test statistic 
we write 

g k  = c l k + j  I f i ( e k ) I e :  +c[@@j I f Q ( e k ) l e f ,  

where e: and e: are hard decision errors which are dependent 
only on the magnitude of COS(&) and sin(8k) respectively, in 
addition to the received signal power and noise. 

After frequency and phase compensation, correlations of the 
test statistics { g k }  with early and late time shifts of the sam- 
pled despreading code, c(kT, - 3 + T,/2) and c(kT, - 3 - T,/2) 
respectively, are formed, where 3 is the estimate of the path de- 
lay z. Using the sequence formed by sampling the early code 
sequence, the early correlation value ye is given by 

where 6 = C L k ~ - ~ T C / 2 , c , ~ ]  represents the resulting se- 
quence if there were no errors. Separating the sum into regions 
of 8 k  gives us 



If 1/ob << NT, and % $ Z + ,  then over the sum interval e k  

will be evenly distributed throughout [0 ,2x) ,  and the following 
cardinalities will hold: 

N N 

$ - 2 a  
4 . -  N 

271 
= ( 1 - P ) N  

where p = 4 a / x .  As reordering the elements of the sum does 
not effect the result we can write 

BN/2-1  ON- 1 N -  1 

ye = .:e:+ .:e?+ ri [.:+e:]. (5 )  
k=O k=PN/2  k=BN 

In the first and second sums, as the in-phase and quadrature 
channels result from a symmetric bandpass channel, e1 and eQ 
are identically distributed and each have a probability of error 
of 

A I p1 = Pr(ek = -1) =Pr(e f  = -1) 

where we have assumed a uniform distribution of e k ,  which 
can be justified from the zob term within e k ,  and where @(.) is 
the cumulative distribution function of zero mean unit variance 
Gaussian random variable. In the third sum, e: and e? are also 
i.i.d. and each have a probability of error of 

The density function of ye can be found directly by counting 
the number of sign flips in the sum along with their probabil- 
ities. However, analysis with the resulting density is difficult. 
We therefore use the central-limit theorem to approximate the 
density of ye. To invoke the central limit theorem the errors 
must be independent. The test statistic from which the error 
results is dependent upon both the thermal noise and cos(&) 
in the mean term. As the random component of e k  is obz + y, 
which does not change from sample to sample, the samples 
would appear to not be independent. However, with the as- 
sumption that the thermal noise is the dominant factor in the 
test statistic (negative SNR), we can model the errors as in- 
dependent from sample to sample. Therefore, for large N the 
central limit theorem can be invoked and the density of ye is 
Gaussian with mean 

RN-1 N - 1  

Assuming N is large enough to allow us to approximate the 
auto-correlation sequence r(z,?) as r(z - ?) we can write 

N N(T - ?) 
2 Tc 

M --- 

where we have used I T - ? [  5 Tc/2. As N is very large, we 
assume that the partial autocorrelation value may be obtained 
by scaling the autocorrelation function above, so that 

( 1 - P ) N  ( l - p ) N ( ~ - t )  

TC 

Following a similar procedure the variance is given by 

V ~ Y , )  = ~ N [ B P I ( ~ - P I ) + ~ ( ~  - P ) p 2 ( 1 - p z ) ]  

Similarly, yi is a Gaussian random variable with 

TC 1 
and Vur(yl) = Vur(y,). Note that the independence of ye and yi 
can be shown by demonstrating that their their cross moment 
factors. One can also show that successive values of ye and yl 
are independent; they are white processes. 

IV. LOOP ANALYSIS 
The code tracking loop uses the difference between the early 

= z - A and late correlations to form an estimate of the delay 
.Zm; this difference is 

A where C = [( 1 - 2p1)P + 2( 1 - 2p2)( 1 - B)]2N/Tc and where 
Nm is a zero mean Gaussian process with a flat spectral density 

The code tracking loop can then be formulated as a discrete 
time linear feedback loop, as shown in the Figure 2 (note there 
is no loop filter). The input to the loop is Czm + Nm, from which 
the delay estimate, C.Zm is subtracted. The resulting quantity is 
then multiplied by a gain, G d .  and accumulated to form the 
estimate tm+1, which is applied on the next loop update. The 
error in the estimate can therefore be written as 

of 8N [PPI ( 1  - P1) + 2(1 - P ) P 2 ( 1  - P2)I. 

Em = Em-1 - Gd [CEm-l +"-I].  

Assuming that both em and Nm are wide sense stationary second 
order processes we can write them in terms of their orthogonal 



increment process spectral representations [5] and solve for the 
variance of the process as 

0: = 8N[Ppi(l - P I )  +2(1- P)p2(1- p2)I 

with the stability constraint 
m 

In order to avoid oscillatory behavior, we restrict Gd to half of 
the constraint value. The integral in (8) can be solved by trans- 
forming it to the complex domain and performing a contour 
integration around the unit circle, resulting in 

G:8N[BPl(l - PI)  + 2(1 - B)P2(1 - P2)l $= 2 
1 - (1  - Gd [(I - 2pi)p+2(1- 2P2)(1- p)12g) 

(9) 

Note that performance of the loop is parameterized by the 
phase compensation parameter p; an optimization of this pa- 
rameter to minimize o2 is therefore possible for a given sample 
SNR or operating range. 

v. COMPARISON WITH AN ANALOG LOOP 

The use of sampling and quantization in a digital code track- 
ing loop results in a performance penalty when compared to 
that of the ideal analog loop. The criterion for equivalence be- 
tween the digital and analog loops will be that their respective 
transfer functions have the same order and 3dB point. From 
Section IV we note that the transfer function of the digital loop 
is dependent upon the operating point of the loop, which is 
the sample SNR, as well as the value of the loop parameter p; 
matching the loop bandwidth of the digital loop with the ana- 
log loop will therefore require selection of the loop parameters 
with regard to the operating point of the receiver. We first con- 
sider the performance of the equivalent analog code tracking 

A first order baseband analog code tracking loop is shown in 
Figure 3. The input signal is written in its low-pass equivalent 
form as 

loop. 

ca 

.(t) = cnp(t - nTc - Z) + N(t) 
n=--rr, 

where N(t) is a complex Gaussian process with a power spec- 
tral density of 2N0. Note that without the hard decision opera- 
tion of the digital loop there is no need for the frequency offset 
and the signal can be brought completely down to baseband. 
The transfer function of this loop, ignoring the self interference 
noise [6, p. 1551, can be written as 

H ( s )  = Ga 

s+ y ( 1  + A) 

where M is the period of the spreading code. 
Unlike the digital loop, the analog transfer function is not 

a function of the operating point of the receiver. Again using 
the spectral representations of the processes, the variance of the 
estimation error can be written as 

Ga TcNo 0 2  = ~ 

4@ ' 
where we have assumed the front end bandwidth W is much 
greater than the tracking loop bandwidth. 

In order to compare the performance of the analog and digi- 
tal loops we require them to have equivalent bandwidths. From 
(lo), the 3dB bandwidth of the analog loop is given by 

Using (8), the 3dB bandwidth of the digital loop is given by 

oo = cos-1 (4a-;- 1 ) .  & 
A where a = 1 - GdC. As previously noted, the analog loop band- 

width is dependent only on the loop parameter G,, while the 
bandwidth of the digital loop is parameterized by the receiver 
operating point through p1 and p2, the phase compensation pa- 
rameter p, and the loop gain parameter Gd. To obtain equiva- 
lent loops for each operating point, we first choose a by opti- 
mizing the error variance over a E (O,n/4) (corresponding to 
p E (0, l)), and then choose Gd to match the bandwidth with 
that of the analog loop. 

The effects of both sampling and quantization in the digi- 
tal code loop can be elucidated by comparing the digital and 
analog code loop performances in different receiver scenar- 
ios. First consider a receiver with a front end noise bandwidth 
equal to the chip rate, W = 2n/Tc. For the digital code tracking 
loop the optimal choice of the phase compensation parameter 
is found by minimizing (9) with respect to p at each operating 
SNR, (PINOW). Figure 5 contains a plot of the optimal values 
of a versus PINOW for a correlation time of N = 81902 sam- 
ples. Using these optimal values of a and the receiver operating 
point the 3dB points of both the analog and digital loops are 
equated and their respective error variance performances are 
plotted in Figure 6 versus PINo for code loop bandwidths of 
lOHz and 100Hz. For both loop bandwidths, lOHz and 100Hz, 
the digital code loop with its non-commensurate sampling and 
hard decisions suffered approximately 2dB in performance rel- 
ative to the idealized analog code loop. As the receiver front 
end noise bandwidth is equal to the chip-rate, the effects from 
the quantization are the dominating factors in the performance 
loss. To illustrate the effects of the sampling consider a re- 
ceiver without a good anti-aliasing filter, say one having a front 
end noise bandwidth of twice the chip rate. As the hard deci- 
sions in the digital system are made at this much lower SNR 
the performance is greatly reduced relative to the analog sys- 
tem whose performance is independent of the receiver front end 
bandwidth. This is also illustrated in Figure 6 for a loop band- 
width of lOHz which shows a 6dB performance loss relative to 
the analog loop. 
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Fig. 1. Low-pass equivalent digital code tracking loop. 
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Fig. 2. Analytical depiction of the digital code tracking loop. 

VI. CONCLUSIONS 
The methodology for analytically evaluating the perfor- 

mance of a digital code tracking loop in terms of steady-state 
delay error variance using non-commensurate sampling and 
hard decisions was described. The analysis showed that the 
loop bandwidth of the digital loop is dependent upon the oper- 
ating point of the receiver, and that optimization of the phase 
compensation signal with respect the operating point of the 
loop is possible. A comparison between the digital code track- 
ing loop and an equivalent analog loop was made for various 
operating scenarios allowing for an assessment of the perfor- 
mance cost of the non-commensurate sampling and hard deci- 
sion quantization. 
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Fig. 3. Low-pass equivalent analog code loop 
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Fig. 4. The autocorrelation function of the sampled PN code. 
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Fig. 5. The normalized variance versus the phase angle thresh- 
old a. 
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Fig. 6. The variance of the delay error, o:, for both analog and 
digital code tracing loops. 




