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INTRODUCTION 

Improved detectors, new electro-optical devices and vastly improved computational power for data 
analysis have fueled the recent interest in combining biology and spectroscopy. This review article will 
cover three aspects of biomedical spectroscopy. (1 )  Data acquisition: what instruments are available for 
acquiring an image cube and what are the performance trade-offs involved in choosing one over the 
other (2) Data analysis: what are some of the approaches for examining very large and multivariate data 
sets? We shall see that the remote sensing community, focused primarily on geology, has many tools 
that can be applied to biomedical data. (3) Applications: which current research areas in biology and 
medicine can exploit the power of imaging spectroscopy? 

Light is composed of photons with different energies. While we can think of higher energy (shorter 
wavelength) photons as being “blue” and less energetic (longer wavelength) photons as being “red”, 
these color attributes are an artifact of the human visual system. In fact, there turns out to be no simple 
relationship between wavelength content of light and the color we actually perceive. This is (in part) 
because our eyes (and conventional color film and color digital cameras) allocate visible light, no matter 
how spectrally complex, into only about 3 different color bins: red, green and blue (RGB). Light with 
completely different spectral content can have precisely the same RGB coordinates, a phenomlnon 
known as metamerism. For example, red light and green light can combine to form yellow. If we see a 
yellow object, we cannot tell if the color is spectrally pure (as it would be if it were created by a prism 
or rainbow) or if it arose from a mixture of red and green. .. 

Researchers have used human color vision to interpret images since the first microscope. Although we 
perceive three spectral bands and cover a relatively narrow range, the human eye is quite sensitive to 
subtle color differences within that range. When exogenous dyes were used to differentially color cellular 
structures or molecules, the interpretation still relied on color vision, and more recently, on electronic 
color cameras. The addition of fluorescent dyes to the microscopist’s tool kit began to push the limit of 
color vision, electronic or otherwise. The standard detection toolkit of fluorescence microscopy is an 
array of dichroics, filter cubes and other filters designed to separate multiple colored probes, either in 
absorption or fluorescence emission. Increasing the number of probes, as biologists want to do, creates 
so much spectral overlap that filtering cannot separate the probes; i.e., color images of fluorescent probes 
that differ only slightly spectrally appear the same. In that case, we need to use some sort of 
spectroscopy. 

Spectroscopy usually uses single point detectors that cannot easily sample large areas or small areas at 
high resolution. On the other hand, imaging spectroscopy can spectrally image large areas, combining the 
function of a camera (recording spatial information) with that of a spectrometer. These devices can 
measure the spectral content of light at every point in the image: a 1,000 by 1,000 pixel sensor provides 
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one million individual spectra. Once a spectral stack is acquired, mathematical approaches ranging from 
simple to very sophisticated can be used for analysis. Analysis of fluorescent microscopy uses spectral 
signatures to match each pixel with one of the known probes used in the experiment. Imaging 
spectroscopy tells us what is where. 

Once properly calibrated, these images can be used to obtain corrected spectrum for each image pixel, 
which can then be used to identify components in the target. For the geologist, imaging spectroscopy 
yields compositional maps of geologic sites, showing which minerals are where' or to determine the 
composition of the rain forest canopy2. It can detect agricultural pests3 or drought stress, or fertilizer 
application levels. Spectral imaging has uses in industrial process control, in detection of ordinarily 
invisible bruising in fruit, in assessing the viability of transplanted 
so on. Finally, modifications in existing designs and novel approaches have made spectral imaging easy 
to accomplish with a microscope; this combination has promising applications in surgical pathology 
and molecular biology. Fluorescent dyes have recently become available which will increase the 
usefulness of spectral imaging in a variety of areas, including high-throughput screening, genomics, and 
clinical diagnostics. 

in uncovering forgeries, and 

Spectral Image Cubes 

Simply put, an imaging spectrometer acquires the spectrum of each pixel in a 2D spatial scene. As 
shown in Figure 1, the easiest way to think of such a scheme is band sequential imaging, in which 
multiple images of the same scene at different wavelengths are acquired. A key point is that the spectra 
be sampled densely enough to reassemble a spectrum [commensurate with the needs for analysis]. A 
remote sensing instrument may take hundreds of more images over the visible to near-infrared VIR) 
range. There are many technological means of obtaining this data and this article will present a catalog 
of current technologies. The images are typically stacked in a computer, from the lowest wavelength to 
the highest, to create an image cube of the dataset. The spectrum of a selected pixel is obtained by 
skewering it in its third dimension, wavelength, as the inset in Figure 1 shows. While there are many 
ways of acquiring and storing the data, this representation is band-sequential (often termed BSQ), in 
which the images are stacked like a deck of cards and resembles a cube with sides x, y and h 
(wavelength). Even if the data is acquired in some other fashion, it can be reconfigured into this mode. 
Two other data modes are band-interleaved-pixel (BIP) and band-interleaved-line (BIL). In BIP, the 
spectra of successive pixels are stored sequentially. This is advantageous for computation, as the 
spectrum of each pixel can be read directly, as opposed to band-sequential data where one has to read 
in the entire cube to calculate a spectrum of any given pixel. 

INSTRUMENTS 

Before describing specific instruments, it is worthwhile to compare spectral imaging with what can be 
accomplished using standard imaging systems based on conventional RGB sensors. Because most such 
systems rely on single chip cameras, color images can be acquired in a single exposure, typically at 
near-video rate. In contrast, most spectral systems require a series of exposures, so improvements in 
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the quality or utility of the data collected should be large enough to justify the potential penalties in 
cost and throughput and data acquisition time. 

For example, while earlier systems for automated or assisted immunohistochemistry quantitation, a 
relatively simple problem in color analysis, used grayscale cameras and two or more color filters 
somewhere in the light path, recent approaches exploit RGB cameras and analytical strategies of 
varying levels of sophistication and complexity. With automatic thresholding operations, Ruifrok6 was 
able to differentiate between a DAB (brown) stain alone, DAB plus hematoxylin (blue) and 
hematoxylin alone. More recently, this group has shown that conversion of RGB images into optical 
density units allowed for more accurate discrimination. However, RGB sensors have intrinsically broad 
and overlapping regions of spectral sensitivity for their three color channels, and this adversely affects 
unmixing accuracy, especially when separation of similar chromogens is being attempted. Thus, for 
example, a dense brown stain can generate a signal in the post-analysis red channel7. While it may be 
possible to m i x  red, brown and blue using only 3 input images, the optimal wavelengths and 
bandwidths will differ from the broad channels provided by standard RGB imaging systems. 

There are additional technical and practical problems with conventional color imaging. First, many color 
cameras use a CCD that produces a color-encoded analog signal that is digitized by a computer video 
board into R, G and B pixel intensities. The fidelity and consistency of such a system can be variable. 
Section-to-section variability, along with interactions with camera controls such as automatic gain 
control, can induce fluctuations in the image quality. Because the color of a stained object is a product 
of the stain’s transmittance and the camera’s spectral response, it is possible that dyes differing in 
spectral properties could be sensed similarly by the camera and thus be indistinguishable. Finally, the 
spatial resolution of single-chip color CCD cameras is typically lower than that of monochrome 
cameras with the same pixel count because of the color mask and interpolation routines that merge 
information from 3 or more pixels when determining RGB and intensity values 

True imaging spectrometers, in some fashion, acquire a three-dimensional data set, spatial (2D) and 
wavelength as third dimension. The approaches for instruments traditionally involved scanning one of 
the dimensions, either acquiring a complete spectrum for each pixel (or line of pixels) at a single shot 
and then spatially scanning through the scene, or alternatively, taking in the complete scene in a single 
exposure, and then stepping through wavelengths to complete the data cube. While typically the light 
emerging from the imaged object is filtered for spectral content, it is also possible to control the spectral 
content of the illumination. Recently, other instruments have been developed that acquire both spectral 
and spatial information in a single exposure, although with some trade-offs. 

Figure 2 shows an image cube and how different cuts through the data illustrate the different 
approaches. Some of the terminology comes from the origins of imaging spectroscopy, which involved 
performing remote sensing from a moving platform. For example, the whiskbroom imaging 
spectrometer is one in which a single point is scanned perpendicular (cross-track) to the direction of 
motion. The spectrum of each pixel is acquired with a spectrometer and the data is taken a spectrum at 
a time pixel-by-pixel along a line. The name comes from the fact that the path of the scanned pixels 
resembles that of a whiskbroom in action. Similarly, a pushbroom spectrometer images a slit onto a 
focal plane array; the spatial dimension occupies one axis of the array and the spectrum for each pixel is 
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spread out perpendicularly to it. A compete image is acquired one line at a time as the slit is scanned in 
the direction of motion. In biological imaging, point-scanning and slit-scanning confocal microscopes 
use similar image collection geometries respectively. In addition to these techniques, which collect 
spectral data directly, there are other modalities that require mathematical processing of the 
intermediate data. 

We will break up the discussion of instrument types into four general types: 

1. 

2. 

3. 

4. 

Spectral scanning: These use electro-optical devices such as liquid crystal or acousto-optic tunable 
filters, as well as filter wheels and project complete images onto CCDs or other focal plane arrays. 
Spectral scanning can also be achieved by controlling the spectral content of the illumination source 
rather than filtering the remitted light. 
Spatial scanning: These use either pushbroom or whiskbroom configurations with prisms, gratings 
or beam-splitters to create spectral discrimination. 
Interferometric: These typically (but not always) acquire a 2D image and scan optical path 
differences in some manner to obtain a complete interferogram at each pixel; the data needs to be 
mathematically converted into spectra in wavelength space. 
Miscellaneous: These include instruments such as the computed tomographic imaging spectrometer 
and a polarization-dependent rotogram device 

1. Spectral Scanning Instruments. Such instruments are easy to understand and have very simple 
optics. They consist of imaging optics, a tunable filter of some sort for spectral selection (or a tunable 
light source) and a camera. Since the components can be in-line or folded, such systems can be made 
rather compact, suitable for mounting on microscopes or other instruments. The tunable filter can be a 
mechanical filter wheel, a linear variable filter or an electro-optical filter that can be tuned electronically. 

Fixed Filters: The simplest implementation of an imaging spectrometer incorporates a filter wheel 
equipped with a set of fixed bandpass filters in a rotating mount. A variant often necessary for 
fluorescence imaging would substitute a set of filter cubes (combinations of dichroic mirrors, excitation 
and emission barrier filters) for a simple filter wheel. For applications where there are a relatively small 
number of wavelengths needed, pre-set and invariant, this can be a useful technique. For example, 
Speicher et a1.8 has demonstrated fluorescence-based spectral imaging with a filter system generating a 
combinatorial library of 27 colors, enough to paint all the human chromosomes. Furthermore, 
compared to other approaches, a filter wheel can be relative inexpensive and is also quite light efficient 
(although the latter consideration is not straightforward and can depend on the degree of spectral cross- 
talk between channels tolerated). These instruments have limitations. (1) They lack spectral flexibility, 
since only a relatively small number of wavelength choices are available in any one configuration. While 
one could make the filter holder larger to accommodate more filters, this increases the size and expense 
commensurately. (2) The performance of the filters can change unpredictably over time due to aging. 
(3) Switching speeds can be low. (4) Moving parts create noise and vibration. (5) There can be image 
registration problems due to misalignment of filters. 
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Linear Variable Filters: A linear variable filter can also act as a spectral filtering element for an 
imaging spectrometer. For such filters, the transmission varies linearly along the filter; at any 
wavelength, A,, (or position along the filter), the local transmission is a bandpass filter with a width 
that is a fixed fraction of A,. That width is 1-1.5%, depending on the filter, so a typical bandwidth is 
-4-1 0 nm over the visible spectrum. One vendor, OCLI, has marketed a spectrometer without a grating, 
using a linear filter directly on top of a linear CCD detector array. There are similar versions known as 
circular variable filters (CVF) in which the transmission changes with rotational angle of the filter. 

An optical system with a beam waist can use a linear or circular variable filter to create an imaging 
spectrometer by inserting the filter at the location of the minimum spot size. Since the filter’s 
transmission is spatially dependent, a large spot size would give a large and spatially varying 
bandwidth, so the filter is located at a beam waist to reduce the resultant spectral smearing. In this 
mode, the filter acts like a filter wheel with a large number of filters. Images are acquired at each 
wavelength and filter translated or rotated to the next wavelength. Kairos Scientific [www.kairos- 
scientific.com1 has developed a system using a circular variable filter that mounts onto a microscope. 
Surface Optics Corp. (San Diego, CA) has developed an innovative variant based on TDI (Time 
Domain Integration) that reads out an imaging array row-by-row synchronized to the motion of a 
spinning CVF (to avoid the problem of spectral smearing). In conjunction with algorithms implemented 
in hardware, their instrument is capable of acquiring andprocessing 30 image cubes per second. 

Tunable Filters: As the name implies, these devices can tune their spectral passband electronically, 
and without moving parts. Advantages include quiet and vibration-free operation, switching speed, 
spectral selectivity, spectral purity and flexibility. There are several important criteria that such filters 
need to meet. (1) Since the entire image is being filtered, the filter wavelength needs to be constant over 
the entire image or meet some lower limit for edge effects. (2) Introduction of the filter into the optical 
path cannot introduce (significant) image distortion. (3) The tuning time has to be commensurate with 
the dynamics of the experiment. (4) Out-of-band rejection must be sufficiently good that dim in-band 
signals are not contaminated by out-of-band intrusions’. 

a) Liquid crystal tunable filters (LCTFs): LCTFs use electrically controlled liquid crystal elements 
that transmit a certain wavelength band while being relatively opaque to others. The rejection of the 
unselected wavelengths, without further manipulation, is about 1 04: 1 lo. The band pass can be as 
narrow as 1 nm or even less, and the spectral range with a single device can range from 400 nm to 720 in 
the visible 

Mode of action: The LCTF is based on a Lyot filter, a device constructed of a number of static optical 
stages each consisting of a birefringence retarder (quartz for LCTFs) sandwiched between two parallel 
polarizers. A stack of stages function together to pass a single narrow wavelength band ... As the 
incident linearly polarized light traverses the retarder, it is divided into two rays, the ordinary and 
extraordinary, that has different optical paths, given by 

T(A)=27c * Ad/A 
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where A is the birefringence and d is the thickness. After transmission through the retarder, only those 
wavelengths of light in phase are transmitted by the polarizer and passed onto the next filter stage. The 
transmission of a stage is 

T(h)=cos2[r(h)/2] 

as illustrated in Figure 3. The overlap of these continuously varying transmission curves determines 
which wavelengths are passed by the filter stack as a whole. To introduce tunability, a liquid crystal 
layer is added to each stage, as in Figure 3a, which by creating minor changes in retardance affects the 
position along the spectrum where the curves constructively interact. Tunability is provided by the 
partial alignment of the liquid crystals along an applied electric field between the polarizers; the 
stronger the field, the more the alignment and the greater the increase in retardance. Tuning times for 
randomly accessing wavelengths depend on the liquid crystal material used and the number of stages in 
the filter. At the moment, commercial devices use nematic components that result in tuning times of 
approximately 50 to 75 ms. 

Polarizers introduce some restrictions into the operating range of an LCTF filter. Plastic sheet 
polarizers function below -730 nm and Polarcor glass polarizers are usable from -630-1700 nm. In 
practical terms, the VIS to NIR range can be covered from 420 to 1800 nm using 3 devices available 
from CRI, Inc. that address the following spectral regions: 400-720 nm, 650-1 100 nm and 850-1800 
nm, each device covering about 1 octave (2-fold spectral range). 

While the position of the bandpass is actively tunable, its width is fixed and depends on the 
construction of the device. A typical bandpass in the visible is -10 nm, which is wavelength-dependent 
(=A2; 10 nm @ 550 nm grows to 16 nm at 700 nm). Since the bandpass is related to the number of 
stages in the device, any bandpass can be designed and fabricated, from 16 cm-l to 50 nm. The 16 cm-' 
device has been used for Raman imaging spectroscopy ll. The devices are rather spectrally flat over a 
relatively large aperture (38 mm). Like the AOTF, the LCTF is polarization-sensitive, which reduces 
the transmission by half, unless optical means are provided to harvest both polarization states. 

LCTFs work best in a collimated or telecentric optical space, as the maximum f-number that provides 
an off-axis shift of less than 2 nm at the filter edge is -2.5. Since the device operation depends on 
interference effects, photons that are significantly off-axis have a different optical path than on-axis 
photons, creating edge effects. However, since many optics are inherently slower than f/2.5, they can 
be used before optical elements. One of the authors (Bearman) has taken a number of image cubes of 
remote scenes with an LCTF mounted in front of a Nikon 13.5" lens operated at f/4, as have others. 
Similar arrangements are also available commercially from Opto-Knowledge Systems, Inc 
(www.oksi.com). 

The LCTF approach has been used to create image cubes for biological imaging (see below), confocal 
microscopy12, agriculture and imaging archeological documents such as the Dead Sea  scroll^'^. 

b) Acousto-optic tunable filter (AOTF): 
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An acousto-optic tunable filter (AOTF) uses the interaction between a crystal lattice and an acoustic 
wave to diffract an incoming beam into a fixed wavelength. As an applied acoustic wave propagates 
through the crystal, it creates a grating by alternately compressing and relaxing the lattice. Those 
density changes create a local index of refraction changes that acts like a transmission diffiaction grating, 
except that it diffracts one wavelength at a time, so it behaves as a tunable filter. In practice, the 
undiffracted zero-order beam is stopped with a beam stop and the monochromatic diffracted beam is 
available. The wavelength of the diffracted beam is changed by changing the frequency (and 
wavelength) of the acoustic wave, thereby also adjusting the grating spacing. In addition, if multiple RF 
frequencies are launched into the crystal, then combinations of frequencies can be diffracted 
simultaneously; in this it is more flexible than LCTFs, which generate only a single bandpass at a time. 

For visible wavelengths in a tellurium oxide crystal, the applied acoustic wave is RF and can be 
switched very quickly (typically in less than 50 ps) compared to other technologies. Unlike an LCTF 
in which the bandwidth is fixed by the design and construction, an AOTF can vary the bandwidth by 
using closely spaced RFs simultaneously. There are several standard problems with AOTFs, some of 
which have been successfully addressed: blurred images and poor out-of-band rejection ( 4  O-3). The 
acoustic wave spreads as it propagates through the crystal so diffracted rays leave at a variety of 
angles, resulting in blurred images. Use of a compensating prism14 has significantly improved 
resolution. Narrowing the acceptance angle and attending to details of crystal fabrication can also 
overcome image blur and shift, albeit at a cost in light thro~ghput'~. 

Both the AOTF and LCTF imaging spectrometers share an important attribute: they make it easy to 
get very good signal-to-noise spectra. This is due to the band-sequential nature of their operation. 
When spanning a wavelength range, say 400-720 nm, the sample may have a considerable variation in 
reflectivity or transmission over that range. In addition, at the blue end of the spectrum CCD 
sensitivity declines, as does the illumination intensity of many laboratory light sources. As a result, 
there is typically less signal in the blue relative to the red or green part of the spectrum. However, that 
can be compensated for by longer integration times at the wavelengths with reduced signal, something 
not possible with many other devices. In fact, the ideal way to operate a BSQ imaging spectrometer is 
to set a pixel data target value and integrate at each wavelength as long as necessary to obtain that value, 
maintaining the SNR at each wavelength. In that case, the model raw data spectrum of the target pixel 
would be a straight line, with the real data contained in the varying integration times for each 
wavelength. This is a major advantage, especially when there are no restrictions on the data acquisition 
time. 

Spectral leakage can contaminate the acquired spectra. One advantage of the LCTF is a high rejection 
ratio for out-of-band transmission (1 0-3-1 0-5), critical for recovering spectra that can be compared with 
those from other laboratories or with standard spectral libraries. LCTFs can be fabricated with larger 
apertures than AOTFs, although that is not an issue for integration into microscopes, which do not 
need the large aperture. One the other hand, their major drawback is longer tuning time relative to an 
AOTF: -30-50 ms vs. microseconds for the AOTF. There is a switching mode for LCTFs that is 
somewhat faster, around 20 ms, but that is for a limited palette of perhaps 3-4 wavelengths. For 
situations in which the integration time is photon-limited and the exposure time is 250 ms, the tuning 
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time of either device becomes less of a bottleneck for data acquisition. In fact, it is usually the camera 
data transfer rate that dominates acquisition time when light is ample. 

Pushbroom 

Lightform, Inc.I6 has developed a pushbroom imaging spectrometer that is designed to mount to a C- 
mount camera port. It collects a slit image from the object onto a 2D camera in which the spatial 
information is displayed along one axis and wavelength information along the other. Wavelength 
dispersion is provided by a prism. This approach is well suited for scanning gels or searching an object 
for specific spectral features since the entire spectrum of each pixel in the slit image is available in real- 
time. Since gels are too large to image easily, they can be mechanically scanned with this system. With 
this approach, the user does not have to collect an entire image cube, but can assemble an image that 
records hits only for the spectra of interest. If there is a known spectral feature, that feature can be 
identified in each spectral line scan in real-time and used to assembly a classified image without having 
to acquire the entire spectral cube for the whole image field. 

Interferometers 

Rather than scanning in wavelength space, one can also scan in optical-path-difference space and 
capture an interferogram for each pixel, which is then inverted via the FFT algorithm to obtain an image 
cube in wavelength space. Several devices have been developed and one is available commercially. 
Although seemingly different from instruments that acquire sequential wavelength images, many of the 
interferometric devices are similar in spirit and suffer from similar problems. Like the BSQ imagers, 
interferometric imaging spectrometers also require acquisition of many images, and sometimes an order 
of magnitude more images. For so many images, the data acquisitions time may become limited by 
camera image transfer time. 

Applied Spectral Imaging of Israel was perhaps the first company to make a commercially available 
imaging spectrometer. The device is a common-path Sagnac interferometer in which the interferogram is 
spread out over a 2-dimensional sensor17. An optical element changes the optical path difference 
(OPD) in stepwise fashion, while a CCD (or other technology) focal plane array captures the resulting 
interference pattern at each step. Since the interferogram moves with each OPD image, object motion is 
a challenge for this instrument. If the object moves and the images are corrected by re-registering the 
spatial content to compensate, any errors will show up as incorrect interferograms and propagate into 
the spectra after inversion. The AS1 instrument has been used for cytogenetics18 and cell pathology", 
to name a few applications. 

Another interferometric device has been developed by Itoh2'. This device uses a tilted and wedged lens 
array and mirrors to acquire all the necessary images at different OPD simultaneously on a 2D imager. 
Itoh has demonstrated imaging of rapidly moving objects with this approach, a laser ablation plume and 
rotating (1 800 RPM) targets. Since all the multiple images have to be acquired on a single detector, 
there is a trade-off between image size and spectral resolution. 
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One problem with interferometers is that of the center burst (OPD=O), which is quite bright relative to 
the rest of the fringes. Since the detector is an imager, the integration time or illumination intensity has 
to be reduced sufficiently to avoid saturation (or blooming) for pixels at the center burst, thereby 
reducing the fringe contrast further out in the interferogram. The reduced fringe contrast decreases the 
signal and resulting in increased noise in the image cube in wavelength space. 

There has been considerable discussion in the literature about the relative photon efficiency of 
interferometers compared to scanning instruments. Although on the surface the interferometer appears 
to have a substantial advantage over other approaches due to the fact that it collects all the spectral 
information simultaneously2’, several papers22’ 23 have argued that for real instruments with read-noise 
and other noise sources, this advantage disappears in most imaging regimes. Furthermore, in the 
spectrally sparse scenes typical of fluorescence imaging, in which signals occupy only a fraction of the 
total spectral range, the ability of tunable filters to capture images only at informative wavelengths 
improves their performance relative to interferometer-based approaches that have to collect all 
wavelengths, informative or not. 

Other Approaches 

Rotogram 

Microcosm Inc. (Columbia, MD) recently developed an imaging spectrometer using a new spectral 
imaging technique based on the phenomenon of the dispersion of optical rotation24. Figure 4 
schematically represents the optical layout of the HSI with polarizers at the input and output of an 
optically active rotating medi um... The polarization plane of linearly polarized light is rotated during 
propagation through the optically actively rotator element so that the rotation angle, cp(h), of the plane 
of polarization of the output light depends on the wavelength of the light and the path length through 
the optically active rotator element. The path length through the active medium can be varied, thus 
incrementally increasing the rotation of each wavelength component present. After passing through 
the output polarization analyzer, an intensity function is measured for each incremental polarization 
path length. This arrangement permits the wavelength-dependent polarization rotation to be uniform 
over a large two-dimensional aperture so a CCD is a suitable detector. The intensity fimction resulting 
from a stack of images can be analyzed at any pixel in the image by mathematical methods to yield a 
highly accurate spectrum at each point in the image. Like several data acquisition methods, there is 
some computation required for reconstructing the image cube. 

Like the LCTF or the AOTF, the transmission is polarization-dependent. The unit will transmit 40- 
45% of the incoming unpolarized light depending upon the rotator material. If the incoming light is 
polarized, then the throughput efficiency can reach 85-90%. The HSI can have a large clear aperture 
that provides excellent light coupling through the device for the use of wide-field spectral imaging. It 
does not induce any beam deflection or image movement and can be used in-line with almost any 
imaging system. In a different configuration, the HSI is suitable for use with a point-scanning device 
such as laser scanning microscopes or alternatively the classical push-broom and whisk-broom 
configurations are easily achieved and offer high speed and arbitrarily high spectral resolution 
depending on the design and application. 



11/26/01 10 

Computed Tomographic Imaging Spectrometer (CTIS) 
A recent approach to imaging spectroscopy is tomographic imaging, as illustrated in Figure 5. With this 
technique, diffractive optics disperse the spectral and spatial information of each pixel onto an imaging 
sensor; an image cube in wavelength space is reconstructed from a single image. Since it turns out that the 
mathematics of the reconstruction is the same as tomographic imaging, such devices are known as 
computed tomographic imaging spectrometers (CTIS). Originally proposed by several  researcher^^',^^ in 
the early nineties, they have been further developed by Descour et 

A diffractive optical element operating at multiple orders creates an array of images on the sensor. 
Development of techniques for fabricating the grating with e-beam lithography has been the main driver 
in development of this instrument2'. It is important to note that each image is not simply composed of 
single wavelengths; that information is multiplexed over the entire array. Figure 5 shows how the 
spectrum of a single pixel is distributed by the diffractive disperser. Note that there is a zero-order 
image which can be used for focusing, a difficult task for many spectral imagers. A calibration matrix is 
necessary to perform the reconstruction; it is obtained by measuring the location on the image plane of 
pixels in the object plane at different wavelength with a movable fiber optic coupled to a 
monochromator. A CTIS can operate over a large wavelength range, easily fiom 400-800 nm and with 
the proper detector can operate in the IR or UV. The data from a single image can be reconstructed in a 
variety of ways to adjust image size and wavelength bands. For example, an image can be reconstructed 
with 128 x128 pixels with 20 bands or 64 x 64 pixels and 32 bands, using the same dataset. The only 
difference between the two reconstructions is the calibration matrix. 

A major advantage of the CTIS is speed. Since it takes a single image that contains all the 
spectral/spatial data, it can be run at video rates27, assuming sufficient light and a high-speed camera 
(since a large pixel array is typically required by this method). This potential speed makes it suitable 
for studies such as endoscopy and rapid processes that other instruments cannot handle. Alternatively, 
it is useful for collecting ratiometric data, since all wavelengths are acquired simultaneously. A major 
issue with spectral imagers has always been bandwidth--they tend to produce enormous amounts of 
data that present downlink or transmission problems. For example, a satellite hyperspectral imager can 
produce hundreds of gigabytes of data a day. In the same vein, a remotely sited or operated imaging 
spectrometer can easily present significant bandwidth demands for data transmission in a power limited 
environment [power=bandwidth for telecommunications]. 

CTIS devices have been used for some real-world imaging studies; Descour et al. have demonstrated 
ratiometric pH-imaging with standard probes using a CTIS29 while de la Iglesia et aL30 used one for 
toxicology studies. In both cases, the device allowed capture of the entire spectrum of fluorescent 
probes at once. 

Hadamard Transform Imaging Spectroscopy 

Hadamard transforms have been used for spectroscopy for some time3i and have been adapted to 
fluorescence microscopy. The fabrication of large-format liquid crystal spatial modulators has made 
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this application possible as they can to create the Hadamard masks rapidly and with no moving parts. 
In a series of papers, Jovin and colleagues have developed this implementation of imaging spectroscopy 
and mic ro~copy~~ .  

Like the CTIS or an interferometer, the Hadamard transform spectrometer requires computation to 
reconstruct the image cube in wavelength space. However, it also requires a large number of images, for 
example, Hanley reports acquiring 5 1 1 imges in -1 1 minutes and 5 minutes of computation to transform 
the data. Clearly some of the data time can be reduced by increasing optical efficiency, but like the 
interferometer, the basic nature of the device requires many images. 

Spectral Source 

For microscopy brightfield applications, it is possible to accomplish spectral imaging by tuning the 
illumination light as well as filtering or otherwise analyzing the remitted light. Monochromators 
(usually relying on diffraction gratings and white light sources) are available for such purposes. 
However, as the name implies, monochromators provide illumination consisting only of one spectral 
band of light at a time. However, it is possible to create sources that are more flexible and can produce 
illumination of any desired pure wavelength (like a monochromator) or any selected mixture of pure 
wavelengths simultaneously, with white light output an easy option33. The resulting images can be 
collected by a high-resolution gray-scale CCD camera and interpreted using appropriate algorithms and 
displays. It can be used to create a complete spectral image cube for a sample by taking sequential 
images while illuminating with a series of pure wavelengths, with greater ease and economy than by 
means of devices on the imaging path, such as tunable filters or interferometers. An advantage over 
tunable filters in some applications is that contamination of individual bands by out-of-band light is 
minimal. Furthermore, using software approaches such as projection pursuit vectors, or principal 
components to define specific illuminants, the sample can be illuminated with a precisely controlled 
mixture of wavelengths so that the image presented to the detector is a linear superposition of the 
sample properties at many wavelengths. Thus, spectral discrimination that would previously have 
required the collection of complete spectral cubes might require acquisition of as few as 1 to 3 matched 
spectral images per field. Data acquisition is simplified, and, since spectral processing is being 
performed optically rather than computationally, both acquisition and analysis times are greatly 
reduced ... 

Multispectral confocal microscopy 

Much biology today uses confocal microscopy as a major tool to provide high-resolution 3D imaging of 
cells and tissue. Considerable effort has gone into developing optics and software to provide 
diffraction-limited imaging in commercial instruments. Similar effort has been expended on fluorescent 
probes to illuminate cellular activity. Can we apply imaging spectroscopy to confocal microscopy? 
The answer is yes, but with some limitations. 

Laser scanning confocal microscopes (LSCM) raster a laser spot across the object, obtaining a full 
image a point at a time, similar to the way a whiskbroom imaging spectrometer operates. Since a 
pinhole, present in the optical path to provide confocality, attenuates the signal considerably, a PMT 
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is typically used as a detector to provide sufficient gain and reasonably short dwell-time per pixel. To 
obtain an emission image cube of a fluorescently labeled sample, there are two options. Since the image 
is already being scanned, if we can somehow filter emission wavelength prior to detection we can 
assemble an image cube. This was done recently by inserting an LCTF in front of the PMT in a LSCM 
and stepping through the emission wavelength range12. One could also use an AOTF as the filtering 
element. While serviceable, this is not a practical method, as it requires multiple scans at different 
wavelengths to acquire a full image cube. Aside from the significantly increased time for assembling a z- 
stack, the repeated scans can cause excessive photobleaching. 

For an LCSM, the best data collection scheme would be to acquire the entire spectrum from each 
spatial pixel as it is scanned, making it in effect a whiskbroom imaging spectrometer. In this approach, 
the instrument collects an entire image cube in the same time as a single spatial scan. Zeiss has recently 
introduced a spectral imager that obtains the spectrum for each pixel as the LCSM scans through the 
image. Due to scanning nature of the data collection and the need for gain, it would be largely 
unrewarding to adapt other spectroscopic techniques to an LCSM. 

However, one could image adapting an interferometric or tunable filter device to a confocal microscope 
that uses a Nipkow disk since these present an entire image to a CCD. Thus, any spectroscopic device 
that can be interposed before a CCD camera should be compatible with this or similar confocal designs. 
However, any method that requires a lot of images may pose practical problems when doing real 
experiments due to the possibility of photobleaching and the time involved in acquiring an (x,y,z,h,t) 
image stack. 

Data Analysis 

Image Analysis. 

A number of freestanding spectral analysis tools are available commercially or as free-ware. These 
include Research System International’s ENVITM, and MultiSpecTM 34. Other programs can be 
assembled by the sophisticated user with resources available in such packages as MatLabTM such as the 
statistics, chemometrics and image analysis toolboxes, supplemented with researcher-generated 
MatLab-compatible algorithms downloadable from various internet sites. Still others are available 
bundled with commercially available spectral imaging hardware (OKSI, Kairos Scientific, Spectral 
Dimensions, ChemIcon, etc.). These software tools will not be described further, except for some 
aspects to be touched upon in the following discussion. 

One of the appeals to developing spectral imaging systems or applications is the richness of the 
datasets , comprising both spatial and spectral information, which invites the use of intriguing analytical 
tools. Indeed, many of the algorithms, such as automatic clustering tools, being developed for use with 
genomics datasets (such as the huge expression arrays) are applicable to spectral cubes, with the 
proviso that these methods do not encompass any of the spatial content to be found in the images. 
Methods attempting to link spatial and spectral data are under de~elopment~~.  Another thread in 
current investigations is determining how to select the minimum number of wavelengths needed to 
accomplish specific tasks36. While it may seem intuitive that more spectral data and higher spectral 
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resolution may provide increased analytical precision, this is often not the case. Many wavelengths 
may be “uninformative,” and their inclusion in the dataset merely adds noise. This consideration is 
partially related to the so-called “curse of dimensionality,” which also deals with consequences of the 
huge internal volumes of the hyperspheres that can be used to represent high-dimensional data set^^^. 
(This is more of a problem in remote sensing, in which data sets can contain images at hundreds of 
wavelengths.) 

For the relatively simple problems posed by imaging in the visible range, and where the targets may be 
simply defined fluorescent dyes or chromogens, one may be able to lower the number of wavelengths 
acquired to approximate the number of distinct species sought in the image. Thus analytical techniques 
can be used not only to work with the datasets but also to shape how they are collected. At the limit, 
spectral flexibility can be used simply to provide a capability to select one or more specific 
wavelengths for the purposes of increasing contrast or enhancing the utility of straightforward image- 
analysis tools. In a recent publication, Ornberg et 
wavelengths for separating signal from background in samples stained with a single chromogen plus 
background stain. Using a simple processing routine, the authors were able to collect and analyze 2-3 
images per minute. 

describe using a tunable filter to identify optimal 

Analysis of Spectral Images 

Assuming that more than a couple of wavelengths have been collected, the task of analysis usually 
involves classification, m i x i n g ,  or both. Classification involves the assigning of each pixel to one or 
more spectrally defined classes (or to an “unclassified” class, pace Bertrand Russell). Classification is 
equivalent to spectral segmentation; it is an exclusive operation in which a pixel or object is assigned to 
a single class using one or more of a variety of metrics. On the other hand, when pixels can be or are 
composed of more than one spectral class, as is often encountered when multiplexed protein or nucleic 
acid probes are used, then the pixels have to be “unmixed,” yielding estimates of the proportion of each 
class present. Overall, the steps involved typically consist of: 

1) Detection and/or selection of appropriate spectra for subsequent analysis; 
2) Spectral classification or pixel-unmixing. 

Pixel Classification. There are several approaches to classifying pixels in a spectral image. The 
minimum squared error method compares the spectra at each pixel in the image with a set of reference 
spectra, choosing the most “similar” using a least-squares (Euclidean distance) criterion. This metric 
compares spectral means; other distance-metrics such as Mahalanobis distance39 can be used that are 
sensitive to higher order statistics such as class variances. Related approaches convert spectra into n- 
dimensional vectors, and the angles between such vectors can be used as measures of similarity4’. 
Determining which spectra to use for the classification procedure is not always straightforward. In 
simple cases, the reference spectra can be selected from obvious structures in the image (foci of cancer 
vs. normal cells, for example) or from established spectral libraries. Alternatively, informative spectra 
can be extracted using statistical analysis methods, such as principal component analysis (PCA) or 
clustering methods4’. Instead of using a classified pseudo-color display, spectral similarity can also be 
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illustrated by mapping the degree of similarity using gray-scale intensity. This operation can reveal 
otherwise unapparent morphological details42. 

Pixel-Unmixing: Spectral classification methods are suitable for images in which no pure spectral 
components are likely to exist, such as in histologically stained samples. In other types of images, such 
as those generated by immunofluorescence or in-situ hybridization procedures, multiple distinct 
spectral signals may co-exist in a single pixel to form the detected signal. Spectrally mixed pixels result 
when objects cannot be resolved either at an object boundary (spatial mixture), when more than one 
object is located along the optical path (depth mixture), or when multiple probes are co-localized within 
a pixel. In fluorescence, due to the additive nature of the light signal, the observed spectrum is a linear 
mixture of the component spectra, weighted by the amount of each probe. A linear combinations 
algorithm can be used to unmix the summed signal arising from the pure spectral components, to 
recover the weighting coefficients. Given an appropriate set of standards, the algorithm can quantitate 
the absolute amount of each label present43. 

In contrast to fluorescence images, imaging multiplexed samples (such as immunohistochemistry 
studies) in brightfield must take into account the behavior of absorbing chromophores that, rather than 
being additive, subtract signal fiom the transmitted light in a non-linear fashion. Conversion of the 
brightfield image from transmittance to optical density (OD), a straightforward mathematical 
procedure, permits the use of the same linear m i x i n g  algorithms that work with fluorescence. 

Automated end-member detection: How does one select which spectra to use for unmixing? In many 
cases, this is easy. If one is doing standard immunofluorescence studies, the spectra of the 
fluorophores, imaged one at a time, can be stored in a spectral library and used to unmix images in 
which multiple fluors are present. But what if one does not have pure spectral species to work with, 
for example, if a single, multiply labeled image is available, or if, to change applications, one is trying to 
analyze a remote scene about which there is little apriori knowledge available? There are tools that can 
identify the pure spectral species present in an image, without a priori knowledge, by deconstructing 
the spectral content into its presumed components. ENVITM provides a tool based on convex hull 
analysis that considers spectral endmembers (the pure species) to occupy the periphery of a data cloud 
all of whose mixed species must fall within, rather than on the surface. The cloud (in which each pixel’s 
location is determined by its spectral content in n-dimensional space) is rotated randomly and projected 
onto a hyperplane. Pixels that repeatedly end up on the periphery after multiple projections are 
considered to be endmembers and can be used to unmix the image. This procedure can be quite time- 
consuming. Another specialized utility, N-FINDR44 uses an analytical approach rather than multiple 
projections, and accomplishes the same task quite efficiently. 

Dimensionality reduction and automated cluster analysis: Spectral data, as noted above, can be 
expressed as points in hyperspace. Spectrally similar pixels will cluster together and algorithms, some 
of which are similar to those used for analyzing genetic expression arrays, can be used to identify such 
clusters, which might represent meaningful bases for spectral classification45y46. Frequently, such 
analysis is either impossible or inefficient when all wavelengths are included in the dataset. Because 
there is a great deal of covariance in typical datasets (Le., the intensity at one wavelength predicts to a 
high degree the intensity at neighboring wavelengths), the number of dimensions needed to express the 
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actual information content in a dataset is often far less than the number of dimensions in the dataset 
itself. Principal component analysis (PCA) is one of a family of statistical tools that can identify the 
most informative combinations of wavelengths (by rotating the basis vectors of the original dataset), 
and can segregate signal from noise (with some major limitations). Typically, the dimensionality of a 
25-wavelength image cube of a standard histology sample can be reduced to 3 or 4 dimensions (which 
are composed of linear combinations of many of the original wavelengths) while preserving virtually all 
of the spectral information. Clustering algorithms can then readily work on such a reduced dataset to 
identify meaningful spectral clusters, although some techniques, such as support vector machines 47 are 
designed to use the original full feature space. A large variety of clustering methods, including iterative, 
analytical, neural net, fuzzy logic and genetic algorithm-based approaches, both published and 
proprietary, have been developed, whose description and virtues are beyond the scope of this review. 
A number of these tools are available as part of the software resources identified at the beginning of this 
section. 

Combined spectral and spatial analysis: All the tools described above are designed to work only on the 
spectral content of the datacube. Remarkably, the pixels could be randomly scrambled, and if their 
associated spectra were preserved, analysis of the resulting scrambled images by the purely spectral- 
based algorithms would be unaffected. Obviously, a more powerful approach would somehow combine 
the rich spatial information present in the images, with the spectral data. This is an evolving field with 
on-going attempts to adapt remote-sensing expertise to problems in biomedical imaging. 

Applications 

There are a number of areas for which spectral imaging holds out promise. This section will concentrate 
on applications involving microscopy and visual light, while touching on applications in other areas. In 
microscopy, the goal can be variously the spectral measurements of natural chromophores or 
environmentally sensitive indicator molecules (imaging spectroscopy), the detection and 
discrimination of multiple analytes (multiplex imaging), and/or the analysis of complex scenes 
(spectral segmentation and morphometry); these functions can be combined. It can thus serve as a 
bridge between the morphological (the traditional strength of pathology) and the molecular. 

Imaging spectroscopy: Conceptually, the most straightforward application of spectral imaging 
involves the simple acquisition of spectra from naturally occurring or adventitious chromophores 
within a sample. Potential uses, in biomedicine, include the characterization of different melanin 
moieties in normal skin, dysplastic and malignant pigmented lesions, discrimination between oxy- and 
deoxyhemoglobin, or in the study of any pigments of interest in biological or non-biological samples. 
Comparison between the acquired spectra and pre-existing spectral libraries can be used to aid in the 
identification of specific species. An example of oxygenation-based studies of ischemic regions in a pig 
heart perfusion model is shown in Figure 6 ,  which demonstrates application of macroscopic optics and 
a spectral range encompassing the near-IR. 

Another use of spectral imaging in which the acquired spectrum has intrinsic importance is the 
detection of spectral shifts in (typically fluorescent) indicator dyes. Ion-sensitive dyes that shift their 
emission maxima in response to changing ion concentrations are well known but are not as frequently 
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used as dyes that change their excitation profile, in part because it has been easier to switch rapidly 
between excitation wavelengths than to do the same on the emission side. Emission-responsive dyes, 
such as Indo- 1, SNAFW- 1, Acridine Orange, and Nile Red, can be excited at a single wavelength and 
their emission behavior monitored using either high-resolution or spectroscopy or by detecting 
intensities at only two or perhaps more specific wavelength ranges. An example using propidium 
iodide, which is sensitive to the relative proportion of DNA and RNA in a specimen, is shown in 
Figure 7, which compares 3 samples of yeast under 3 different experimental conditions. Spectral shifts, 
highlighted using principal components analysis (PCA), identify yeast in each class. Such small 
spectral shifts are easily separated by data from an image cube, but are not separable by filters without 
significant cross talk. 

For ratio-based ion-sensitive imaging approaches, one would ideally wish to monitor emission at a 
number of wavelengths simultaneously, rather than sequentially, to obtain an instantaneous pixel-by- 
pixel measure of ion concentration. While LCTFs can be configured to switch between wavelengths 
with a switching time of 1-5 ms, and AOTFs in around 30 microseconds, these still represent serial 
measurements. Simultaneous measures can be achieved either by using the CTIS approach described 
above, or by using beam-splitters and interference filters to direct light with the desired wavelengths to 
one or more detectors in parallel. A commercial device that sends up to 4 images at different 
wavelengths simultaneously to a single detector is available from Optical Insights. To our knowledge, a 
comparison of the light efficiency and signal-to-noise capabilities of these different approaches has not 
yet been done. 

Multiplex imaging, including immunohistochemistry and in-situ hybridizations: Spectral 
imaging on an analytic level facilitates multiprobe detection techniques for proteins, RNA and DNA. 
Histochemical, immunohistochemical, immunofluorescent and fluorescent molecular probes bind 
specifically to intra- or extracellular components and can be visualized with either fluorescence or 
bright-field (transmission) optics. Ideally, one would like to apply more than one specific probe at a 
time. 

Spectral Karyotyping: Pioneering work in spectral karyotyping (SKY) using combinatorial labeling of 
metaphase  chromosome^^^ allowed non-ambiguous identification of 27 chromosomes or chromosome 
pairs. This approach has been commercialized by Applied Spectral Imaging (Figure 8). Similar 
approaches using multiple fixed filter sets (M-FISH) have been described by David Ward and 
colleagues’. 

Immunofluorescence: Multi-probe immunophenotyping has become widely used in evaluation of 
hematological malignancies, with four or even as high as 8 fluorescent signals being discriminated with 
sophisticated flow cytometry  instrument^^^. The imaging approach to molecular characterization 
improves on flow cytometry in its ability to visualize the cells under study directly, to localize (and 
co-localize) cellular features, to count discrete objects on a per-cell basis and, in tissue sections, to 
allow correlation with tissue microarchitecture. Using more than 3 or at most 4 labels simultaneously in 
the absence of spectral imaging tools is currently difficult because of the problem of spectral overlap: it 
is not easy to prevent signal from one dye “leaking” into the spectral channel of another, and the 
problem becomes intractable for conventional interference filter-sets as the number of dyes is increased 
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50. Using spectral imaging, seven labels have been successfully discriminated5’. Similar approaches can 
be used with multiple cell-compartment dyes. One problem with immunofluorescence is the 
interference of autofluorescence, which can be particularly troubling when formalin-fixed tissues are 
being examined. Other troubling specimens include many plant samples, insects, and C. elegans 
nematodes. One solution to autofluorescence difficulties is to shift the excitation and emission 
wavelengths into the red and far-red, where autofluorescence is far less intense. If that is not possible, 
then spectral imaging can be used to separate the unwanted autofluorescence signal from that of specific 
fluorescent dyes (Figure 9). In this approach, autofluorescence is treated as another spectral feature, as 
if it were a fluorescent probe. 

Immunohistochemistry: More popular in clinical applications than immunofluorescence, IHC is widely 
used clinically for the detection of diagnostically or prognostically significant molecules in or on cells. 
In the past two decades the technique has become central to the practice of oncologic path~logy~~since 
it can distinguish between look-alike lesions (mesothelioma vs. carcinoma, for example), or divine the 
cellular lineage of extremely undifferentiated neoplasms (lymphoma vs. other so-called “small blue cell” 
tumors). It can also be used to highlight the presence of otherwise easily overlooked microscopic foci of 
tumor, such as micrometastases lurking in lymph nodes, and can be used to measure quantitatively the 
levels of diagnostically or prognostically important markers such as estrogen- and progesterone- 
receptors, Her2-neuY p53, ki-67, and a host of others53. Under some clinical circumstances, and often in 
research situations, double- or triple-staining single slides with different chromophore-coupled 
antibodies may be desirable. Triple-staining procedures are not often performed because of technical 
difficulties; however, with the advent of programmable staining systems, complex staining protocols 
may become less of a hindrance. Despite the non-linear effects of enzyme amplification, 
immunohistochemistry can be made quantitative, if precautions are taken54> 55. The major problem is 
that it is hard to determine visually where and to what extent the different stains may physically 
overlap when there may be co-expression of 2 or more analytes in the same cellular compartment. 
Spectral imaging can overcome this difficulty, even in the presence of considerable spectral overlap 
with the chromogens. Figure 10 demonstrates spectral unmixing of a triple-stained breast cancer 
sample. This specimen was probed with an anti-progesterone receptor (PR) immunostain coupled to a 
brown chromogen (DAB) and an anti-estrogen receptor (ER) immunostain coupled to a red chromogen 
(Fast Red); all nuclei were counterstained with a fairly dark hematoxylin wash. The RGB image reveals 
how difficult it is to determine by eye which cells are expressing PR, which ER and which both. After 
converting the image to OD, and using previously determined spectra for linear unmixing, separate 
images demonstrating localization of the PRY ER and hematoxylin stains are shown. 

FISH and TRISH: In situ hybridization (ISH) has proven to be an invaluable molecular tool in research 
and diagnosis and has enabled major strides to be taken in the fields of gene structure and expression at 
the level of individual cells and in complex tissues. To date, the vast majority of ISH applications have 
relied on fluorescence readout systems because of their sensitivity, spatial resolution, relative 
simplicity, and easy adaptation to multicolor and quantitative methods. As noted above, it can be 
difficult using conventional filter sets to image multiple fluors simultaneously. With spectral imaging, it 
is possible to visualize 6 or more probes simultaneously (Figure 11) although similar feats can be 
accomplished using multiple filter cube sets and cross-talk correction (Larry Morrison, personal 
communication). As noted above21,22,23, issues of speed and signal-to-noise with the various approaches 
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have aroused some degree of controversy. In any event, FISH-based techniques have proven to be 
somewhat problematic in the clinical arena. Drawbacks include the disadvantage that most fluorescent 
signals fade upon exposure to light and during storage, interference by autofluorescence (which can be 
severe in formaldehyde-fixed tissues), and the cost of the microscopic and imaging equipment needed 
(not to mention the inconvenience of having to dim the lights around the imaging station). In addition, it 
is difficult to combine FISH with routine histopathological stains that can reveal the morphological 
context of the images. 

Some of these difficulties have recently been overcome with the development of non-fading, brightfield 
detection methods for ISH signals56, 57, 58. Signals can readily be detected in tissue sections, which can 
also be counterstained with hematoxylin or other general histology stains. Finally, brightfield, or 
transmission-ISH (TRISH) can be combined with immunohistochemistry to provide truly 
multiparameter molecular characterization. An example of spectrally unmixed 3-color TRISH is shown 
in Figure 12 which includes an example of spectrally resolving physically overlapped centromeric 
chromosome probes. 

Spectral segmentation and morphometry: 

Prostate cancer cells can be spectrally detected in images of prostate biopsy tissue stained with 
hematoxylin and eosin. This capability could be useful, for example, in automated screening of prostate 
“chips” removed for benign prostatic hyperplasia. Large volumes of tissue have to be examined in a 
search for potentially tiny foci of clinically unsuspected cancer. Figure 13 demonstrates that it is 
possible to spectrally separate malignant and normal epithelial cells, and to detect basal cells as well 
(these are a second cell layer found in normal prostate glands but absent in cancer). The segmentation is 
not perfect. Some of the imperfections (such as isolated misclassified pixels) can be suppressed using 
image-processing techniques. However, the limitations in the present case include the fact that the 
relatively unsophisticated minimum square error classification algorithm was used. More generally, it is 
likely that the stains, hematoxylin and eosin-convenient, ubiquitous and used for generations-may 
not be the optimal choice for spectral analysis of tissue. 

Another demonstration of spectral classification (Figure 14) is provided by Malik and his colleagues, 
who used spectral characteristics to distinguish between morphologically similar circulating B-cell 
lymphocytic leukemia cells and normal  lymphocyte^^^. These authors also showed how spectral tools 
can be used to highlight morphological features that can then be used to further characterize cells or 
tissues (Figure 14). 

Conclusion: Fueled by rapid advances in instrumentation, software and algorithmic developments, 
novel dyes and chromogens, improvements in sample processing, and, stimulated by the genomics 
revolution, a need to increase throughput and multiplexing capabilities, spectral imaging is poised to 
make an ever-increasing contribution to biomedicine and related arts. 

This research was carried out partially at the Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with the National Aeronautics and Space Administration 
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Figure captions for Biological Imaging Spectroscopy 
Gregory Bearman, Jet Propulsion Laboratory, California Institute of Technology 

Richard Levenson, Cambridge Research and Instrumentation, Wobum, MA 

Figure 1. An illustration of the basics of imaging spectroscopy. Multiple images of the 
same scene are acquired a many different wavelengths, as schematically shown. The 
spectrum of any pixel in the image can be obtained by plotting signal against wavelength 
over the spectral range available. The images here are from a human brain, imaged after 
being frozen. The white areas on the side are the frozen matrix that maintains the brain’s 
shape and provide some hydration. 

Figure 2. A schematic illustration of the various approaches the acquiring spectral image 
cubes. In each case, it is shown how a techniques slices through an (x,y,h) data set. 

Figure 3. Operation of a liquid crystal tunable filter. Each successive stage of the filter is 
used to help cancel unwanted transmission of the previous stages. For a multistage filter, 
the final transmission is at a fixed peak. Tunability is introduced via the liquid crystal 
layer of 3b, which voltage tunes the retardance of each stage. This tunability is used to 
move the band of constructive interference to the desired wavelength. 

Figure 4. Operation of an acousto-optic tunable filter. An acoustic wave, launched into a 
crystal by a transducer, produces a Bragg grating that diffracts the incident light. There 
are three output beams, a undiffracted beam and two monochromatic ones, one polarized 
vertical and the other horizontal. 

Figure 5. Operation of the Microcosm imaging spectrometer. 

Figure 6. Computed Tomographic Imaging Spectrometer. A diffractive grating, written 
by e-beam lithography, multiplexes the spatial and spectral information of a single pixel 
onto many sensor pixels. The observed scene is in 5a, consisting of 3 color LEDs, a 
HeNe laser spot and an 8-segment indicator. In 5b is shown the resulting image from the 
focal plane. There is a zero order image, 5c, that can be used for focusing as well as 
providing an initial starting point for the reconstruction of the image cube. Recovered 
spectra are shown in 5d. 

Figure 7. Near-Infrared spectroscopy can detect variations in tissue oxygen levels by 
means of hemoglobin absorption peaks (lower right). Wavelength control was achieved 
using a liquid crystal tunable filter in front of a CCD. Pseudocolor highlights left 
ventricle deoxygenation during occlusion of the artery that normally supplies it. 
Unpublished images courtesy of Henry Mantsch, National Research Council, Winnipeg, 
Canada. 

Figure 8. Spectral imaging and image segmentation of yeast cells stained with propidium 
iodide (PI). Top left: Composite containing 3 panels of PI-stained yeast cells imaged 
under 3 conditions: immediately after transfer of yeast to new medium, after 5 hours of 
culture, and after 5 hours of culture plus the addition of RNAse. Bottom left: Spectra 



from yeast in each culture condition obtained by imaging using a liquid crystal tunable 
filter. Small differences in peak position and shoulder configuration are visible. Bottom 
right: Scatter-plot of the spectral image after principal components analysis. 3 clusters are 
circled and the pixels contained in each cluster pseudocolored. Top right: result of 
mapping pseudocolored PCA clusters back to the original image, resulting in robust 
segmentation. RL, CRI, Inc. 

Figure 9. Comprehensive cytogenetic analysis of a metaphase spread from a child (CK1) 
with dysmorphic features and developmental delay resembling an 1 8q-syndrome. 
Spectral karyotyping (SKY) was performed on a metaphase spread. The multicolor 
hybridization clearly reveals an aberrant chromosome (arrow) that contains 
chromosomes 18 (red) and X (dark green) material. The G-banding interpretation of a 
normal male karyotype (46,XY) was therefore corrected after SKY to 46,XY, 
der( 18)t(X;18)(?;q23). (Reprinted with permission from Schrock, E., Veldman, T., 
Padilla-Nash, H. et al., Spectral karyotyping refines cytogenetic diagnostics of 
constitutional chromosomal abnormalities, Hum Genet 101 : 255-262, 1997) 

Figure 10. Removal of autofluorescence using pixel unmixing. Top panel: Composite of 
6 neurons in formalin-fixed, paraffin-embedded human brain stained with anti-GDNF 
labeled with Cy2. The bulk of the fluorescent signal is autofluorescence. Center panel: 
the single positively stained neuron is separated from the abundant autofluorescence 
using pixel unmixing (unmixing spectra shown in the insert). Bottom panel: Cy2 signal 
(in green) overlain on top of the autofluorescence signal (in gray). Sample courtesy 
Neelima Chauhan and George Siegel; analysis: RL, CRI, Inc. 

Figure 1 1. Multicolor immunohistochemistry and spectral unmixing. Top left: RGB 
image of a cluster of breast cancer cells stained for the presence of estrogen receptor (ER, 
red), progesterone receptor (PRY brown); nuclei are counterstained with hematoxylin 
(blue). It is difficult to determine how much of each antigen is present in the cancer cell 
nuclei. After collecting a spectral stack, the signals corresponding to nucleus, ER and PR 
are spectrally unmixed and shown in separate images. Bottom right shows where ER and 
PR are co-expressed (yellow signal). Sample courtesy Dako, Inc; analysis: RL, CRI, Inc. 

Figure 12. Spectral unmixing of transmission in-situ hybridization (TRISH). Nuclei of 
cytospun bladder carcinoma cells probed for 3 chromosome centromeres. Detection was 
performed using DAB, New Fuchsin and TMB as chromogens. Lower panel: Spectral 
unmixing reveals overlap of brown and red signals (pseudocolored as green and red, 
respectively). The arrow points to a yellow spot representing the overlap. Sample 
courtesy Anton Hopman, Univ. Maastricht; analysis: RL, CRI, Inc. 

Figure 13. Spectral segmentation of hematoxylin- and eosin-stained prostate cancer 
specimen. Left: RGB image of prostate cancer (Ca) and normal (Nl) glands. The normal 
glands are lined with a double cell layer consisting of epithelial and basal cells; the 
cancerous glands have a single cell layer. Right: result of spectral segmentation using 
spectra chosen manually from representative pixels in the image and a minimum square 
error classification algorithm. The 2 cell layers (pseudocolored green and blue) are 



spectrally distinct from one another and from the cancer cells (pseudocolored red). 
Analysis: RL, CRI, Inc. 

Figure 14. Spectral classification and morphological analysis. Normal lymphocytes are 
compared to small B-cell lymphocytic leukemia cells, both stained with Giemsa. By eye 
these are virtually indistinguishable. Spectral classification, using the spectra shown in 
the lower right panel, reveals spectral differences in content and spatial distribution of the 
spectral features (top right and left panels). Lower left: spectral similarity mapping 
algorithms indicate more clearly the differences in distribution of spectral features in 
normal vs. lymphocytic leukemia cells. (Reprinted with permission from Malik, Z., 
Rothmann, C., Cycowitz, T., Cycowitz, Z. J. and Cohen, A. M., Spectral morphometric 
characterization of B-CLL cells versus normal small lymphocytes, J Histochem 
Cytochem 46: 11 13-1 118, 1998) 
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Cytogenetics and pathology 
Application to in vivo studies 
limited by temporal resolution 
Current methods - scanning 
CTIS: Simultaneously acquires 
spectral information from every 
position element within a 2-D FOV 
with high spatial and spectral 
resolution. 
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