
Efficient Sensor/Model Based On-Line Collision Detection for
Planetary Manipulators

Chris Leger and Paul Schenker
Jet Propulsion Laboratory

cleger@robotics.jpl.nasa.gov

Abstract
Safeguarding is a crucial need for manipulator

operations on planetary rovers. At the same time, the com-
puting environment on a Mars rover is extremely limited,
which necessitates a highly efficient collision checking al-
gorithm. We present such an algorithm that uses the Ori-
ented Bounding Box (OBB) and a new primitive called the
Oriented Bounding Prism (OBP) to detect potential self-
collisions and collisions with terrain object sensed with the
rover’s on-board stereo camera; the algorithm thus has
both model-based and sensor-based components. We have
implemented the algorithm on JPL ’s FIDO rover and have
tested it under realistic j e l d conditions. Performance anal-
ysis indicate this method is significantly faster than previ-
ously reported results in the literature, in addition to
incorporating sensed geometry. The method is being con-
sidered for implementation on the MER rovers, which will
land on Mars after launch in 2003.

Motivation

Ensuring the safety of rover-mounted manipula-
tors in planetary exploration applications is of great impor-
tance. At best, a manipulator collision results in a lost day
of operations due to latencies in communicating the failure
back to Earth-based operators. At worst, the manipulator
may become stuck in a deployed configuration or may
damage the rover’s stereo cameras, making further driving
extremely difficult or impossible. Safeguarding for plane-
tary rovers also presents a set of challenges not present in
most other manipulator applications. Obviously, there can
be no human observer or supervisor to trigger an emergen-
cy stop, and manipulator motions cannot be pre-pro-
grammed to guaruntee safety since the manipulator target
and surrounding obstacles are not known in advance. Fi-
nally, the restricted computational resources (e.g the
12MHz, 15-MIPS RAD6000 CPU on the Mars Exploration
Rover (MER) vehicles scheduled for launch in 2003) re-
quire a highly time- and memory-efficient approach that
does not impose significant operational delays. While ma-
nipulator commands can (and will) be checked for potential
collisions before being sent to the rover, on-board safe-
guarding can catch errors introduced in the command se-
quencing or communication process, or operational errors
not detected by pre-checking of individual trajectories (e.g.
accidentally commanding the arm to move from stowed to
deployed positiong when it is already in a deployed may

cause a self-collision). On-board safeguarding is also es-
sential for autonomous arm deployments, which rule out
the possibility of manual a priori safety checking of the arm
trajectory.

This paper describes a model- and sensor-based
method for preventing manipulator self-collisions and col-
lisions with external objects. The method is efficient
enough in terms of both time and memory to be used on-
board robots with limited computational resources. We
have tested the approach on the Jet Propulsion Lab’s FIDO
rover (Figure 1; see [Huntsberger99]) for both safeguard-
ing of manually-commanded trajectories and fully autono-
mous arm deployments. We have also ported the algorithm
to the MER flight software environment, and it will be used
on-board the Mars Exploration Rovers during their surface
operations in 2004.

Related Work

Historically, there has has been significant inter-
est in planning algorithms for generating collision-free tra-
jectories given a model of the robot and obstacles (e.g.
[Barraquand92]), including on-line but non-optimal ap-

mailto:cleger@robotics.jpl.nasa.gov

proaches ([Khatib86]). The less complex problem of effi-
cient on-line collision detection for manipulators has
received less attention from the robotics community. Two
broad categories of appoaches are model-based and sensor-
based, with sensor-based methods being further catego-
rized as reactive or predictive. Both model-based and pre-
dictive sensor-based methods explicitly model the robot
and obstacles, with sensor-based approaches typically rely-
ing on LIDAR or stereo cameras to build the obstacle mod-
el. [Bo11961 describes a model-based on-line approach for a
telerobotic application: the manipulator is represented as a
series of line segments with non-zero thickness, and a pri-
ori obstacles in the environment are represented as polyhe-
dra. One reactive sensor-based approach, described in
[Feddema94], uses capacitive proximity sensors to directly
modify commanded manipulator motions to reduce or
eliminate the motion of a link towards a sensed object.
Greenspan and Burtnyk describe an on-line, constant-time
approach suitable for sensor- or model-based use
[Greenspan97], though this approach is inappropriate for
our application due to higher memory requirements (the 3D
lookup table requires 1MB of storage and grows exponen-
tially with desired resolution and linear dimension) and dif-
ficulty in efficiently checking manipulator self-collisions.
Another voxel-based approach to collision detection (not
specific to manipulators) is described in [Garcia94]. Previ-
ous work by the author was specialized to a robotic exca-
vator with substantial dynamic effects, taking advantage of
the workspace and manipulator geometry to simplify colli-
sion detection [Leger98]. This approach is not suitable for
our appiication due to tine iimited manipuiator representa-
tion and inability to check for self-collisions. More recent-
ly, [HartmanOl] addressed interferece prevention for two
manipulators with significant dynamic effects, modeling
the manipulator links with Oriented Bounding Boxes
(OBBs; [Gottschalk96]), which we also use in the work de-
scribed in this paper.

The primary differences between previous ap-
proaches and ours are as follows: both model-based (for
self-collisions) and sensor-based (for external obstacles)
collision checks must be included, and the method must be
very fast and memory-efficient to meet the restrictions of
the rover's on-board computer.

Oriented Bounding Boxes and Prisms

The heart of any manipulator collision detection
algorithm is a means of checking two primitives (shapes)
for collisions. While there exist a number of methods for
detecting collisions between three-dimensional objects
(e.g. [Canny86], [Gilbert88], [Green94]), the Oriented
Bounding Box appears to offer the best trade-off of speed
and accuracy for our application. A key advantage of
OBBs is that no divisions, transcendental operdtions, or it-
erations are required to determine if two OBBs overlap;

I I

L
b + b

T * L

Figure 2: Separating line test for two OBBs
In this example, L is a separating line and is parallel to
A,, the Y-axis of OBB A. B has been transformed to
be relative to A's coordinate system. Tis the location
of B's center relative to A.

this leads to an extremely fast and robust implementation.
In contrast to the automatically-derived hierarchy of OBBs
(called an OBB-Tree) terminating in triangular faces, we
use a more restricted hierarchy of OBBs whose lowest lev-
el (highest detail) is a set of OBBs rather than triangles. Ad-
ditionally, we derive a modified OBB and related
intersection tests that efficiently model cylindrical geome-
try, since our rover's geometry is more accurately repre-
sented by a collection of cylinders and boxes than by boxes
alone.

The standard OBB intersection (from
[r
any two convex polyhedra, if the polyhedra do not overlap
then there will be a plane of separation whose normal
(called the separating line) is either parallel to at least one
face of either polyhedra, or perpendicular to one edge of
each polyhedra. Thus, to determine whether two OBBs
overlap, one checks all possible normals of the separating
plane (there are 15 cases) by projecting the extents of the
OBBs onto each potential separating line (Figure 2). If the
sum of the projected extents is greater than the sum of the
projected radii of the OBBs plus a tolerance E (the mini-
mum "safe" separation), then the two OBBs are non-over-
lapping; otherwise, the remaining lines of separation must
be tested. The general rule for determining if two OBBs A
and B overlap is:

m t t r r h n l l 0 f ; l t o o t o oro h-04 n- o thoa+-,- m t - t L . " hh,.+ C-..
UYC.YV"Y...'", .VULU UL" "ULlUU Y.1 u L l l U V l C l l l l oLaL,,,& L l l a L ,"I

A and B are separated along the vector L iff
(1) IT LI > r , + rb + E

where

Complementary OBBs Z Maxerror

and E is a safety tolerance. (See “Rover Model” below for
more on choosing an appropriate value for &.)These tests
can be made more computationally efficient if B is trans-
formed into A’s coordinate system: considering the restric-
tions on L (it must be Ai, B j , or A i x B j where
i, j E { 0, 1, 2)), many of the vector terms reduce to sca-
lars. For example, in the case where L = A , x B,, the
equations reduce to:

where Bii indicates thejth element of B’s ith axis. In the
worst case (that is, when two OBBs are intersecting) the in-
tersection tests require approximately 200 multiplications
and additions, though the typical operation count is signif-
icantly lower [Gottschalk96].

OEr mcdifed BBBs fer cy!inders, which we ca!!
Oriented Bounding Prisms (OBPs), are based on the obser-
vation that an n-sided regular prism approximating a cylin-
der can be represented by n/2 overlapping, concentric
OBBs, where n is an integer multiple of 4. We define two
complementary OBBs A and A, as being concentric and
having the same dimensions but with one OBB offset by a
90 degree rotation about the X axis. Equivalenty, A and A,
have the same center and orientation but have their Y and
Z dimensions interchanged. There are n/4 pairs of comple-
mentary OBBs in an n-sided OBP (Figure 3). Each of the
OBBs and its complement share many subexpressions in
equations (4)-(6): the intersection tests for the a comple-
ment OBB are performed simply by swapping the Y and Z
dimensions of one or the other OBBs. By interleaving the
intersection tests for one OBB and its complement, the total
number of calculations can be significantly reduced. The
calculation of (T L(does not depend on any OBB dimen-
sions, and is thus identical in the overlap tests for an OBB
and its complement, and parts of ra and r b are shared as
well. To check A and its complement for collision with B,
again using L = A , x B2 , the additional equation for the
complement of A is

/ Complementary 0 BBs
Figure 3: An OBP approximation (n=8)to a cyl-
inder viewed end-on (i.e. along the X axis)

and there is an additional comparison to determine if
IT LI is greater than ra‘ + rb . When A is a single OBB
and both B and its complement are to be checked, there is
a corresponding equation for rb(in which b , and b, are
exchanged. There are separate routines for checking two
OBBs for collisions, for checking A and its complement
against B, and for checking A against B and its comple-
ment. The complementary routines can be readily derived
from the two-OBB routine by adding the complementary
calculations (e.g. Equation (7)); the two-OBB routine can
in turn be directly derived from Equations (1)-(3).

Our system uses octagonal prisms (i.e. n=8),

dial direction: that is, if an object is 0.082R away from ac-
tually contacting a cylinder of radius R, then a collision
may be reported depending on the orientation of the ap-
proximated cylinder. The 8-sided approximation requires
4 OBBs at the lowest level, in addition to one higher-level
OBB completly enclosing the cylinder. In contrast, using
the OBB-Tree structure that ultimately represents each face
would require at least 16 OBBs at the lowest level of the hi-
erarchy (1 for each of 8 sides, and 4 for each end). Larger
values of n can certainly be used, though one soon runs into
diminishing returns: the maximum error for n=4 is 41.4%,
for n=8 is 8.2%, for n=12 is 3.5%, and for n=16 is 2.0%.
For our application, n=4 is too conservative, since there can
sometimes be very little clearance during docking or final
target approach. We will assume n=8 in the discussions in
the remainder of the paper.

While checking two OBBs for intersections, or
checking complementary OBBs against another OBB, can
be performed using the equations described above, separate
procedures are required to check OBP-OBB, OBP-OBP,
and OBB-OBP pairs for collisions. (Note that the collision
checks are order dependent, since B is always transformed
into A’s coordinate system.) The steps in testing OBP A for

j;iel&ing a &pijprox~lii~~;uii ei.i-ui or 8.2% in ifie ra-

collisions with OBB B are:

Procedure I: CylinderBoxCheck

Compute the dimension a2' = a l tan(W8)
Check the A' (OBB aligned with A and having
dimensions (ao, a1,a 2')) and A,', and its comple-
ment, against B. Stop here if a collision is
detected.
Compute the OBB B4, by rotating B about the
A's x-axis by 45'
Check A' and A,', against B4,

The steps in testing OBB A for collisions with OBP B are
similar:

Procedure 2: boxCylinderC heck

Compute the dimension b,' = a b , tan(n/8)
Check A against the B' (the OBB aligned with B
and having dimensions (b,,b ,,b 2')) and its com-
plement. Stop here if a collision is detected.
Compute the OBB B'45 by rotating B' about its x-
axis by 45'
Check A against B'45 and its complement.

Finally, checking two OBPs for collisions uses both of the
above procedures:

Procedure 3: cylinder Cylindercheck

(Optional) Check the OBB enclosing A against
the OBB enclosing B. Stop here if there are no
collisions.
Check A and A,' (computed as in cylinderBox-
Check) against the OBB enclosing B.
If A' had a collision, then check A' against the
OBP for B using the procedure above. Stop here
if collisions are detected.
If A,' had a collision, then check A,' against the
OBP for B using boxCylinderCheck. Stop here if
collisions are detected. (At this point, we have
checked A's axis-aligned sub-parts against all
parts of B).
Compute the OBB B'45 by rotating B' about A's
x-axis by 45'
Check A' and A,' against the OBB enclosing Bd5.
If A' had a collision, then check A' against the
OBP for B,, using the procedure above. Stop
here if collisions are detected.
If A,' had a collision, then check A,' against the
OBP for B4, using boxCylinderCheck.

'

We use the same data structure for OBBs and
OBPs, with a flag to indicate the object type. This facili-

Link 4

Figure 4: Models of the rover body, suspen-
sion, and manipulator.
Higher-level bounding OBBs are shown as dashed
outlines. The rover suspension and steering joints are
shown in their zero positions.

tates the checking of an OBB as a faster first test for cylin-
der-box and cylinder-cylinder collisions, since the usual
OBB-OBB test can be used directly. Only in cases of near-
collision do the more involved OBP tests need to be per-
formed. It is possible that further reduction in the average
number of total operations can be reduced by eliminating
some of the initial tests (e.g. the OBB approximation to cyl-
inders that is checked before the OBP) based on runtime
analyses of typical test cases.

Note that the rotations and the use of the tangent
function above depend only on constants, and are hzd -
coded; no transcendental functions are used during runt-
ime.

Rover Model

The rover's geometry is represented by a hand-
built hierarchical model of OBBs and OBPs . Each of the
4-DOF manipulator's links has one high-level OBB en-
compassing all of the link's geometry, and the second
through fourth links have lower-detail OBBs and OBPs
representing more detailed geometry. The rover body is
represented by several high-level OBBs and more detailed
children. The front part of the rover's suspension is slightly
more complex, since it is articulated. Each of the front
wheel assemblies is represented by an OBP for the wheel
and an OBB for the steering arm that can be moved to
match the current steering angles. These parts, along with
the bogey tube (the horizontal link leading towards the
front wheel in Figure 4) and steering actuator housing are
also affected by the rocker and bogie joint angles. All sus-
pension parts for each side of the rover are enclosed in an
OBB that moves with the rocker and bogie angles, but
which is large enough to contain all parts for all steering an-
gles.

Because of the kinematics of FIDO’s manipula-
tor, no self-collisions are possible within the links of the
manipulator; however, self-collisions with other parts of
the rover body or suspension are possible. Self-collisions
are tested for between links 2, 3 ,4 and the rover body and
suspension parts; no self-collisions are possible for link 1 .
In some special cases, collisions between the robot’s end
effector are allowed: when docking, the end effector inten-
tionally collides with a docking rig, and when placing in-
struments the end effector must contact the terrain (which
will be described in the next section). For these cases, a
flag can be set indicating that the tip of the end effector
should not be checked against the docking rig or terrain.

The safety tolerance E in Equation 1 can be used
to account for uncertainty in the rover model and motion
control system. E should be set to the sum of the uncertain-
ties in the geometric knowledge for each OBB/OBP: for
example, if a dimension for an OBB is only known to with-
in lmm, then e for that part should be Imm. This uncer-
tainty could be due to limited knowledge of the model,
error in joint angle measurements, or due to deflection of
the links under load. E can also be used to account for minor
deviations between the planned and actual trajectory of the
manipulator. The value of E used in Equation 1 should be
the sum of the E values for each of the two OBBs/OBPs.

Multiresolution Terrain Model

The FIDO rover is equipped with several sets of
stereo cameras, two of which (the “front HazCam” and
“Bellycam”) image different parts of the manipulator
workspace. For manipulator safeguarding, the raw stereo
data must be transformed into a representation that allows
efficient checking of collisions between manipulator and
terrain objects. Given the typical operating environment of
the robot--roughly horizontal terrain covered in rocks up to
30cm in size--an elevation map is an efficient and reason-
ably accurate representation for objects in the arm work-
space. The height of each grid cell in the initial elevation
map is the maximum height of all stereo data points (from
both the BellyCam and HazCam) that lie within the cell’s
bounds in the horizontal plane. A default elevation is used
to fill in regions of the elevation map that are either occlud-
ed or are outside the sensors’ fields of view.

A multiresolution pyramid of elevation maps is
then built from this first, highest-resolution elevation map.
Each successively-coarser map has half the linear resolu-
tion of the previous map, and the height of each grid cell is
the height of the four higher-resolution grid cells encom-
passed by the low-resolution grid cell.

As with rover objects, OBBs are used to represent
terrain geometry. However, since the elevation maps are
aligned with the rover frame and only one manipulator-ter-
rain test is performed at a time, we do not need to explicitly
create and store OBBs for each terrain grid cell. Instead, we

Low-resolution
terrain OBBs

Figure 5: Example collision configuration
The lowest-resolution OBB enclosing the entire eleva-
tion map is ommitted for clarity.

use a single OBB and set the dimensions and center based
on the grid cell being checked; the orientation of the OBB
remains constant since the grid cells are always oriented
parallel to the rover’s coordinate frame.

Figure 5 shows the OBBs involved in a collision
between the terrain and part of the manipulator’s end effec-
tor. The terrain elevation map is shown as a grid of points.
The highest-resolution terrain OBB that is colliding with
the end effector is shown as a tall, thin, solid box, and the
hierarchy of lower-level terrain OBBs that contain the col-
liding cell are shown as outlines.

System Integration

There were several candidate methods for inte-
grating collision checking with the on-board rover software
and the operations (off-board sequencing) software:

Continuously check for arm collisions as the arm
is moving.
Check each commanded motion in the low-level
rover software as the command is received
Check each higher-level command (e.g. deploy
arm, move to target) when the command is for-
mulated (either on the ground by an operator, or
on-board the rover for autonomous arm deploy-
ments)

We use a combination of the latter two approaches for sev-
eral reasons. First, the rover arm accurately follows com-
manded trajectories, so checking trajectories a priori, rather
than during execution, offers a high degree of safety. Sec-
ond, it is preferable that the rover is in a known safe state

when halting operations in the event a collision is detected:
thus, preventing an arm deployment in the first place is pre-
ferred over halting the arm in a deployed state just short of
a collision. Third, doing collision checking “on the ground”
(i.e. as part of sequence planning by the human operators)
leads to significant time savings by eliminating the entire
abort-contingency-replan cycle involved in the execution
of a failed command.

On-board safeguarding is implemented by check-
ing each command for collisions in the routines for abso-
lute and relative joint-space motion that are used by all
higher-level arm control code. The current and goal joint
angles are computed, and the trajectory is uniformly sam-
pled in joint-space such that samples are spaced less than
one degree apart for the joint with the largest commanded
motion. (Note that all DOFs are controlled to start and end
their motions at the same time regardless of commanded
joint motions.) Each of the sampled trajectory poses is then
checked for collisions; if any are detected, then the motion
is not performed and the calling routine is informed of the
failure. The routine for autonomous arm deployments also
checks the entire sequence (deploy, move to standoff via
point, place end effector, retum to standoff, and stow) be-
fore commanding any sing le part of the trajectory.

Experiments and Performance

The initial testing phase of the collision avoidance
software involved using it as a waming system for FIDO’s
safety observers: if the operators commanded a motion that
would cause a collision, an audible alarm was sounded to
aierr the safety observer tiat a manuai abort might be re-
quired. As errors in the rover model were fixed and the
team gained confidence, the software was used to automat-
ically halt dangerous motions, coming in particularly
handy while debugging new, higher-level algorithms. We
conducted field trials in May 2001 to train the 2003 MER
project scientists in rover-based geology, and extensively
used the collision checking software during rover opera-
tions planning (every commanded arm motion was
checked and confirmed safe before being sent) and as an
audible alert. At the time of the field trials, the MER rover
was not slated to do on-board collision checking, so we did
not enable this capability on FIDO; however, the software
has since been incorporated into the MER on-board soft-
ware.

We have not noticed any significant operational
delay while running the software on-board the rover; how-
ever, the only quantitative performance measurements we
have made are on a desktop workstation, from which we
must extrapolate actual flight-system performance for the
time being. Repeated tests of a trajectory that has a colli-
sion between the end effector and terrain yield the follow-
ing numbers, on an 800MHz PI11 (roughly 100 times faster
than the MER flight computer, and 4-6 times faster than FI-

DO’S computer):
Elevation map building (not counting stereo

Checking entire sequence (6 trajectories) for col-

34.7 arm poses checked per trajectory: 12ps per

18.2 primitive-primitive checks per arm pose:

The key numbers are 12 ,US per arm pose and 2.4ms per se-
quence (in this case, deploying the arm from a stowed po-
sition to a target on the terrain). For the MER flight
computer, this translates to 1.2ms per arm pose (240ms for
the entire sequence). For comparison, [Bo11961 reports a
time of 1.23111s for a model-based approach with 5 manip-
ulator objects, running on a lOOMHz R4600;
[Greenspan961 reports a time of “less than 1Oms” on a
66MHz 486, with 15s required for building the voxel map
from a priori object models. While direct quantitative per-
formance comparisons cannot be made without using the
same hardware, compiler, and arm and obstacle objects,
our performance measurements lead us to believe that the
OBB-based algorithm offers substantially decreased com-
putational complexity.

Memory requirements for the algorithm are rela-
tively small: the multiresolution map (64x64 at the highest
resolution) requires 36K, and the FIDO arm and rover
model requires an additional 4.2K. The executable size is
56K when compiled for a Pentium with gcc, with both de-
bugging symbols (-g) and optimization (-02) enabled. It is
worth noting that the memory requirements are tar less
than for voxel-based approaches: [Greenberg961 lists a size
of 1MB for the voxel map, and both memory and computa-
tion time increase with the cube of the desired robot or en-
vironment resolution. Our method is also directly
applicable to multi-manipulat or systems: the articulated
suspension effectively acts as two additional rover-mount-
ed manipulators. This also stands in contrast to voxel-based
approaches that must precompute a voxel map of the envi-
ronment, thus having difficulty in efficiently checking for
collisions between moving objects.

Limitations

range map generation): lOms

lisions: 2.4ms

arm pose

0 . 6 4 ~ s per primitive.

While efficient and robust, our method does have
some limitations. One is that, since the terrain representa-
tion involves reducing a 3D surface to a 2.5D elevation
map, concavities in the 3D surface that are not aligned with
the axis of projection cannot be accurately represented. For
example, imagine a small ‘cave’ in front of the rover. The
elevation map created with a vertical axis of projection
cannot represent the cave, only the surface above the cave.
The significance of this limitation depends on the expected
frequency of such situations in the rover’s environment,
which has been fairly low in our experience. The effect can

be mitigated to some degree by aligning the axis of projec-
tion used in the terrain map with the optical axis of the rov-
er's stereo cameras, since the cameras can only create 2.5D
representations of the environment. In this way, concavi-
ties that can be sensed by the rover will be more accurately
represented in the terrain map. The accuracy is best near
the center of the field of view, and degrades so that at the
edge of the field of view, the terrain OBBs are misaligned
with respect to the terrain-camera axis by half the field of
view.

Another limitation is that significantly more
OBBs and/or OBPs can be required to represent rover ob-
jects that are not accurately modeled by boxes or cylinders.
Finally, the amount of storage space required for the eleva-
tion map grows with the number of cells in the elevation
map, which itself grows with the square of the linear extent
of the map divided by the cell size.

Conclusion

We have presented a highly efficient and robust
collision detection method suitable for implementation on
the MER flight computer. The method can detect both self-
collisions and collisions with sensed terrain, is directly ap-
plicable to multi-manipulator systems, and preliminary
performance measurements suggest a significant speedup
over methods previously reported in the literature.

Acknowledgments

This work was carried out at Jet Propulsion Labo-
ratory, California Institute of Technology, under contract
witin Karionai Aeronautics and Space Administration. The
authors would like to thank the members of the FIDO team
for their significant efforts in developing, maintaining, and
running the FIDO rover as an extremely robust platform for
technology development: Hrand Aghazarian, Eric Baum-
gartner, Yang Cheng, Tony Ganino, Mike Garrett, Terry
Huntserger, Brett Kennedy, Lee Magnone, Jeff Norris,
Ashitey Trebi-Ollennu, and Eddie Tunstel.

References

[Barraquand92] J. Barraquand, B. Langlois, and J.-C.
Latombe. Numerical potential field techniques for ro-
bot path planning. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-22(2):224 241, March/
April 1992.

[Bot1971 B. Bon and H. Seraji. Real-time model-based ob-
stacle detection for the NASA Ranger Telerobot. In
Proceedings of the 1997 IEEE International Confer-
ence on Robotics and Automation, Albuquerque, New
Mexico, April 1997.

[Canny861 J. F. Canny. Collision detection for moving
polyhedra. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 8:200-209, 1986.

[Feddema94] J. Feddema and J. Novak. Whole arm obsta-

cle avoidance for teleoperated robots, in Proceedings
of the 1994 IEEE International Conference on Robot-
ics andAutomation, pp. 3303-3309, San Diego, 1994.

[Garcia-Alonso94] A. Garcia-Alonso, N. Serrano, and J.
Flaquer. Solving the collision detection problem.
IEEE Computer Graphics and Applications, 13(3):36-
43, 1994.

[Gilbert881 E. G. Gilbert, D. W. Johnson, and S. S. Keerthi.
A fast procedure for computing the distance between
objects in three-dimensional space. IEEE Journal of
Robotics and Automation, vol. RA-4:193-203, 1988.

[Gottschalk96] S. Gottschalk, M. C. Lin and D. Manoch.
OBB-Tree: A hierarchical Structure for Rapid Inter-
ference Detection. Technical Report TR96-013, De-
partment of Computer Science, University of North
Carolina, Chapel Hill, 1996.

[Green941 N. Greene. Detecting intersection of a rectangu-
lar solid and a convex polyhedron. In Graphics Gems
IV, pp. 74-82, Academic Press, 1994.

[Greenspan961 M. Greenspan and N. Burtnyk, Obstacle
Count Independent Real-Time Collision Avoidance.
In Proceedings of the 1996 IEEE International Con-
ference on Robotics and Automation, Minneapolis,
Minnesota, April 1996, pp. 1073-1080.4.

[HartmanOl] L. Hartman. A real-time approach to the co-
ordination of multiple manipulators. In Proceeding of
the 6th International Symposium on Artijkial Intelli-
gence and Robotics & Automation in Space: i-SAIRAS
2001, St-Hubert, Quebec, Canada, June 18-22,2001,

EHuntsberger991 T. L. Huntsberger, E. T. Baumgartner, H.
Aghazarian, Y. Cheng, P. S. Schenker, P. C. Leger, K.
D. Iagnemma, and S. Dubowsky, "Sensor fused auton-
omous guidance of a mobile robot and applications to
Mars sample return operations," in Proc. SPIE, Vol.
3839, Boston, MA, Sept. 1999.

[Khatib86] 0. Khatib. Real-Time Obstacle Avoidance for
Manipulators and Mobile Robots, The International
Journal ofRobotics Research, Spring 1986, Volume 5,
Number 1, pp. 90-98.

[Leger98] C. Leger, P. Rowe, J. Bares, S. Boehmke, A.
Stentz. Obstacle detection and safeguarding for a high-
speed autonomous hydraulic excavator, In Proceed-
ings ofSPIE Vol3525, Boston, MA 1998.

