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Linear Pose Estimation from Points or Lines

Abstract. Estimation of camera pose from an image of n points or lines
with known correspondence is a thoroughly studied problem in computer
vision. Most solutions are iterative and depend on nonlinear optimization
of some geometric constraint, either on the world coordinates or on the
projections to the image plane. For real-time applications we are inter-
ested in Hnear or closed-form solutions free of initialization. We present
a general framework which allows for a novel set of linear solutions to
the pose estimation problem for both n points and » lines. We present,
a number of simulations which compare owr results to two other recent
linear algorithm as well as to iterative approaches. We conclude with
te
analysis of the sensitivity of our algorithms to image noise.

L oon real imagery inan angmented reality setup. We also present an

1 Introduction

Pose estimation appears repeatedly in computer vision in many contexts, from
visual servoing over 3D input devices to head pose computation. Our primary
interest is in real-time applications for which only a small number of world
objects (lines or points) is available to determine pose. Augmented reality [2], in
which synthetic objects are inserted into a real scene, is a prime candidate since
a potentially restricted workspace demands robust and fast pose estimation from
few targets. The motion of the camera is usually unpredictable in such scenarios,

so we also require algorithms which are non-iterative and require no initialization.

In this paper, we propose a novel set of algorithms for pose estimation from
n points or n lines. The solutions are developed from a general procedure for
linearizing quadratic systems of a specific type. If a unique solution for the pose
problem exists, then our algorithms are guaranteed to return it. They fail in
those cases where there are multiple discrete solutions. Hence, we can guarantee
a solution for n > 4, provided the world objects do not lie in a eritical configu-
ration [20,24]. The only similar non-iterative methods for an arbityary number
of points arc those of Quan and Lan [22] and Fiore [6]. We are aware of no com-
peting method for lines, but show that our results are qualitatively acceptable

[5].

in comparison to an iterative algorithm of Kumar and Hanson |

1.1 Related Work

Our goal has been to develop fast pose estimation algorithms which produce
stable results for a small number of point or line correspondences. In the point
case, a similar approach to ours is taken by Quan and Lan [22]. They derive
a set of eighth degree polynomial constraints in even powers on the depth of
cach reference point by taking sets of three inherently quadratic constraints on



three variables and eliminating two using Sylvester resultants. They apply this
method to each point in turn. Our algorithm, like theirs, is based on depth
recovery, but our approach avoids the degree increase, couples all n points in a
single system of equations and solves for all » simultaneously. Recently, Fiore
[6] has produced an algorithm for points which introduces two scale parameters
in the world to camera transformation and solves for both to obtain the camera
coordinates of points. Unlike our algorithm and that of Quan and Lan, Fiore’s
approach requires at least 6 points unless they arve coplanar. We show in Sect
4.1 that our algorithm outperforms both of the other linear algorithms.

There are many closed form solutions to the 3 point problem. such as [4,
9], which return solutions with well understood multiplicities [14, 21]. Fischler
and Bolles [7] extended their solution to 4 points by taking subsets and using
consistency checks to eliminate the multiphicity for most point configurations.
Hovaud et al. [10] developed a closed form solution on 4 points which avoids this
reduction to a 3 point solution. These closed form methods can be applied to
more points by taking subsets and finding common solutions to several polyno-
mial systems, but the results are susceptible to noise and the solutions ignore

much of the redundancy in the data.

There exist many iterative solutions based on minimizing the error in some
nonlinear geometric ((mst aints, either on the image or target. We mention just
a few. Nonlinear optimization >m!)](‘ 1w of this sort are normally solved with
some variation on gradient descent or Gauss-Newton methods. Typical of these
approaches is the work of Lowe [18] and of Haralick [5]. There are also approaches
which more carefully incorporate the geometry of the problem into the update
step. For example, Kumar and Hanson [15] have developed an algorithm based
on constraints on image lines using an update step adapted from Horn's [12]
solution of the relative orientation problem. We compare this algorithm to our
line algorithm in Sect. 4.1. There are several such variations using image line
data. Liu ef al. [17] use a combination of line and point data. Lu, Hager and
Mjolsness [19] combine a constraint on the world points, effectively incorporating
depth, with an optimal update step in the iteration. We use this as a veference in
Sect. 4 to compare the three linear point algorithims mentioned. Dementhon and
Davis [3] initialize their iterative scheme by relaxing the camera model to scaled
orthographic. These iterative approaches typically suffer from slow convergence
for bad initialization, convergence to local minima and the requirement of a large
number of points for stability. Our algorithms require no initialization, can he
used for a small number of points or lines, and guarantees a unique solution

when one exists.

Another approach is to recover the world to image plane projection matrix
and extract pose information. This technique is examined by [1, 8] among many
others. This is also the basis for the calibration technique of Lenz and Tsai [16].
This projective approach is inherently less stable for pose estimation because of
the simultancous solution for the calibration parameters. It also requires a large
data set for accuracy. We compare this approach to ours in Sect. 4. 1.



2 Pose Estimation Algorithm

Throughout this paper we assume a calibrated camera and a perspective projec-
o .
tion model. If a point has coordinates (2, y, z)7 in the coordinate frame of the

camera, its projections onto the image plane is (/2,1

2.1 Mathematical Framework

We begin with a general mathematical treatment from which we will derive both
> o

owr point and line algorithms. Consider a system of m quadratic equations in n

variables o of the form
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Since xi; = 255,

{/) ] I < g / <_1' } Qll(l a system can be solved by singular value
(3)

he =A{ay 20 ... 1,),, M7 and M is the matrix of coefficients of the system
( ) hen T € I\(‘ (M), IFM = UEVT is the SVD, then Ker(M) = span({v;})
‘here { i} are the columns of 'V corresponding to the zero singular values in
E I Ker(N ) is one dimensional, then 7 is recovered up to scale. However, the

(t«)mht,mn p = 1 determines sc ale and returns the correct solution to {2), from
which we recover the solution to (1) up to a uniform sign error. In practice, the
physical interpretation of the p '()l)l(‘m wi]l determine sign.

If the dimension of Ker(M) is N . we attempt to isolate the solution to (1)
by reimposing the guadratic nature <)f :ho original problem. Since T € Ker(M),
there exist real numbers {A;} such that

N
T = Z/\jV;‘, <l>
i=1

For any integers {i - 1} and any permutation {77, &', 1"}, observe that a;

wygerpep . Substituting individual rows from the right hand side of (4) into re-

lations of this sort results, after some algebra, in constraints on the A; of the
: 5 ; i
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a=1 b=a-+1
where we use the notation A,y = A A, for integers a and b, and v¥ refers
to the row of v, (‘()1'1‘0%;)0!\(]111“‘ to the variable 2 in #. We again have the
obvious relation Ay = Ap,. It follows that equations of the form (5) are lin-

NN 41 . . . .

ear and homogeneous in the # variables { A b These can be written in

the form K\ = 0 where K is the matrix of coefficients from (5) and A is the
vector formed by the terms {A,,}. We again solve this system by SVD, where
K = UXVT. Observe that Ker(K) must be one dimensional, since two inde-
pendent solutions would allow us to derive two solutions to (1), contradicting
our original agsumption. Having recovered A up to scale, we recover the correct

1b

scale by imposing the condition implied by the last row of (4), specifically th:

/\Iv, ;»/\>v> . A.‘<+/\J\‘vvf\‘,- = p = 1 where v,»‘ is the last row of v;. Having s:)]\v 1
for A, hence 2. we obtain a; as £/x,;, where the choice of sign for 2y determines

the sign ol a; by sgn{a;) = sgn (e Jsgn(e;).

Before presenting our pose estimation algorithms, we briefly present a more
formal treatment of owr approach. Let HQ(R™ ) and HL{R™) be the set of quadratic
and linear equations on R, respectively, which are homogeneous in the variables.
Our roach was to linearize the quadratic system in (1) to the linear one in (2)
by apy )](\;‘]]}f" 'h() m:)p FrHQER™) — HL(R™Y) defined by f(tit;) =y, £(1) = p,
where 7 1) 4 1. This increases the dimension of the solution space to
N > 1 by artificially disambiguating related quadratic terms. I‘(\( Vo = Ker(IM)
as above. We think of Vy as an N dimengional affine variety in R, 1 agsumes an
especially simple form since it is a vector subspace of . To recover the original
solution to (1), we impose additional constraints of the form aya = @0y
fm‘ {'T’ ik /’} a permutation of {1, 4, k. 1}. Let ey be one such equation, and let

Var( ) be the algebraic variety in ‘

" defined by it Then Vi = V5 N Var(e;) is
a snl)\,,uwh of Vo defined by the ¢; and the system (2). Since Var(ey) is not in
any linear subspace of B it follows that V) is a proper subvariety of V. Given a
sequence of such constraints {e;} with e; imlopomlo tof {ej | § <i}, we obtain
a nested sequence of varieties Vi D V) D 15 .00 of decreasing dimension. Since
we have more quadratic constraints than the dimension of 14, we eventually
arrive at the desired solution. Observe that this procedure is entirely generic
and (]oos not depend on the coeflicients of the original system (1), It follows
that an abstract description of the subspace § = Var({e;}) ¢ IR, which we do
not vet have, would allow ug to eliminate the second, often more computation-
ally intensive, SVD needed to find Ker(I) in our p1 ()(1(,\,(1111(‘. Note that we are
aware of the problems overdimensioning can cause when seeking solutions in a
given parameter space in the presence of noise, for exa 11])1(‘ in determining the
Essentinl matrix. However, these cffects are determined by the geometry of the



underlyving space. In our case, the genericity of S and the linear nature of 14
contributes to the robustness which we see in Sect. 4.

2.2 Point Algorithm

We assume that the coordinates of n points are known in some global frame,
and that for every reference point in the world frame, we have a correspondence
to a point on the image plane. Our approach is to recover the depths of points

. . N . . . . 3 .
by using the geometric rigidity of the target in the form of the l'(‘”.l Y distances

between n points.

Let w; and w; be two points with projections p; and p;. We indicate by
dij the distance between wy and wy. Let £; and £ be positive real numbers so
that |4;p;] is the distance of the point w; from the optical center of the camera,
similarly for #;. 1t follows that di; = [tip; — 4;p;]. This is our basic geometric

constraint (see Fig. 1). Let by = (/'fj. Then we have
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Fig. 1. The basic geometric constraint used in n point algorithm relates the digtance
g 1 8
between points in the world dy; and the scale factors #; and #; associated with the
1 J J
projections pi and p;.

bij = (tips — t;p;)! (tipi = £;15)
plpi+Ep] pi - 2tp! py (6)

I

Equation (6) is exactly of the form (1) and we apply the solution described to
. . o . —1 +1
recover the depth scalings ¢;. In this case, M in (3) has size nln=1) (2t gy
and a simple argument shows that it can be written as M = (M/IM"}, where
. {n—1) 0y . . R i el ] (n—1
M js 222D 202D dinoonal. Tt follows that Ker(M) is 220 g nlezt) o
n -+ 1 dimensional. Hence, we must compute K and find its kernel, K will have
41 4.2 . . . - - .
Mﬂi*) rows and there are O(n*) equations of the form (5). We use only the
”‘2(”71)
niinzh

constraints derived from expressions of the form 5t = £t

The choice of sign for {#;} is clear, since these are all positive depth scal-
ings. Given these scale factors, we have the coordinates of world points in the
frame of the camera. Now the recovery of camera rotation and translation sim-
ply amounts to solving the absolute orientation problem. We translate the two
clouds of points, in the camera and world frames, to their respective centroids



and recover the optimal rotation using unit quaternions [11] or SVD of the cross-
covariance mafrix [13]. Given the rotation, translation between the two centroids
is immediately recovered.

2.3 Line Algorithm

Unlike the point case, divect recovery of line parameters does not appear feasi-
ble, since the number of linearized variables (derived for example from Plicker
(,um'clumlﬁ(‘s) grows too fast in comparison to the mmber of available constraints.
Instead, we show how to directly recover the rotation and translation.

Let {l; = (v, pi)} be a collection of 3D lines such that in the world coordinate
frame {v;} are normalized vectors giving the directions of the lines and {pv} are
points on the lines. It follows that in parametric form, points on [; are given
by vy -+ Py for the veal parameter ¢, If (R, T) € L(%) = SO(3) x ‘W is the
transformation relating the world and camera frames, then the corresponding
representations of the lines in the camera frame are {I; = (wy, ¢;)} where w; =
Rv; and ¢; = Rp; +T. Let Py be the plane defined by the optical center of the
camera and the line [;.

Let the corvesponding lines in the image plane of the camera be {s5; =
(di,ci)}, where @&; and ¢; ave of the forms (v o, n, v O and (e; .. 00 s nr
respectively, with a; normalized. Consider the point d; on s; which is dow t
to the origin of lho image plane. Then d; = ¢; — ( ,] &y )6. Let 5 =

follows that ¥ (\, = 0 so that {a&;, %} is an orthonormal frame spanning
the plane P (sm* Fig. 2). Since w; lies entirely in the plane P;, we can write

‘:\%-"\\] H

N\ T / R
\_ Plane, /7\\~ 3D line,

>1<)]v ted lim\,‘,'- Optical Axis

FrragePlane

('1;1111(‘1(\ () tical Center

Fig. 2. Geometric constraint used in » line algorithm. The plane F; determined by the
vi b Thus, wi; = Ryvy can be written

line I; and the optical center is spanned by {d;
as a linear combination of these two vectors.

it as w; = (wf an
(Rv] a)a,; + (R, 5. From this we develop a set of quadratic equations in
the entries of R to to obtain a system of the form (1) and directly recover the

Ay 4 (wha)5,. Substituting w; = Rv; we obtain Rv; =




rotation matrix. Let K, = v!'v,;. We have the equation

Iy = (7)
[(Rv] @)a; + (R, ,),']v/[(R,v(,/‘(\z‘,)f)z, + (RV/]“,/ Y]

For i # j we obtain three additional equations from

Rv; x Rv; = ®)
{(R,\,;,/ﬁ )i+ (‘[?,\7;/';’;,,1);;,[} X S(R,v'//yng,)[}, + (R,v}

Observe that (7) and {8) do not enforce the requirement that R € SO(3). We
accomplish this using the 12 quadratic constraints derived from

R'R=RR" =1 )
Note that in general, there are only 6 independent constraints in (9), but by

emploving our lincarization procedure, we introduce more relations on the 45
linearized terms {ry; = rr;}, wheve {r;} are the 9 entries in R Using (7), (8)

and (9), we obtain n(2n — 1) + 12 equations of the form (1) in the 46 variables
{p, rij}. For n > 5, we obtain a solution for R directly from ¢ h(\ SVD of the
corvesponding M from (3). For n = 4, the additional step involving the SVD

of K is required. Observe that the sign convention is also determined. Since
R € 50({3), we need only choose the global sign so that det{R)
> O o
Having recovered the rotation, we describe how to recover H](‘, t'r;ms{al:imL
Given the point q; on Hw line I; in camera coordinates, we project to a point
i 2 ..
ki = (Gia/ i @i y/0i.2. 1) on the image plane. Since t,lns point is on the line s;,
we have, using the 11()1,,111()11 of this section,

’/i,:(yk /1>;/1 = Az d;

Substituting q; = Rp, + T for each line, we obtain two linear equations in the
entries of T. A solution can be obtained by directly applying SVD.

3  Sensitivity Analysis

We analyze the sensitivity of owr algorithms and show that the ervor in our
solutions is bounded by the error in the image data. For l)asu‘ definitions and
information on matrix perturbation theory, see [23]. We consider fivst the simpler
case of five or more lines and then apply a more elaborate analysis to the point
algorithm. We omit the four line case in this treatment. Let |- | indicate the
Frobenius norm and |- | the 2-norm. Suppose that M in (3} is a perturbation of
the real system 1 M due to noise, with M = M 4+ M,. Since M is derived from
polynomials in image measurements, a bound on image noise implies that we
can bound [M,]. Suppose that the real physical solution to the pose problem is
given by some & = T + %,, where I solves the perturbed system (i.e. MiE = )
with M = 0. It is our goal to bonnd 17|

Expanding out the expression for the unperturbed system results in Mi +
M3, = =M, (T + #,.). Using M# = 0 and multiplving by M, the pseudoinverse
of M, we obtain MMz, = ~MTM, (i + 7).




For the case of five or more lines, recall that M has full column rank.
follows ]mr MM#F, = Now, applying s;mpl(\ properties of the norm to
both sides, we obtain [7.] < !Nﬁ]]'ﬂ\/{ (]2 + [2.]). We can either ignore the
quadratic t T
for any reasonable situation. Thus, for 1 < A <

< /\1‘1\/1,71,;;1\4;(,[,,

erm {M, | |7, or nse the highly conse 1\(1t1\(\ estimate that [#,] < \11

d

The point case is complicated by the fact that M is rank deficient. We writ

Fe = &, + &, where ), € K = Rer(M) and #, is or 105_)()]1(1[ o K. lwr
applyving the procedure above, we find that for points,
|7, ] < AIMT M| 217 (10)

but we have no constraint on ,. In ovder to bound this component of the error,
we must use the fact that both T oand @ must lie on the variety above if they
are valid solutions, whether perturbed or not. We write the iy (‘4)111})()1)(\111' of &,
as &y and of ¥, as #;;, so that the ij component of is @i + 45, Using the
notation for inner products from section 2.2, we state li]ml,

—2/),"/'.’17,"/' + DT Py = 0 (1 I)
This is a consequence of the simple form M takes in the point case. ' Con-
which must be satistied by Z. Substitutin

.1,7-

sider now the relation wywj; = a7

approriate terms results in

(12)

5 with the plane deseribed by (11),

(:I?,‘,’ + 2y :Iv,',',')(,'lfjj -+ ,’IA?‘/"/' -+

It we now intersect this quadric in 2
we obtain a conic in 2y, 25, Using the same procedure we can find two other
conics in @ i and inl*(‘rso(tt them all to obtain a discrete st of
solutions for &y, gk, hence &y, &y, @5 using (11). The depend only on ¥,
{pi;} and the bounded T An alt x\]]mt}i\r(% approach is to ignore second order
terms in error the quadric (12) to obtain

T and

iy g il = 20 & 2wy — (wadyy oy d) (13)
Now, the intersection of the plane defined by (13) with (11) results in a line in
- We find two other lines (as with the conies (1|)<)\ o), and solve. In this

- we have

case, we can write down an explicit solutions. Using i, j7,

/11)1] gk -+ /1/‘])111)//\ /‘j/\'bij{)i/\' (11)
(I,,iv/‘(l,‘)’/‘,l ik ((,,'/‘./),',‘l'()v]'/y.

Ty =

with
C S F I
Dij
Pijj
bij = ay; — ;==
],),’j

fij = 2.’1,‘,‘_1‘.)#’,"/' - (,’Z,’,‘,’."i,‘./",' + Ty :i,’,',‘)

P Proof omitbed because of space constraints; reference omitted for anonvmity pur-

poses.



Since these relations must hold, for all integers i, j, b, we select the smallest 2,
in absolute value.

Thus, we see by inspections of (14) that up to first approximation,
the same magnitude as [2,], which is already bounded by (10).

4  Results

We conduct a number of experiments, both simulated and real, to test owr al-

gorithms (hereafter veferved to as NPL and NLL for n point linear and » line

linear, respectively) under image noise. We compare to the following algorithms.
For points:

PM Divect recovery and decomposition of the full projection wmatrix from 6 or more
points by SVD methods. We use a triangle (A) to indicate this algorithm on all
graphs.

F o The nopoint linear algorithm of Fiore {6}, We signify this by a square(U).

QL The n point lincar algorithm of Quan and Lan [22]. We gignify this by a diamond

LHM The iterative algorithm of Ta, Hager and Mjolsness [19] inistalized at ground
truth. We signify this by a civcle (o) and include it primarily as a reference to
compare the absolute performance of the linear algorithims, We expect it to achieve
the hest performance.

For lines:

KH The iterative algorithm of Kumar and Hanson rveferred to as Roand T in ‘] 3] We
initialize KH at the ground truth translation and rotation (KHERT signified by
A) and at ground trush translation and identity rotation (KHT signified by ().

4.1 Simulation

All simulations are performed in MATLAB. We assume calibrated virtual cam-
eras with effective focal length (diagonal terms in calibration matrix) 1500 in the
point case and 600 in the line case. We report errors in terms or relative rotation
error and relative translation error. Fach pose (R, T) is written as (g, T), where
7 is a unit quaternion. For recovered values (g,, T, the relative translation error

is computed as and the relative rotation error as the absolute errvor in

the unit gquaternion, |§ — ¢,]. Noise levels in image measurements are reported
in terms of the standard deviation of a zero mean Gaussian. For the point case,
when we add Gaussian noise with standard deviation o to image coordinates, we
do so independently in the x and y directions. We also only admit noise between
—30 and 3. In the line case, we again report pixel noise and propagate to nolse
in the line parameters following [25]. Unless indicated, all plots vepresent mean
values over 400 trials.

Point Simulation I {Dependence on noise level): We vary noise from o = (0.5
to 4. For each noise level, we generate 400 random poses. For each pose, we
generate 6 points at random with distances between 0 and 200 from the camera.
We restrict translations to [T < 100, In Fig. 3 observe that NPT outperforms
PM., I and QL for all noise levels.
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Fig. 3. (Point Shmulation 1) Rotation and Translation ervors for 6 points vs. noise
level. We plot vesults for the five algorithms, NPL, PM, ¥, QL, LEM. Note that
NPL outperforms all but the iterative LHM with gronnd truth initialization.

Rotation error (1.5 x 1.5 pixel noise) Translation errar (1.5 x 1.5 pixel noise
g . . 5 . : -
| i N ‘ * ;
| | = NPL | R |
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sz at o0t | e
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N . .
P o 4 3
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I ) I3

number of points Aumber of points used to estimate pose

Fig. 4. (Point Simulation 2) Rotation and Translation ervors vs. number of poings
used for pose estimation with 1.5 x 1.5 pixel Gaussian noise. We plot results for the
five algorithms, NPL, PM, F, QL, LHM.We see that NPL outperforms all but the
iterative LEIM with ground truth initialization for all numbers of points considered.
The difference is largest for a small number of points.

Point Simulation 2 (Dependence on number of points): We demonstrate that all
5 algorithms perform better as the number of points used for pose estimation
is increased. Points and poses are generated exactly as in Point Simulation
1, but the number of points is varied from 5 to 11. We add x 1.5 pixel
Gaussian noise to all images. Note in Fig 4 that NPL outperforms the other
linear algorithms but that the performance difference is greatest for fewer points,
which is our primary concern as mentioned in the introduction. Note that we do
not plot results for PV or F for 5 points, since these algorithms require at least
6 points.

Line Simulation 1 (Dependence on noise level): We vary pixel noise from o = 0.5
to 5 and propagate to noise in line parameters following [25]. For each noise level,
we generate 400 poses and 6 line segments for each pose. World line segments
are contained in a 20 x 20 x 20 box in front of the camera and translations are



restricted to |77 < 10, We plot velative rotation and translation errors for NLI
and KE (see Fig. 5). As exp (\(t(\(L the iterative algorithm performs better for
good initialization (ground truth in the case of KHRT). However, we cannot
predict convergence time. \r\‘]i‘lz poor initialization, even at ground truth transla-
tion and R =T for KHT, our linear algorithm xh()\\s hetter mean performance.
This is a vesult of convergence to local minima in some trials. We immediately

o

see the advantage of having no initialization requirement for NLL.

Ratation error Translation error
ML = NLL
KHT | ; KK
KHAT | w2 [ KHAT |

Tmage noise ipixals) ’ 5 e (pix
Tig. 5. (Line Simulation 1) Rotation and Translation ervors vs. noise level for NLL
and KH., We initialize KH at grovnd frath R and T (K }

) to evalmate absolute
performance and at ground truth T and R =T (KHT) to <lt‘m()1mum‘ the advantage
of requiring no initialization in NLL.

Line Simulation 2 (Dependence on number of lines): We generate poses and
points as in Line Simulation 1 but for the numbers of lines varyving from 4 to
11 and with fixed noise of 1.5 x 1.5 pixels. We see in Fig. 6 that the performance
of both algorithms improves with increasing number of lines. Note also that KH
is less likely to converge to local minima for larger numbers of lines. The absolute
performance of NLT is again comparable to KH.

4.2  Real Experiments

All images were taken with a Sony XC-999 camera and Matrox Meteor T1 frame
grabber. The camoera was calibrated using Lenz and Tsal’s algorithm [16}. All
image processing was done offline using MATLAB. Note that the more compu-
t'at'ionnll\' intensive point algorithm NPL can be run in real-time (> 30 Hz) on

) MHz PIT using the implementation of SVD from numerical recipes in C
Im' up o 9 points without any attempt to optimize the algorithm,

ered

Point Brperiment - We demonstrate that virtual objects arve correctly regist
into a real scene using NPL for pose estimation. \\ e obtain the mmdm'lt s of
the 8 marked points in Fig. 7 by magnifyving the relevant region and marking by
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Fig. 6. (Line Simulation 2) Rotation and Translation ervors vs. number of points for
NLL and KH. Noise is fixed at 1.5 x 1.5 pixels, We initialize KH at ground truth R
and T (KHRT) to evaluate absolute performance and at ground truth T and R =1
(KHT) to demounstrate the advantage of requiring no initialization in NLL.

e

Tig. 7. (Point Experiment 1) Reprojection of a virtual box and three edges of a
cube onto real-world reference objects. We estimate camera pose using the 8 circled
points and NPL.

hand with a MATLAB program. We take the vertex coordinates of a virtual hox
and the corners of the metal edge in the world frame, transform to the camera
frame using the three recovered poses, and reproject. The metal edge, which we
augment to a full cube, is 7 inches on each side, and the camera distance varies
from 30 to 40 inches from the nearest corner of the cube. Notice that the virtual
boxes are properly placed and aligned with the world reference objects for all
three poses.

Point Experiment 2: We repeat Point Experiment 1 on a different scale.
In Fig. 8, the box is approximately 18 inches on each side, and the camera is
approximately 8 feet from the nearest corner of the box. We estimate pose from
the 8 marked points using NPL. We then take the coordinates of two virtual
hoxes of identical size, stacked on top of and next to the real one, transform to
camera coordinates, and reproject into the image. Note that the virtual boxes
arc very closely aligned with the real one and appear to be the correct size.



Point Brperiment 5. We test NPL on coplanar points. In Fig. 9 we mark 9
points on the calibration grid in the image. The points have a uniform spacing
of 8 inches. The camera is placed approximately 11 feet from the marked points.
We recover the coordinates of the 9 points using NPL and compute a best it
plane from the recovered points. The mean distance from the recovered points
to the best fit planc is 0.15 in. with a standard deviation of 0.07 in. We see that

owr algorithm does not degenerate for coplanar points.

ration of virtual objects

Line Baperiment [: We demonstrate the corvect regist
into a real scene using NLL. In Fig. 10(a), we indicate the 7 line segments used
to estimate camera pose. In Fig. 10(b), we overlay a texture on the faces of the
pictured box by transforming the world coordinates of the bhox vertices to camera
coordinates and warping the texture onto the resulting quadrangles via homo-
graphies. We also place a virtual cube on the original hox. The cube is aligned
with the real box in world coordinates. Ohserve that after transformation to
the camera frame and reprojection, it remains aligned. Finally, we highlight the
edges of the table by transforming its world coordinates to camera coordinates
and reprojecting the appropriate line segments. We emphasize that all virtual
objects are constructed in world coordinates and inserted into the images only
after pose estimation and transformation to camera coordinates.

Fig. 8. (Point Experiment 2) Reprojection of 2 virtual boxes of dimensions identical
to a veal hox. We estimate camera pose using the 8 civcled points and NPL.

5 Conclusion

Our goal was to develop fast, accurate pose estimation algorithms for a limited
numbers of points or lines. We have presented a general mathematical procedure
from which we derive a pair of linear algorithms which guarantee the correct so-
hution in the noiseless case, provided it is unique. Our point algorithm shows
performance superior to competing linear algorithms and comparable to a re-
cent iterative algorithin. For our line algorithm, there is no competing linear
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