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ABSTRACT 

In this paper a variety of techniques to characterize the mechanical properties of polymers in the M H z  frequency 
range based on the impedance analysis of thickness and thickness shear composite resonators will be presented. The analysis 
is based on inverting the impedance data of the composite resonator to find the best fit using the material coefficients of the 
piezoelectric resonator and attached polymer layer. Mason’s equivalent circuit is used along with standard acoustic circuit 
elements to generate the impedance of the composite resonators and interpret the experimental data. Inversion techmques 
will be presented which allow for the direct determination of the acoustic load if the material properties of the resonator are 
known before being joined to the polymer. 

A specific example of this technique, the quartz crystal microbalance will be presented and it will be shown how the 
model can be extended to include all the acoustic elements of the experimental setup including the acoustic load of the 
solution. In the model all elements are treated as complex to account for loss mechanisms (viscous effects, electric dissipation 
etc.). If the free resonator is modeled prior to deposition a transform is presented that allows for the determination of the 
acoustic load directly. The advantage being that one no longer has to assume a functional form of the acoustic load (eg. mass 
damping) since it can be measured directly and compared to the various models. In addition the transform allows for an easy 
determination of the mass sensitivity and bandwidth for the system. The theory can be extended to account for electrode mass 
or the addition of a chemically sensitive layer for use in chemical monitoring. The technique has applications in monitoring 
deposition rates, curing rates of epoxies, glues as well as the direct determination of the elastic coefficients of polymer 
materials. 

Keywords: Piezoelectric devices, Active Materials, Thin Film Resonators, Composite Resonators, Quartz Crystal 
Microbalance. 

1. INTRODUCTION 

Analytical solutions to the wave equation in piezoelectric materials can be quite cumbersome to derive from first principles in 
all but a few cases. Mason’,’ was able to show that for one-dimensional analysis most of the difficulties in deriving the 
solutions could be overcome by borrowing from network theory. He presented an exact equivalent circuit that separated the 
piezoelectric material into an electrical port and two acoustic ports through the use of an ideal electromechanical transformer 
as shown in Figure 1. The model has been widely used for free and mass loaded resonators3, transient response4, material 
coefficient determination’, and a host of other applications6. One of the perceived problems with the model is that it required 
a negative capacitance at the electrical port. Although Redwood4 showed that this capacitance could be transformed to the 
acoustic side of the transformer and treated like a length of the acoustic line it was still thought to be “un-physical”. In an 
effort to remove circuit elements between the top of the transformer and the node of the acoustic transmission line Krimholtz, 
Leedom and Matthae’ published an altemative equivalent circuit as shown in Figure 1. The model is commonly referred to as 
the IUM model and has been used extensively in the medical imaging community in an effort to design hgh  frequency 
transducers multilayers’O, and arrays”. In a recent paper’’ we presented results, which extended both models to include 
loss components in all the material coefficients, and demonstrated that if losses were treated consistently both the KLM and 
Mason’s equivalent circuit produced identical impedance spectra. In the remaining sections of this paper we will be using the 
Mason’s equivalent circuit exclusively. The Mason’s equivalent circuit is shown in Figure 1 for the thickness/hckness shear 
mode. If the acoustic ports are shorted these models reduce to the free resonator equation derived from the linear 
piezoelectric equations and the wave equation3 which has been adopted by the IEEE Standard on Piez~electricity’~ for 
determination of the thickness material coefficients. 

The constants of the model are shown in Table 1. In Mason’s equivalent circuit an electrical port is connected to the 
center node of the two acoustic ports representing the front and back face of the transducer. On the electrical port of the 
transformer all circuit elements are standard electrical elements and the voltage is related to the current via V =ZI where Z is 
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an electrical impedance. On the acoustical side of the transformer the force F and the velocity v are related through F = Z,v 
where Z, is the specific acoustic impedance Z, Q pvA where p is the density, v is the longitudinal velocity of the piezoelectric 
material and A is the area. It should be noted that the italic v = &/at is a variable of the circuit model while the straight v is a 
coefficient of the material. The transformer is an ideal electromechanical transformer that conserves power during the 
transformation. The relationship between the coefficients of the free resonator and Mason's equivalent circuits are shown in 
Table 1 in terms of the material coefficients of the free resonator. 

0 / 
FIGURE 1: Mason's equivalent circuits with short circuits on the acoustic ports (unclamped). 
defined in Table 1. 

Quantities in figure are 

Table 1. The complex material coefficients of Mason's equivalent circuit parameters and the equation and 
coefficients of the free resonator. The equations shown can be used to describe the thickness extensional and the thickness 
shear resonance mode. 

Free Resonator 

Z =  

E S  clamped complex permittivity 
cD open circuit complex elastic stiffness 
k complex electromechanical coupling 

k f  = eZ/CDES =hZgS/CD 

h = kdcD /E' 

Mason's Model 

N = C,h ESA c, =- 
t 

Z ,  = p  A V ~  = ~Jpc" 
z, = iz, tan(w2) z, = -iz, csc(rt)  
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In the small signal limit the material loss of linear systems can be accurately described by the use of complex 
~oefficients'~. A variety of techniques to determine these complex coefficients have been published previously L5916~'7* . In 
the case of the thickness extensionall thickness shear resonator the material coefficients can be represented by 

(1) 

(3) 

& s s  = E ,  +i&; =&;(l+itan6,) 

cD =cp +ic; = C p ( l + i t a n 6 , )  (2) 
h = h, +ih, = h,(l+itanS,) 

where it should be noted that we have not imposed any sign on the imaginary component in equations It0 3. It should also be 
noted that representation is a simplification that is theoretically only exact at a single frequency due to the possibility of 
dispersion in each of the material coefficients. As an example consider the general case of an elastic media with viscous 
losses. The stress T is 

For a harmonic strain S=Re(Soei"' ) the stress can be rewritten as 
( 5 )  

In the case of most solid materials it has been point out by Mason" that the imaginary term in the brackets in equation 5 (loss 
component) is frequency independent which implies at least for many solid materials that q has an inverse frequency 
dependence. The complex coefficient representation is generally valid unless the frequency of operation happens to coincide 
with an anomalous adsorption peak in the material coefficient since away from these absorptions peaks the frequency 
dependence is generally quite small. The shear velocity v described in the equations for the acoustic impedance 2, and 
propagation constant r is therefore complex and can be determine from the complex shear stiffness coefficient using 

T = c S + q S  (4) 

T = (c + iwq)S = cS 

+ (6)  

Similar dispersion relationships may hold for the permittivity and the piezoelectric ~oefficient'~ which over a limited 
bandwidth may be treated as a complex coefficient. 

In the case of the free thickness extensional or thickness shear resonator the electrical impedance determined from 
Mason's equivalent circuit 2, measured at the electrical port is 

with 

and 

z,=z, 1-- [ z;y] 
ZT z, =zs  +- 
2 

1 
iwC, 

z, =- 

(7) 

(9) 

with the functions Z, and Z, and the complex capacitance CO defined in Table 1. The impedance equation 2, shown in 
equation 7 can be shown to be identical to the equation for the free resonator shown in Table 1 as would be expected. 

2. ACOUSTIC ELEMENTS 

In order to investigate the various acoustic regimes encountered when a layer is attached to a surface of a piezoelectric we use 
the network representation of a non-piezoelectric solid acoustic element as described by Redwood4 and M~Skimmin~~.  This 
network representation is shown in Figure 2. Like Mason's model this representation is the solution to the one-dmensional 
wave equation with open boundary conditions. 
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I1 VI + 
0 Z ,  = i pAv  tan (=) O L  Z, = ipAv tan (F) O L  

FI v1 

I2 v2 

-Fo 

F2 v2 

I I 
Figure 2. Network representation of the one-dimensional solution to the wave equation for an extensional mode in a plate. 
The boundary conditions are open. Electrical Analogs are Voltage = Force, Current = Velocity and Specific acoustic 
impedance is analogous to the electrical impedance. Losses can be accounted for by allowing the velocity to be complex 
v.=(c./p) 1'2. 

In order to emphasize the versatility of this representation we have investigated the response of this network in the 
low and high frequency regimes when the front face of the layer is acoustically short circuited (free to expand) and open 
circuited (rigidly clamped). The back surface is driven by a sinusoidal force F=F,cos(wt). For harmonic sinusoidal excitation 
in a linear system the displacement uI of the back face is related to the velocity V I  by vl=ioul. 
layer under open and short circuit conditions is 

2 ,  

The acoustic impedance of the 

0 500 1000 1500 2000 

Frequency (kHz) 
Figure 3. The velocity of the front face of an acoustic element being driven by a sinusoidal force when the back face of the 
acoustic port is a) free and b) rigidly fixed.. (A= 0.0025 m2, L =0.002 m, p = 2750 kg/m3, v=(5721+2.86i) d s ,  Fo = 100 N, 
m =0.01375 kg, and c33 = 9x1OL0 (l+O.OOli)). 
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' T Z S  

' T  +'S 
'Short = ' T  + 

At high frequencies the acoustic element goes into resonance. The elastic properties, geometry and boundary 
conditions determine the resonance frequency. In the case where one face of the element is rigidly fixed (open circuit) the 
resonance frequency in determined from the minimum of + and the plate is found to resonate at W4. When the acoustic 
port is short-circuited the acoustic impedance of the element can be shown to equal Zshort= iZbtan(wL/v) and is found to 
resonate at W2. The frequency response (derived from equations 10 and 11) of the logarithm of the longitudinal velocity v is 
shown in Figure 3 for both the open and short circuit acoustic ports. The coefficients used for this simulation are shown in the 
figure caption. In this case we assume a thickness extensional excitation. 

In the low frequency limit as o+O the tan function tan(wU2v) +oL/2v while the sin(oL/v) + oL/v. The acoustic 
impedance of each element reduces to ZT +ipAwL/2 = imw/2, ZS + pAv2hoL = Ac33/ioL where m is the mass of the layer 
and c33 is the elastic stiffness. In the case where the front surface is rigidly fixed we note that at low frequencies Zs>>ZT 

Z,,, =Zs  = Ac,,/ioL 
and the total impedance appears capacitive with a capacitance C = L/Ac33. The strain S = ul/L for a sinusoidal force F1 = 

Focos(ot) is therefore 

F - - Fo cos(ot) U S = 1 =  
L ioLZ,,, c33 A 

This is the equation of an elastic solid being strained (Hooke's Law) by the application of a sinusoidal force, which is exactly 
what one would expect. 
In the case where the layer is short-circuited the total impedance at low frequency is 

Z,, = 22,  = imo 
and the impedance is inductive with an inductance L = m the mass of the acoustic layer. The displacements of the front and 
back face ul ,  u2 are found to be . -  

u2 = u1 = ---cos(ot) 1 Po 

m o2 
which is the equation for a displacement of a mass driven by a harmonic force. 

3. LAYER MODELING 

The analytical solution for the impedance of a piezoelectric layer on a substrate was derived from the wave 
equation by Lakin, Kline and McCarron", A more recent derivation by Lukacs et a12' extended the solution to include loss in 
the elastic, dielectric and piezoelectric constants and first order dispersion in the dielectric constant. These models produced 
identical impedance spectra to the spectra generated using Mason's equivalent circuit shown in Figure 1. when loss was 
applied consistently". These solutions are valid for all cases where the lateral dimensions of the acoustic layer and the 
piezoelectric layer are much larger than either layer thickness. In order to proceed with the modeling we connect one of the 
accoustic ports of Mason's equivalent circuit to one of the acoustic ports of an acoustic element and short the other acoustic 
port of the piezoelectric and acoustic element as is shown in Figure 4. 
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Piezoelectric 

Figure 4. Th. ~ quivalent circuit representation fth 

Acoustic element 

~ ~ piez electric resonata attached to an acoustic element. The 
m&anical boundary conditions on both exposed surfaces of the element and piezoelectric are unclamped (short circuit on the 
acoustic port) 
The acoustic elements of the layer are: 

where p, AI, VI and L are the density, cross sectional area, complex velocity, and the .ickness of the layer respectively. The 

elements of the layer shown in Figure 5 can be simplified M e r  to give the total impedance of the layer Z, 

z;z; 
z; +z; z, =z;+ 

The electrical impedance of the piezoelectric and the layer determined from Mason’s equivalent circuit is calculated using 

equation 7 with a total acoustic impedance ZA equal to 

z, =z,+ z, (Z, + ZL 1 
22, + ZL 
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, 

and Z, defined as in equation 9. It can be shown that as the layer increases in thickness three distinct acoustic regions can 
be determined in which the total impedance of the layer 2, has distinct and measurable effects on the resonance spectrum of 
the transducer. These regions are the mass, intermediate and radiation damping regions. In order to demonstrate these 
regimes the piezoelectric with an acoustic layer of various thickness values was simulated using the data in Table 2. The 

r graphs are shown in Figures 5 to 7. 

Table 2. The complex material coefficients (nominal) used to investigate the resonator configurations. The 
coefficients for AT quartz were used to simulate the curves shown in Figures 5-10. 

Motorola 3203HD Thickness Extensional AT Cut Quartz Thickness Shear Extensional 
E' (F/m) l.O6xlO-*( 1-0.0539 5.30x10'"(1 - 0.002i) 
cD (N/m2) 1 .77x101'( 1+0.023i) 2.94~10'~(1 + 4.5x10-?) 

1.67x109(1 + 2.9~10" i) k (#) 

2650 h (V/m) 
P (kg/m3) 7800 

0.54( 1-.005i) 0.071(1 - 0.001i) 
2 .20~1 09( 1 +O.O33i) 

Table 3. The complex elastic stiffness constant, density and thickness values used to generate the curves shown in 
Figures 5-10. 

c (N/m2) 

Layer Properties 

8x1 OL0( 1 +O.O 1 i) 

0.00001 

0.003 

a) 
In this region the layer thickness is much smaller than the piezoelectric thickness and the tan of the argument of the tan 
function of 2, can be approximated by the argument (for x<<l tan(x)=x) 

Mass Damping (t/vD >> L/v, ) 

Z, = i p , A , v ,  tan [ - = i p , A , v ,  - = imcc, 

h e  AT qirb bO.OO1 m - 
- h.eATplarbb0.001 m+lOmA 

0.001 

(21) 

a 

Figure 5 Schematic of a piezoelectric with a thin layer and the effect on the resonance spectra. The mass loads the 
piezoelectric and the resonance frequency shifts down. Layer thickness is not to scale. 
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As mass is deposited on the surface of the crystal the resonance frequency of the crystal is reduced. In the case of a 
thin rigid film deposited in vacuum deposition the shift Af, in resonance frequencyf, can be related to the deposited mass Am 
by the Sauerbrey equationz3. The quantity m, is the mass of the crystal/electrodes in the active area of the resonator prior to 
deposition. 

A m = m , -  U S  (22) 
f s  

By monitoring the change in frequency one can then determine the mass deposited on the surface of the resonator. In the 
example above in Figure 5 4!f= A d m 0  = 0.0101 

A variety of models have been used to model the unloaded resonator about resonance. The most common is the 
Butterworth Van Dyke model shown in Fig 2a. In this lumped circuit model the loss around resonance is assumed to be 
dominated by mechanical effects and is accounted for by a resistor in the motional branch. In previous work24 it was 
demonstrated that by removing the resistor and allowing the remaining circuit constants to have a complex component one 
could obtain a better fit to the resonator over a larger bandwidth. Although the lumped circuit models2’ applied to the Quartz 
Crystal Microbalance are attractive from an ease of use perspective they suffer limitations from the fact that they are 
approximations to the full one-dimensional solution of the resonator and film. In addition one needs to assume a model for 
the load on the acoustic port, which requires the addition of general capacitive, inductive and resistive impedance elements to 
be added to the motional branch. Although these electrical elements can in most cases account for the frequency shift and 
decrease in mechanical Q of the resonator film combination they lack a clear link to the physical process that is occurring at 
the surface of the quartz resonator. 

A more elegant and rigorous (exact solution to the one-dimensional wave equation for the system) approach is to 
treat the resonator and film using multi-port network solutions as discussed above and described by Cemosek et. a1.z6, 

Mason’s equivalents circuits can represent the solution to the one dimension wave equation for the system shown in Figure 4. 
The circuits are exact solutions to the wave equations for each region. Connecting each of the circuit elements allows for the 
matching of the mechanical boundary conditions at each interface. This representation is a powerful tool to solve the wave 
equation in piezoelectric and non-piezoelectric media especially when losses are properly accounted for. 

b) Intermediate region (tp/vD = L/v, ) 
In this regime approximations are not valid and the layer specific acoustic impedance is 

Z, = i p l A l v , t a n [ 5 )  

Resonances in the layer are clearly present in the admittance curves 

o . m 1  

o.oMoow1 

- h e  AT pluk b0.001 m 
h a  AT q~ie bO.001 m + 0 Om m Al 

0 WO 1003 15W 2000 2500 SOW 3SW 

Fr-w.nnl (Mr)  

Figure 6 Schematic of a piezoelectric with a 1ayer.of approximately the same acoustic length. The effect on the resonance 
admittance spectra is shown in the curve. Multiple resonance peaks are now apparent. Layer thickness is not to scale. 
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c) 
In this region the piezoelectric is radiating mechanical energy into the layer, which due to the layer length and attenuation is 

not reflected back to the piezoelectric. With the assumption that attenuation is present it can be shown that tan(kx)+i as x +oo 
where x is a real number and k= a+ib is complex and b>O. If b<O then tan(kx)+-i. Therefore in the radiation limit for x 
large 

Radiation limit (tp/vD << L/v, ) 

Z, =ip,A,v, tan - =ip,A,v,(-i)=p,A,v,  [::I 
which is the specific acoustic impedance of the layer. It should be noted that in the case of a long rod that dispersion is 
present and the wave velocity will switch from being controlled by the compliance to the sti&ess as the frequency is increased. 

I s 
P 

Figure 7 Schematic of a piezoelectric with a very thick layer and the effect on the resonance spectra. The radiation of energy 
reduces significantly the quality of the resonance. Layer thickness is not to scale. 

4. DETERMININATION OF THE LAYER IMPEDANCE USING IMPEDANCE TRANSFORMS 

Regardless of the loading of the layer and using Figure 4 the layer impedance ZL can be determine directly from the turns 
ration N, the total mechanical impedance 2, , the total electrical impedance of the composite Z, and the impedance of the 
static capacitance Zc and the two acoustic impedance elements of the piezoelectric Z, and Zs from 

where 
Z,N2 z, = 

Since N, Zc, ZT, Zs are known or can be determined from the free resonator and Z is measured on the composite resonator it 
is simply a matter of substituting the various spectra or coefficients into equations 25 and 26 to determine 2,. The acoustic 
impedance of the layer determined from equation 25 assumes that parasitic electrical impedance for the free resonator and the 
resonator and layer are identical. Typically quartz resonators have free capacitance values of the order of 10 pF and parasitic 
impedance, which can be as high as 1 pF. In addition the parasitic impedance can change depending on the orientation of the 
sample or holder leads2’. In addition to the change of the electrical parameters due to an uncompensated change in the 
parasitic elements the addition of a layer on the piezoelectric operating in the thickness extensional mode can clamp the 
lateral motion in the piezoelectric changing the response of the piezoelectric from its free response. The solution to 2, 
represented by equation 25 assumes no change in the mechanical boundary conditions. As an example we have taken the 
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thickness shear spectra shown in Figure 5 and applied the transform. The results are shown in Figure 8 in terms of the real 
and imaginary components of & and m* =&/io. The layer mass calculated from m=pAL. = 8.48 mg and from the Sauerbrey 
equation m = 8.42 mg. The mass determined from the data in Figure 8 is m = 8.48 mg. The transform in equation 25 has 
both a real and imaginary component for the acoustic impedance and hence the mass. This can be explained if we expand the 
acoustic load. 

2, = ipAvtan - RL) 
in terms of x = OWV and use m = pLA to get 

2, = imo- 
X 

Keeping only terms of second order in x and substituting the velocity dependence we find 

2, =imco [ 1+-- 

which can be rewritten in terms of the complex elastic stiffness c =pv2 = c, + ici and using m = pLA to finally get 

Dividing equation 3 1 by iw we finally arrive at the theoretical mass spectra for a thin film 

The acoustic impedance associated with the mass is seen to have a correction term that is proportional to the real part of the 
elastic stiffness whde the real component of the acoustic layer and the imaginary component of mass spectra m* =&/iw is 
found to be controlled by the imaginary component of the stiffness. The mass from the slope of Im(&) vs w in Figure 8. is 
found to be 8.48 mg which is in agreement with the theoretical value. The imaginary part of the mass (-1.02~10-") 
determined from equation 31 and the constants of Table 3 are in general agreement with the value determined from the 
imaginary part of the mass spectra. It is clear from thn second order expansion that the frequency shift that is measured using 
the Sauerbrey equation is due to the mass of the layer and a correction term that is proportional to the real part of the elastic 
constant. The imaginary component can be shown to be due to the change in Ah. This means that rather than measure the 
impedance at resonance to determine the Q and hence the size of the viscous effect a complex version of the Sauerbrey 
equation can be defined which calculates the real and imaginary components of the mass spectra shown in equation 32. The 
complex Sauerbrey equation is 

wherefsl is the resonance frequency of the free quartz and& is the resonance frequency of the quartz with the layer. The Ahl 
and Ah2 are the half width at half max frequency values. It is interesting to note that if the imaginary component of the mass 
spectra is comparable to the real component then one needs to know something about the elastic properties of the layer in 
order to determine the correction term to the real part is small with respect to the mass m. 

In order to investigate the sensitivity of equation 25 to changes in the parasitic impedance for the resonator before 
and after the layer is deposited a random error of the order of 0.1% was added to the real and imaginary components of the 
impedance of the resonator/layer composite. The results are shown in Figure 9. The error is seen to propagate to the spectra 
only in regions away from the resonance frequency of the piezoelectric with layer. 
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Figure 8 The complex acoustic impedance spectra of the layer as a function of the angular frequency determine from the data 
in Figure 5 and the transform shown in equation 25. The mass spectra of the layer determined from &/io. Both the real and 
imaginary mass determined from the figure are in agreement with the theoretical complex mass. 

90 

0.1 X Random Gm Q1 d#OiCd bnpedMCa 
of piazoelrtric M d  layer 

86 

10300000 10400000 10500000 

Angular Frequency w (radsls) 

Figure 9 The imaginary part of the complex acoustic impedance spectra of the layer as a function of the angular frequency 
determine from the data in Figure 5 with a 0.1% random error added to the composite impedance spectra. The error is seen to 
propagate away from the resonance frequency at 1.0337x107rads/s. 
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A systematic error in the form of a parallel capacitance on the input electrical terminals was also tested and the results are 
shown in Figure 10. The value of the parallel capacitance was adjusted from lo-’ to of the clamped capacitance Co value 
of the resonator. As the size of the uncompensated parallel capacitance increases the curves move away from the theoretical 
curve except atfs. An expanded view about the resonance frequency is shown in the inset which suggests that the slope at& 
is unperturbed from the theoretical value. 

94 

92 

g 90 
Y 

d - E 

88 

86 

- cp=o 
-- cp= ~ O - ~ C O  

cp = 1u4c~ 
cp = IO-~CO 

. . cp=1u2co 
cp = 1 u’co 

__I_ 

--- 

__ .  

87.72 4, 

87.64 I 
10335OOO 10338000 

I I 

1030ooo0 10400000 10500000 

Angular Frequency aJ(rads/s) 

Figure 10 The imaginary part of the complex acoustic impedance spectra of the layer as a h c t i o n  of the angular frequency 
determine from the data in Figure 5. Each curve shown has a different uncompensated parallel capacitance added the spectra 
of the composite prior to the transfer shown in equation 25. The slopes of the various curves about f, are seen to be equal in 
the inset figure. The resonance frequency is at 1.0337x107rads/s. 

The transforms were applied to the two other cases shown in Figures 6 and 7 and as expected the curves replicate the 
theoretical acoustic impedance spectra of the layer. It should be noted that the determining the acoustic impedance spectra 
using the transform in equation 25 is not required since the spectra of the composite layer has an abundance of structure and 
in general the density and thickness of the layer can be determined independently. Acoustic loads in these regimes may be fit 
using the equation for the composite resonator using equation 7 and 20 as was done in previous work2’. 
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Figure 11 The real and imaginary part of the complex acoustic impedance spectra for the data in Figure 6 and 7 after 
transforming using equation 25. The velocity and the mechanical Q is determined from the spacing and widths of the 
resonance peaks for the intermediate acoustic layer. The specific acoustic impedance is determined from the intercept of the 
flat section of the curve with the axes. 

5. RESULTS 

a) 
In order to test the linear transform presented above polished Quartz AT cut crystals from Maxtek Inc. (P/N 149240-1 
nominal 5MHz Ti/Pt electrodes) were mounted is the crystal holder after the holder was corrected for open and short parasitic 
impedances. The impedance spectrum of the unperturbed quartz crystal was then measured using an HP 4192a Impedance 

Mass, Condensation, Evaporation and Curing studies using the QCM. 

analyzer. 
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2. The admittance spectra of a 5 MHz Quartz crystal in air (left) and water (right) and the resultant fit using 
complex material coefficients. There is almost a ten-fold decrease in the quality of the resonance when immersed in 
water. 

The quartz and the holder were then immersed in distilled water and the impedance spectrum of the quartz crystal in contact 
with the water was measured. The results are shown in Figure 12. The material coefficients determined for the free quartz 
resonator are shown in Table 4. 
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Table 4. The complex material coefficients from the spectra of the AT cut Quartz resonator in air show on 
the left in Figure 12. Material constants determined using Smits’ method15. The complex resonance 
constants were determined from the resonance frequency and HWHM24 

AT Cut Quartz Resonator in air 
E’ (F/m) 5.45933~10-”(1 - 0.023881) 
cD (N/mz) 2.94472x1Oio(1 + 0.00012i) 

k (#I 0.0717744(1 - 0.00884i) 
1 .67x109( 1 + 0.02084 i) h (V/m) 

P (kdm3) 2650 

oe+o 

-167 - 
B 
p -267 
= 
-E -367 
l 4 6 7  
I 
I 

-567 

-667 

-70-7 

,(Hz) (quartz + water) 4.99390~10~ + 990.8i 
Am (kg) (Sauerbrev ea.) 6 . 4 5 ~ 1 0 ~ ~ - 6 . 5 2 ~ 1 0 ~ ~ ~  

, 

Am (kg) (m*(Re&, )) Figure 13. 6.44~10-~-6.03~1 O-’i 

4.985 4.990 4.m 5.000 5.005 5.010 5.1-.5 

The complex acoustic load &(a) of the water and the effective mass spectra m* = &(o)/iw of the water were determined 
using the transform (equation 25) , the coefficients in Table 4 and the two spectra in Figure 12. The complex mass spectrum 
is shown in Figure 13. 
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In order to investigate the Quartz resonator as a monitoring device distilled water and epoxy were added to the 
surface of the resonator and the impedance spectra were measured as a function of time using a Solartron 1260 Analyzer. The 
results are shown in Figure 14. Abrupt jumps in the resonance frequency occur as the epoxy hardens and the water 
evaporates. When combined with a thermal chamber these resonators can also be used to measure dew points and possible 
freezing points of variety of gas samples. 
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Figure 14. The room temperature series resonance frequency of the quartz with epoxy and water applied to the surface as a 
h c t i o n  of the time. The epoxy shows a physical change in loading at approximately 50000 seconds. The water evaporated 
from the crystal in 2200 seconds. 

b) Gauging layer elastic properties 
The impedance equation for the layer models shown in equations 7 and 20 were used to measure the longitudinal 

velocities and hence the elastic properties of polymer layers attached to piezoelectric PZT disks. The impedance of the disk 
was measured using a Solartron 1260 impedance analyzer prior to the layer attachment to determine starting values of the 
piezoelectric for the non-linear regression. A 70 micron layer of Kapton was coated with an epoxy(estimated to be less than 
5 microns). The epoxy was reduced to a thin layer using a razor edge and the PZT disk was attached to the layer. The layer 
and disk were clamped and allowed to cure overnight. The impedance spectra of the PZT disk and the Kapton layer was then 
measured. The technique has been applied to Nafion layers however initial 
results suggest that the heavier electrode materials mass damp the resonance in the layers reducing the measured velocity. 
Tests are currently being prepared on samples of Nafion without electrodes. 

The results are shown in Figure 15. below. 
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Figure 15. The impedance spectra of a PZT disk and a disk with a 70 micron Kapton layer. The longitudinal velocity of the 
layer was determined to be 1670 m/s 

6. CONCLUSIONS 
The solution to the piezoelectric with a layer based on Mason’s transmission line model was presented with complex 

material coefficients. Three regimes were identified that were shown to load the transducer differently. These were the mass, 
elastic and radiation loading regimes. An alternative method based on a linear transform of the impedance data of the 
perturbed and unperturbed resonator was presented and a complex version of the Sauerbrey equation was presented which 
was found to be in agreement with the complex mass determined at the resonance frequency of the perturbed resonator. 
Examples of using the quartz thickness shear resonators to monitor curing and evaporation were presented. The model was 
applied to PZT and Kapton composite resonator in the thickness mode and the longitudinal velocity of the Kapton was 
determined. 
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