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Abstract 

A fundamental and very general model of fluid drop behavior at all pressures is presented and 
is shown to reproduce microgravity experimental data for heptane drops in nitrogen. In the model, 
the existence of a drop surface (i.e. phase discontinuity) is not necessarily assumed. The optical 
drop diameter is defined as the location of the maximum density-gradient magnitude. An exam- 
ination of the drop-diameter-squared variation with time for the heptanehitrogen system shows 
that it is approximately linear: only at atmospheric pressure and has a negative curvature at higher 
pressures. As the pressure increases, the slope of the diameter squared becomes an increas- 
ing function of time and progressively increases with pressure at subcritical far-field temperatures, 
however, at supercritical temperatures a maximum is reached. A similar investigation conducted 
for oxygen drops in hydrogen reveals that at higher then atmospheric pressure the slope of the 
diameter squared versus time has a positive curvature. Given that the drop diameter squared 
versus time exhibits different behavior with pressure for the two species systems, it is concluded 
that high-pressure behavior should not be extrapolated from one species system to another. The 
results also show that, independent of the species system, at locations arbitrarily near the bound- 
ary, the drop does not reach the mixture critical point within the range of conditions investigated. 
An examination of the relaxation time at the drop boundary shows that quasi-steadiness of the 
mass transfer prevails even for relatively small drops. On an appropriate scale, the slope of the 
diameter squared versus time is shown to be independent of the drop size at all pressures. 

1 INTRODUCTION 

The study of drop behavior in high pressure environments has been of interest for many decades ow- 
ing to its relevance to costly combustion devices such as gas turbine and liquid rocket engines. Since 
high pressure tests are expensive and sometimes dangerous, considerable effort has been devoted to the 
development of accurate models capable of simulating drop evolution at all pressures. A recent review 
by BellanI’l tabulates current drop models published over more than a decade. Although most models 
are based on the transient conservation equations augmented by the real gas equation of state (EOS), 
and include thermodynamic-variable-dependent transport properties, the overwhelming majority of these 
models contains simplifying assumptions meant to enable less computationally intensive simulations. Such 
common assumptions are the existence of a drop surface assumed to be at an existing critical IOCUS[~-~~ 
or assumed to be at an existing location of mass flux quasi-steadiness, sometimes called thermodynamic 
equilibrium[z~5’21 , and the neglect of the thermal diffusion effects represented by the Soret and Dufour term 
for the species and energy equations, respectively. Predictions from such models include, for example, the 
validity of the linear diameter squared, 8, variation with time even at high pressures (e.g. Yang et a1.A 
for the LOX/H2 system); if such results were correct, it would enable a considerable simplification in the 
incorporation of drop models in complex Computational Fluid Dynamics (CFD) codes. Therefore, there is 
an incentive to examine the set of physical ingredients necessary to achieve agreement with data, as well 
as to determine possible simplifications that may result in large reductions of computational costs. 

Approved for public release, distribution is unlimited. Copyright @ 2002 by the California 
Institute of Technology. All rights reserved. 

1 



In this paper we summarize and conceptually integrate the investigations of Harstad and Bellan[13-15] 
in order to develop a perspective on the behavior of fluid drops for two different binary species systems. 
We first present the highlights of the very general model and build confidence in its realism 
by showing that it has been validated with the microgravity experimental data of Nomura et a1.[16] , which 
is for the heptanehitrogen system. We also apply the same model to the study of the LOX/H2 system 
and discuss both similarities and differences in behavior between the two species systems. Then, we 
systematically discuss the timewise variation of d2 for isolated drops as a function of pressure for both 
moderate and elevated surrounding-fluid temperatures[I41 . Finally, we evaluate the assumptions imposed 
on the drop boundary, that is the existence of a discontinuity that may be a surface, the possibility that the 
critical mixture point is reached arbitrarily near it, or that it may be in a quasi-steady mass-flux state (Le. the 
value of the flux of molecules leaving the boundary is very nearly equal to that of molecules arriving at the 
boundary). A discussion of the impact of these results on future work is presented in the Conclusions. 

2 CONSERVATION EQUATIONS 

The model equations for an isolated, spherical drop have been previously developed by Harstad and 
Bellan[13] . To avoid undue repetition of published material, only the highlights and final conservation equa- 
tions are given herein, and the reader is referred to that publication for details on this model. 

The fundamental base of the model is Keizer’s fluctuation-dissipation (FD) theoryr’q , which formally ac- 
counts for non-equilibrium processes and furthermore naturally relates fluxes and forces for a general fluid 
by providing the form of the transport matrix. According to FD theory, the general flux equations are given 
by additive forms whereby both the molar fluxes, J,, with cr denoting the species, and the heat flux, g ,  are 
the sums of coefficients multiplied by O X ,  with ,B E [l, Nsp],  X being the molar fraction and Nsp being the 
.total number of species, of a coefficient multiplied by VT,  where T is the temperature, and of a coefficient 
multiplied by V p ,  where p is the pressure. These matrix coefficients are functions of thermodynamic quanti- 
ties and transport coefficients[131 . Note that, the general form of the transport matrix includes, additional to 
the well known Fick mass diffusion and Fourier heat conduction terms, the Soret term in the molar flux and 
the Dufour term in the heat flux. For a binary set of species, these new terms are proportional to a single 
new transport coefficient, the thermal diffusion factor. For a multispecies system, a set of thermal diffusion 
factors is involved. 

2.1 GOVERNING EQUATIONS 

According to Harstad and Bellan[131 , the isolated drop conservation equations are: 

dp 1 d(r2pu) -+--- 
at r2 d r  - 0, 

N S P  
DT DP nCp- = aVT- - V . d  + Qw + C(h1V + f,), 

1=1 
Dt Dt (4) 

representing the continuity and the momentum, species and energy conservation. In these equations, p is 
the mass density; u is the radial velocity; r is the radial coordinate; T~~ = (4/3)77[du/dr - u / r ]  is the stress 
tensor; is the mixture viscosity; y j  is the mass fraction of species j; mj is the molar mass; n is the molar 
density; C, is the mixture molar heat capacity at constant pressure; hj = (dh/dXj),,T,Xl+j is the partial 
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molar enthalpy where h is the total molar enthalpy; a, = [(dw/aT),,~,]/v is the thermal expansion ratio with 
v being the molar volume; a, = (4 /3 )q [&~/&--u / r ]~  is the viscous dissipation and D / D t  = a/at+u(a/ar). 
For a binary species mixture (species subscripts 1 and 2 with ml > mz), the fluxes can be written in compact 
form as related to. the transport matrix 

AJ BJ C-J ) ( E )  
8T 

( ) = ( C, A, B, 
(5) 

where - JIT and -qr are the radial fluxes and 

C, = [m2/(m1m2)]nD ~ D ~ I K R J '  (9) 
where m = Xlml + X2m2 is the mixture molar mass, R, is the universal gas constant, X is the thermal 
conductivity, aIK is the Irwing-Kirkwood form of the thermal diffusion factor (see Harstad and Bellan[13] ), 
and D is the mixture diffusivity. 

The binary mass diffusion factor can be calculated from thermodynamics 

ag = 1 + X1dhyl/dX1 (1 0) 

where y1 = cpl/'p: is the activity coefficient and 'p is the fugacity coefficient with the superscript o denoting 
the pure (X, = 1) limit. According to Harstad and Bellan[13] , the Bearman-Kirkwood form of the thermal 
diffusion factor, aEK, is related to (YIK by 

QBK = a I K  - ah, a h  Ei (mlm2/m)(hl/ml - h2/m2)/(&T). (11) 

These two factors correspond to the two forms of the heat flux vector (see Sarman and ). In the 
above derivation (c.f. eq. 8), it has been carefully ensured that the expression for the thermal conductivity 
converges to the kinetic value in the low pressure , and thus that its value is indeed that tabulated or 
calculated through corresponding states . 

is coupled to the 
above system of differential equations. 

To close the system of equations, the real gas EOS presented by Harstad et 

2.2 BOUNDARY CONDITIONS 

The above conservation equations pertain to the entire field, 0 5 T 5 RSi,  where RSi is the instantaneous 
location of the far field boundary, which is initially specified and is further calculated in a Lagrangian manner 
as part of the solution (see below). The far-field (subscript e) and drop-boundary conditions are those 
derived in Harstad and Bellan[13] , and the reader is referred to that publication for the detailed derivation. 

Several aspects of these boundary conditions are noteworthy. At T = RSi, the values of the thermody- 
namic variables are specified (they can be either constant or functions of time). At the drop boundary, the 
conservation statements are stated as jump conditions across the boundary, relating locations within (Ri) 
and outside (Rdf) the drop; that is, the drop boundary is treated as a mathematical discontinuity. Within the 
context of this study relying on thermodynamic concepts, this is the only physically, and therefore mathe- 
matically sound approach since in the layer between RZ and Rdf, usual thermodynamic concepts do not 
apply because the molecular forces in the layer are not homogeneous as the molecular distribution is in- 
homogeneous. This emphasizes the fact that one cannot assume the state of the drop boundary, unless 
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corroborated by molecular dynamics (MD) calculations resolving the details of the layer, whereby the con- 
ditions at R; and R i  are imposed, and the MD obtained solution determines the structure of the boundary 
layer at Rd. We distinguish between the Lagrangian location of the initial drop boundary, R:, which is fol- 
lowed in time, Rd(t), and the location of the ‘optical’ drop boundary (not necessarily an interface), R,(t), 
which is also followed in time being calculated a posteriori of the solution as the location of the largest den- 
sity change. The largest density change corresponds to either the location of the largest density gradient, 
or a density jump as it is an infinite gradient which is not calculable. This definition is relevant to optical 
observations, which identify changes in the index of refraction. Of importance is the fact that we do not 
assume the existence of a material interface in the region 0 5 T I: Rsi. If such an interface exists at any 
time, it is totally consistent with our definition whereby the drop boundary is identified to be at the location 
of the largest density change, T = R,. Just as important, consistent with the discussion above noting that 
no assumption can be made regarding the state of the drop boundary, we do not assume phase equilibrium 
anywhere in the computational domain, and we do not necessarily relate the critical point of the mixture 
to any of the radial locations in the flow. This very general formulation makes the model ideally suited for 
evaluating assumptions about the state of the drop arbitrarily near the boundary, that is about the states at 
Rd and R: since within the formalism of the mathematical discontinuity, only the location of Rd is known 
and the conditions at Rd are not defined. 

3 MIXTURE CRITICAL POINT 

According to Peng and , the critical point occurs when both the determinant of the second 
derivatives, I I (Le. U,, = a2G/aX,aX ) of the Gibbs function, G, and that of the second derivatives 
of G combined with the first derivatives of I I are null. Therefore, the accuracy of mixture critical point 
calculations is highly dependent of the accuracy of the EOSs. To verify the reliability of the present mixture 
critical locus, comparisons of critical locus calculations were performed based upon both the Peng-Robinson 
definition[21] and the free energy method of Reid et ai.[”] , and they were further compared to data for two 
binary species systems. Thus, calculations for decaneIC02 and for ethane/heptane were compared with 
the data of Reamer and Sage[22] and Kay[23] , respectively. For both binary mixtures, the computational 
results using the two methods agreed and duplicated the data with very good accuracy (not shown). 

A consequence of the definition of the critical point is the fact that a necessary condition for attaining 
the binary mixture critical point is that the mass diffusion factors, aDZ3, be null since for a multicomponent 
system 

where p is the chemical potential. According to the Gibbs-Duhem relationship, for a binary mixture there is 
a single value of the mass diffusion factor, OD = ~ ~ 1 1  = a022 = - a ~ 1 2  = - Q D ~ ~ .  This observation is of 
significance since for a binary species system the single value of CYD can serve as ‘diagnostic’ to determine 
whether the critical point has been reached. That is, 0 < QD < 1, with the null value corresponding to a 
possible critical point and the unity value corresponding to the ideal mixture state. This information can 
further support the evidence provided by the values of the reduced pressure, p ,  = p / p c ,  and reduced 
temperature, T, = T/T,, where the subscript ‘c’ denotes the critical point. 

- 
3 ’- 

a D z ~  11/(%5?1 [x~a/4/ax3] = [1/(&T)] [xz(a2G/aXzdX3)p,T,XI,] (1 2) 

4 RESULTS 

The numerical method used to solve the equations has been detailed elsewhere[13] and will not be 
repeated here. Simulations were conducted for heptane (T, = 540.3 K,p, = 2.76 MPa) drops in nitrogen 
(T, = 126.2 K,p, = 3.39 MPa), and for oxygen (T, = 154.6 K,p, = 5.043 MPa) drops in hydrogen (T, = 33.2 
K,p, = 1.313 MPa). The kinetic law governing the molecular motion to and from the drop boundary is 

j=1,2 

where aal and aa2 represent the accommodation coefficients, F,,, = -(l/Ad)dM/dt ( M  is the drop mass 
and Ad is the drop boundary area) is the mass ‘emission’ rate from the drop boundary corresponding to 
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the evaporation rate at atmospheric pressure, nZequil ’s are calculated (superscript G indicates the initial 
nitrogen or hydrogen side of the drop boundary) from thermodynamic relationships[24] , and  UT^ is the mean 
molecular velocity crossing a plane in one direction[I3] . 

Throughout this study, a thermodynamic state will be called ‘supercritical’ if either the pressure or the 
temperature at those conditions exceeds the critical point. Indeed, what differentiates the subcritical from 
the supercritical regime is the absence of a two-phase region in the , and instead there is only a 
single-phase region; for a detailed discussion see Harstad and Bellan[14] . 
4.1 MODEL VALIDATION 

One issue in exercising this fundamental model is the knowledge of the value of the thermal diffusion 
coeff icient(s) which are generally unknown. Experimentally determined values are scarce (see Hirshfelder 
et al.[25] and Chapman and Cowling[26] ) even for low pressures, and measurements or calculations at 
high pressures are very scant. For the LOX/H2 system, a value chosen from the list of Chapman and 
Cowling[26] is adopted. For heptanehitrogen Harstad and Bellan[131 have used the high-temperature (i.e. 
745 K) data of Nomura et aI.[l6] in the pressure range of 0.1 - 2 MPa to determine approximately the 
value of the thermal diffusion factor for heptanehitrogen: a 1 ~  = 0.1. The simulations were performed for 
nominal initial conditions (superscript 0) matching the experimental data: Rod = 0.35 mm, drop-boundary 
temperature T:,b = 300 K and far field conditions (located at RZ = 4 mm) specified consistent with those 
of the experiments. Although it was obvious that aIK = 0.1 fits only approximately the data, reasons 
for this situation were attributed to the influence of the suspending fiber in the experiment, the level of 
microgravity that might still have allowed buoyancy effects and the inherent dependency of QIK on (p, T,  Ya). 
Despite this approximate fit, further simulations performed with QIK = 0.1 yielded very encouraging results. 
Listed in Table 1 is a comparison of the slope, K ,  of d2 with t for a variety of pressures and temperatures 
encompassing all the data of Nomura et a1.[l6I and also the data of SatoL2V . Comparison with Sato’sr27 data 
were performed for R: = 0.5 mm, which is the drop size used in the experiment. Generally, the numerical 
results approximate the &(t)  experimental variation (not shown) fairly well, and the agreement in the value 
of K (Table 1) is very good considering that experimental error bars were not available. Noteworthy, setting 
QBK = 0.1 lead to significant departures of the simulation results from the data. This, together with other 
results for LOX/H2 indicate that Soret and Dufour effects should not be neglected under supercritical 
c0nditions[’~1 . 
4.2 DROP AREA BEHAVIOR AS A FUNCTION OF TIME 

As explained in the section describing the model, the value of R, is chosen to be that of the maximum 
density gradient location such as to correspond to optical observations and to the subcritical identification 
of the phase change surface. 

4.2.1 Heptane drops in nitrogen: time history of d2 

Under atmospheric conditions, the variation of d2 with t is linear and K is termed the evaporation con- 
stant. Illustrated in Fig. 1 are d2 and K at an ambient temperature of 470 K (Figs. l a  and lb), and of 
1000 K (Fig. IC and Id). At low ambient temperature, the heat up time increases with pressure (see Fig. 
la), and for the larger pressure, the drop even increases in size due to the decrease in the drop density 
(see more on this below). Past the initial heat up time whose duration increases with pressure, the results 
show a nearly linear d2(t) variation and a monotonic increase in the drop lifetime with increasing pressure. 
The global non-linear variation of &(t) at larger than atmospheric pressures is documented in Fig. 1 b. In 
contrast with the variation at atmospheric pressure, where the initial heat up time is short with respect to 
the drop lifetime and K is globally constant, for larger pressures K is an increasing function of time and a 
decreasing function of pressure. Parallel results at high temperature (Fig. IC) display a different variation. 
Whereas the linearity of d2(t)  at atmospheric pressure and the non linear behavior at larger pressure is 
still observed, the heat up time and the drop lifetime have a non-monotonic variation with pressure, with a 
maximum lifetime reached in the interval 2 - 4 MPa, encompassing the critical pressure of heptane. Fig. IC 
qualitatively duplicates the results in Fig. 5f of Nomura et a1.[I6] , which were obtained for the same species 
and in the same range of pressures, but for a larger drop and at somewhat lower temperatures (648 - 661 
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K). The value of K corresponding to the results of Fig. IC is displayed in Fig. I d  and, as expected, it 
exhibits a larger magnitude than at the lower temperature. At atmospheric pressure, K is nearly constant, 
however, for the other pressures K is a much stronger function of time than at lower temperature (Fig. 1 b). 
The change in the magnitude of K (Fig. Id)  for p > 0.1 MPa leads to a maximum lifetime (Fig. IC) at 
an intermediate pressure value. At large times, K is an increasing function of pressure, whereas at the 
subcritical temperature with respect to the drop species it was a decreasing function of pressure. 

4.2.2 LOX drops in hydrogen: time history of d2 

Results illustrating the Ri variation with t and the corresponding slope of these curves are presented 
in Figs. 2a and 2b, respectively. Because the value of R, is available only at output points rather than at 
all time steps (there may be hundreds of time steps between output points), plotted in Fig. 2a are both 
the output points values as symbols, and nth order polynomial fits as curves representing the best fit of 
the output points for each of the runs. Early time output points which could not be incorporated into a 
polynomial fit, representing transients due to initial conditions, are not shown; these include a substantial 
part of the drop heat up time. The fitted curves appear almost linear, despite the lack of any assumption 
that may lead to such behavior. Depicted in Fig. 2b is the value of K for all curves displayed in Fig. 2a. 
As expected, at 1.5 MPa the value of K is nearly constant, following closely the d2- law behavior. However, 
K is not strictly constant, in agreement with the above results for heptane drops in nitrogen, showing that 
departures from the d2 linear behavior with t occur even for pressures closely in excess of atmospheric. For 
larger pressures, departures from the linear d2 behavior are evident, with the largest departure occurring 
around the LOX critical point where K cannot be considered constant even for a limited time range. In 
agreement with the heptanehitrogen experimental results of Nomura et a1.[l61 and Sat0[~’1 , K has a non- 
monotonic variation with pressure, first increasing, then decreasing around the critical point, and finally 
increasing again to reach an almost asymptotic behavior. SatoF27 found a maximum of the drop lifetime 
(i.e. a minimum in the value of K )  in the supercritical vicinity of the critical pressure, similarly to the present 
predictions. 

Note that, whereas the area versus time exhibits a negative curvature for C7H16 drops in N2, it displays 
a positive curvature for LOX drops in H2.  

4.3 REDUCED PRESSURE AND TEMPERATURE: CTHI6 DROPS IN N2 

As discussed in the Introduction, a common assumption of many models is that the drop boundary 
coincides with the mixture critical point. This statement includes actually two assumptions: (1) that the 
critical point is reached at a location in the mixture, and (2) that the location where the critical point is 
reached coincides with the drop boundary. The set of simulations discussed above offers an opportunity to 
evaluate this assumption because it encompasses supercritical and subcritical pressures and temperatures 
with respect to the pure species. 

Shown in Fig. 3 is the low (subcritical with respect to heptane) temperature behavior at 0.1 MPa. The 
plots represent the spatial variation of p (Fig. 3a), p ,  (Fig. 3b), T, (Fig. 3c) and QD (Fig. 3d) at several 
time stations. The density profiles show a fluid drop whose size is continuously reduced, but whose density 
remains constant and consistent with that of a liquid, as is should be at atmospheric pressure; outside 
the drop, the density magnitude is that of a gas, and therefore does not appear on the graph scale which 
has been chosen purposefully to be the same for Figs. 3a, 4a, Sa and 6a (see below). The pressure is 
everywhere subcritical, whereas the temperature is supercritical for the pure nitrogen (both air and nitrogen 
at atmospheric conditions are in the supercritical regime) and remains consistently subcritical in the drop as 
its temperature does not exceed the boiling point of heptane. Since the temperature is the thermodynamic 
variable that relaxes first, due to the very large effective Lewis number (see Harstad and Bellan[**] ), the 
extent of the radial domain for Fig. 3c is enlarged compared to Figs. 3a and 3b, in order to display the 
full profiles. The mixture of heptane and nitrogen outside of the drop is nearly ideal (QD N l), as expected 
at atmospheric pressure, and QD reaches a minimum at the drop boundary, a feature prevailing in all 
of the results presented below. Therefore the physical picture corresponds to the well known process of 
evaporation at low pressure and temperature. When the ambient temperature is increased, but the pressure 
remains atmospheric, the basic characteristics of the situation are unchanged with the exception of the time 
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scale which becomes much shorter. The illustrations in Figs. 4a - 4d parallel those of Figs. 3a - 3d. 

The physical picture changes however appreciably once the pressure is increased. Displayed in Figs. 
5a - 5d are equivalent plots to those of Figs. 3a - 3d, but at a pressure of 5 MPa. Instead of the constant 
density, we witness here a continuously decreasing density with time (Fig. 5a) resulting from the nitrogen 
dissolving in the heptane drop and from the drop heating. Note that, although the density decreases inside 
the drop, it remains nearly uniform at all times. Throughout the drop lifetime, the pressure is supercritical 
inside the drop and subcritical (except for the initial condition) outside the drop (Fig. 5b), with the opposite 
occurring for the temperature (Fig. 5c). This is to say that in both sides of the drop boundary, the mixture 
is supercritical, but there is a different supercritical state. The remarkable fact is that although there is no 
phase change, the fluid properties on each side of the boundary are very distinct, and the characteristics of 
the internal liquid-like and external gas-like fluids are maintained over the drop lifetime. This is in contrast to 
LOX drops in H2 (see Harstad and Bellan[291 ) where profiles of the primitive variables are smooth, with no 
jumps, this being due to the high solubility of H2 in LOX.  The indication that the critical point is not reached 
anywhere in the field is emphasized by the mass diffusion factor shown in Fig. 5d, which does not reach a 
null value (a necessary condition for being at the critical point; see eq. 12), although the mixture exhibits 
considerable departures from ideality. 

At far-field supercritical temperature and pressure (Figs. 6a -6d), the features encountered at subcritical 
(with respect to the fuel) ambient temperature are maintained, with the difference that now the density not 
only decreases with time, but exhibits substantial non-uniformities inside the drop (Fig. sa). Again, the 
mixture on the two sides of the drop boundary is supercritical (Figs. 6b and 6c), a conclusion reinforced 
by the plots of aD in Fig. 6d, which show greater departures from non-ideality than at far field subcritical 
temperatures, but remain far from the null value. 

Compared to the LOX/H2  system, the heptanehitrogen mixture stays further away from the critical 
point, since values of aD as low as 0.25 were encountered[l5I for LOX/H2 at an ambient pressure of 
6MPa and temperature of 1000 K. Nevertheless, even at these ambient conditions close to the critical 
point, the LOX drop boundary never reached the critical state. With increasing ambient pressure, the state 
arbitrarily near the drop boundary moved further away from the critical point. Therefore, the studies of these 
two systems of species do not support the assumption that the critical point is reached anywhere between 
the drop center and the far field, or that the drop boundary coincides with the critical mixture condition. 
When either the far-field pressure or the far-field temperature are supercritical, the mixture on both sides 
of the drop boundary is supercritical, but, depending on the solubility of the species, may be at a different 
supercritical state corresponding to the fluid properties of that mixture. And, as discussed above, in the 
context of thermodynamic modeling it is only appropriate to discuss the conditions at R; and Rd+ since the 
conditions at R d  cannot be readily defined if there is a jump at &. 

4.4 VARIATION OF d2 AS A FUNCTION OF DROP SIZE AND PRESSURE 

One of the important results of the atmospheric drop evaporation theory is that K is constant and inde- 
pendent of drop size, being function mainly of the fuel properties. This result is based on the quasi-steady 
state theory yielding the well-known d2 law. Figures 1 - 3 show that K is no longer constant at high 
pressures. The question then arises as to the dependence of K on the drop size at high pressures. To 
investigate this aspect, K is plotted for heptane drops in Fig. 7 as a function of ~ / ( c P ) ~  for three disparate 
drop sizes at 0.1, 2 and 5 MPa. At atmospheric pressure, we recover the classical result of independence of 
drop size and near constancy for K.  At 2 and 5 MPa, the values of K do not coincide during the initial heat 
up time, however, this result may also be influenced by the initial conditions which although nominally the 
same, may be numerically somewhat different (see Harstad and Bellan[13] for a discussion on this topic). 
The remarkable result is the coincidence of K after this initial transient, at a time when each of the drops 
have lost only 9% of their initial mass (not shown). This high pressure result is not predictable from simple 
mathematical manipulations of the equations, and must await a thorough explanation. From these limited 
simulations, the indication is that on the scale t/(d0)2, the solution is self-similar in a parameter proportional 
to the drop radius squared. That is, although the quasi-steady assumption that is one of the basis of the 
d2 law does not hold, rendering K variable (here increasing) with time instead of constant, in this range of 
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drop sizes covering more than one order of magnitude, and in this range of pressures encompassing both 
subcritical and supercritical pressures with respect to the drop species, K is only function of pressure at 
fixed temperature. 

From this, necessarily limited, study it can be concluded that the large drops studied under microgravity 
conditions are not only of academic interest, but might be relevant to the study of small drops encountered 
in high pressure, power producing devices. However, we note that the most important difference between 
single-drop microgravity experiments and conditions in practical systems may be the fact that drops are 
isolated in the experiments and interacting in reality. 

4.5 RELAXATION TIME SCALE AT SUPERCRITICAL PRESSURES 

The relaxation time scale at the drop boundary measures how fast molecules leave the boundary or 
come to it from the surrounding field. Under atmospheric, evaporative conditions, the relaxation time mea- 
sures the evaporation time scale. Since at supercritical pressures there is no longer a surface, and the 
latent heat is null, the concept of evaporation no longer applies. However, there is still a mass flux from the 
drop boundary and it can be calculated in a general manner employing eq. 13; Harstad and Bellan[13] have 
called this mass flux ‘the emission rate’ to enable the utilization of a terminology including both subcritical 
and supercritical situations. Equation 13 states that the net mass flux is the difference between the flux 
leaving the boundary and that coming to the boundary, and the time scale of the process is determined by 
the values of the accommodation coefficients, aaj. Under subcritical conditions, a common assumption is 
that this relaxation time is very small, leading to quasi-steadiness of this process with respect to all other 
time scales. This small relaxation time renders the set of equations very stiff, and thus difficult to solve. 
This difficulty, together with the uncertainties associated with the values of the accommodation coefficients 
provide the incentive to neglect eq. 13 and find a simpler thermodynamic statement, such as the equality 
of the fugacities at the boundary, as a replacement. 

The assumption of very small relaxation time was investigated under the atmospheric condition by Bellan 
and S~mmerf ie ld[~~] , and more recently by Miller et aI.L3’] , and it was found to hold reasonably well for 
drops of diameter larger than 50 pm; for smaller drops, the assumption proved to be unreliable. Since 
as discussed in the Introduction, the hypothesis of the small relaxation time is used in some models of 
high pressure drops, we examined its validity by varying the accommodation coefficients from the baseline 
values aal = a,2 = 1 as follows: (1) aal = aa2 = 0.1, (2) aal = a,2 = 3, (3) cr,l = 0,2  = 10, (4) 

cm and RSivo = 0.05 cm, it was found that 
8 and K coincide for all five conditions, indicating that indeed the relaxation time is small. The values 
cya1 = 10, aa2 = 3 were also used for heptane drops having R: = 2 x cm and RSiyo = 0.017 cm, and the 
results were compared with those obtained for cral = a,2 = 1; the curves d2 and K versus t/(d0)2 exhibited 
again complete coincidence. In fact, when plotted versus t / (d0)2 ,  the K curves coincide for the two drop 
sizes and the different accommodation coefficients (a total of seven simulations) over the entire drop lifetime 
with the exception of the short drop-heat-up duration; this indicates that on that scale, the process of drop 
disappearance is only pressure dependent. 

= 10, aa2 = 3. For heptane drops having Ri = 6 x 

5 CONCLUSIONS 

A numerical study of fluid drop behavior has been conducted using a model that is valid at all pressures. 
This model is based on fluctuation-dissipation theory, which is consistent with non-equilibrium thermody- 
namics, and leads to the most general form of the flux equations, including the Soret and Dufour effects. 
To close the system, conservation equations are completed by the equation of state, valid for all pressures. 
The traditional transport coefficients used in the simulations were calculated as functions of the thermody- 
namic variables; the thermal diffusion factor, which is the new transport coefficient introduced by the Soret 
and Dufour effects, was chosen according to the value determined during the previous validation study. 
The drop boundary conditions were based on the conservation of mass, energy and species across the 
boundary, with no assumption made about the occurrence of quasi-steadiness in mass transfer tolf rom the 
boundary. Calculated after obtaining the solution, the drop boundary was identified with the location of the 
maximum density change because of the relevance to optical measurements. It was shown that, consid- 

a 



ering that experimental error bars were not available, this model reproduces very favorably heptane drop 
evolution in nitrogen under microgravity conditions. 

The linear dependency of the diameter squared versus time is approximately encountered only at 
atmospheric pressure; this holds both for heptane drops in nitrogen and for LOX drops in H2 Hep- 
tanehitrogen simulations performed for an extensive set of initial conditions show that whereas the drop 
lifetime increases monotonically with pressure at subcritical (with respect to the pure drop species) temper- 
atures, at supercritical (also with respect to the pure drop species) temperatures a maximum is reached. 
This result is confirmed by existing microgravity data. As the pressure increases, the slope of the diameter 
squared, K ,  becomes an increasing function of time; this slope progressively increases with pressure at 
subcritical far-field temperatures, however, at supercritical temperatures a maximum is reached. Results 
obtained for different drop diameters spanning more than an order of magnitude display the traditional inde- 
pendence of K on the drop size at atmospheric pressure when time is scaled as t / ( ~ 6 ’ ) ~ .  As the pressure 
is increased, the early part of K ( t )  (corresponding both to the initial drop heating and to possible transients 
arising from initial conditions that are nominally the same but perhaps numerically somewhat different; see 
explanation in Harstad and Bellan[13] ) is drop size dependent, however, during the majority of the drop 
lifetime corresponding to more that 90% of the mass, the values of K are again size independent. This in- 
dicates that the solution is self-similar in a variable proportional to the drop radius squared; this fact cannot 
be predicted from simple scrutiny of the equations and should be further investigated. However, whereas 
the slope of the drop diameter squared versus time has a negative curvature for heptanehitrogen, it has a 
positive curvature for LOXIH2. This indicates that results from studies of a species system should not be 
simply extrapolated to other systems of species. 

Independent of the binary species system, it is found that at supercritical pressures, the critical point is 
never reached arbitrarily close to the drop boundary. Instead, two supercritical states, each portraying the 
specific mixture, coexist on the two sides of the drop boundary. Therefore, these results do not support 
previous models based on the assumption that the critical point is attained in the domain, and that it is 
reached at the drop boundary. 

The effect of the relaxation time scale at the drop boundary was found to be negligible even for relatively 
small drops. Therefore the assumption of quasi-steadiness in the mass fluxes to/from the drop surface 
appears to be valid within the range of drop sizes investigated. From the practical viewpoint, this finding 
could be important, if of general validity, and used judiciously could simplify CFD calculations. 

Further work on this topic focuses on the development of models for the calculation of high-pressure 
transport coefficients, such as diffusivitie~[~*I and thermal diffusion factors. Also of interest is the exten- 
sion of the binary species results to systems of several species. The multicomponent species theory is 
a~ailable[’~I , and the determination of high-pressure transport coefficients should enable such simulations. 
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Table 1 : Maximum regression rate of the maximum density gradient location, K in mm2/s, obtained from the 
current model (ap), Nomura et al.’s, 1996 (Nom) and Sato’s, 1993 (Sat). In the simulations T: = 300 K and 
do = 0.7 mm, while Nomura et al.’s do was 0.6 - 0.8 mm and Sato’s was 1 mm. 

0.0005 L I 

0.05 0.1 0.15 0 0.05 0.1 0.15 

- 
OO 0.01 0.02 

t , s  

Figure 1. Variation of an isolated c7H16 drop boundary area, A,,  and its derivative, K ,  with time for 
various pressures, at subcritical (Figs. l a  and 1 b), and supercritical (Figs. 1 c and 1 d) ambient temperatures 
in N2. For all simulations R: = 6 x cm and T: = 325 K. For Figs. 1 a and 1 b, 
T, = 470 K. For Figs. IC and Id, T, = 1000 K. In all figures, the legend is as follows: 0.1 MPa (-), 0.5 
MPa (- - -), 1 MPa (- . - .  -), 2 MPa (- - -), 4 MPa (- -), and 5 MPa (- . . - . . -). 

cm, RSi>O = 5 x 
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Figure 2. (2a) Variation of Rz with t for isolated LOX drops in H2. The initial drop radius was Rz = 
5 x cm, T: = 120 K and T, = 1000 K in all simulations. Symbols correspond to values obtained at 
the output points, whereas the curves correspond to an nth order, best polynomial fit. 1.5 MPa: simulation 
output W, 4th order polynomial fit (-); 3 MPa: simulation output A, 5th order polynomial fit (---); 6 MPa: 
simulation output 7 ,  2nd order polynomial fit (- . - . -); 10 MPa: simulation output b, 4th order polynomial 
fit (- - -); 20 MPa: simulation output e, 5th order polynomial fit (--). (2b) Variation of the slope of the fitted 
R;(t), K ,  with time. 1.5 MPa (-); 3 MPa (- - -); 6 MPa (- . - . -); 10 MPa (- - -); 20 MPa (--). 
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Figure 3. Drop evolution at 0.1 MPa and T, = 470 K for drops having: R: = 6 x cm, = 5 x 
cm and Tj  = 325 K. p, p,., T,. and CYD at times: 0 s (-), 2 ~ 1 0 - ~  s (- - -), 4 ~ 1 0 - ~  s (- . - . -), 6 ~ 1 0 - ~  s 
(- - - ), 8 . 5 ~ 1 0 - ~  s (--), and 9 . 5 ~ 1 0 - ~  s (- . . - . . -). 
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Figure 4. Drop evolution at the same initial conditions as in Fig. 3 except that T, = 1000 K. Legend: 0 s 
(-), 7 . 5 ~ 1 0 - ~  s (- - -), 1 . 5 ~ 1 0 - ~  s (- . - . -), 2 ~ 1 0 - ~  s (- - -), 2 .25~10-~  s (- -), and 2 . 5 ~ 1 0 - ~  s 
( - . . -  ' .  -). 
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0.01 0.02 0.03 0.04 

r, cm 

Figure 5. Drop evolution at the same initial conditions as in Fig. 3 except that 5 MPa. Legend: 0 s (-), 
4 ~ 1 0 - ~  s (- - -), 6 ~ 1 0 - ~  s (-- - . -), 1.2~10-1 s (- - - ), 1 . 5 ~ 1 0 - ~  s (--), and 1.8~10-1 s (- ..- .. -). 
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Figure 6. Drop evolution at the same initial conditions as in Fig. 5 except that T, = 1000 K .  Legend: 0 s 
(-), 7 . 5 ~ 1 0 - ~  s (- - -), 1 . 5 ~ 1 0 - ~  s (- . - . -), 2 ~ 1 0 - ~  s (- - - ), 2 . 2 5 ~ 1 0 - ~  s (--), and 2 . 5 ~ 1 0 - ~  s 
( - .  . - .  . -). 
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Figure 7. Dependence of K on the drop size and pressure: C7H16 drops in N2. Three drop sizes and 
cm): 0.1 MPa (-), 2 MPa 

cm): 0.1 MPa (- - - ), 2 MPa (--), 5 MPa 
cm (Rsi9O = 3 x 10-1 cm): 0.1 MPa (e), 2 MPa (M), 5 MPa (A). T, = 1000 

pressures are considered, as follows: R: = 2 x 
(- - -), 5 MPa (- . - . -); R: = 6 x 
(- . . - . . -); R: = 3.5 x 

cm (Rsi9O = 1.7 x 
cm (Rsi?O = 5 x 

K, Tj  = 325 K. 
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