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ABSTRACT 
Decisions made in the earliest phases of system 

development have most leverage to influence the success 
of the entire development effort, and yet must be made 
when information is incomplete and uncertain. 

We have developed a scalable cost-benefit model to 
support this critical phase of early-lifecycle decision- 
making,. We have focused on scalability in order to 
accommodate the many concems that are relevant in 
planning complex development efforts. We use risk as the 
unifying concept from which both cost (sum of resources 
it takes to mitigate risk) and benefit (sum of requirements 
attained when risks are taken into account) are calculated. 

The model is supported by custom-built software. 
We have used this to elicit and combine information from 
experts in the multiple disciplines. This is done in an on- 
the-fly manner, thus retaining the involvement of those 
experts. It has proven successful at pinpointing the most 
critical areas within a large space of concerns, and at 
guiding experts toward superior alternatives. 

DEFECT DETECTION & PREVENTION (DDP) - A  
RISK-CENTRIC MODEL OF COST & BENEFIT 

At NASA we have been developing and applying 
our risk management framework, “Defect Detection and 
Prevention” (DDP), for several years. DDP is a process 
for which we have custom-built software support. We 
have published several accounts of DDP - (Comford et 
al., 2001) gives an overview, (Cornford et al., 2002) some 
recent directions, (Feather et al., 2000) the “look and feel” 
underpinning the software. In this paper we focus on the 
model underpinning DDP. 

DDP deals with three key concepts: requirements, 
risks and risk mitigations (in some of the papers we have 
published, risks are referred to as “failure modes”, and 
mitigations as “PACTS”). Risks are quantitatively related 
to requirements, to indicate how much each risk, should it 
occur, impacts each requirement. Mitigations are 
quantitatively related to risks, to indicate how much of a 
risk-reducing efect the mitigation, should it be applied, 
has on the risk. The topology of this simple but scalable 
model is shown in Figure 1 

In a DDP model, a set of mitigations achieves 
benefits (requirements are met because the risks that 
impact them are reduced by the selected mitigations), but 
incurs costs (the sum total cost of performing those 
mitigations). The primary purpose of DDP is to facilitate 
the judicious selection of a set of mitigations, thus 

attaining requirements in a cost-efective manner. 
The subsections that follow present more details of 

this model, and some of the ramifications of applying it to 
real-world problems. 
Requirements 

Requirements are what the system is to achieve. 
Requirements are assigned weights, representing their 
relative importance. Requirements are either “on”, or 
“off”. The DDP computations automatically apply to 
those and only those requirements that are “on”. 

There can be a wide variety of requirements. 
They can be requirements imposed on the system to be 
developed, andor requirements on the development 
process itself. We have seen instances of requirements on 
the functionality of the artifact ( e g ,  that it be able to 
control a spacecraft instrument), on the resources it 
consumes (e.g., memory), on its tolerance of its 
surrounding environment ( e g ,  be able to work around 
hardware memory errors) and on the development process 
by which it is constructed (e.g., that it be delivered on 
schedule and within budget). We have even seen a 
requirement stated as “no other technology is better”, 
when the purpose of the exercise was to assess the 
worthiness of, and approach to, maturating a novel 
technology into flight readiness. It is common to see a 
mixture of multiple such kinds of requirements within a 
single application of DDP. Requirements can be varied 
not only in area, but also in level of detail, with more 
detail provided for areas of especial concem. 

Requirements can be numerous - in typical DDP 
applications experts have listed 30 - 100 requirements. 
Simple tree structures are used to taxonomize 
requirements, the advantages of which are: 

Grouping requirements into categories and 
subcategories provides a reminder to users of the 
range of issues they need to think about. 
Straightforward taxonomies help users locate where 
they placed a requirement. Navigation becomes 
challenging as the number of items grows, especially 
when they surpass the number that can be squeezed 
into view on a single screen. 
Allowing tree structures of requirements to be 
collapsed or expanded supports abstraction. A 
collapsed subtree aggregates all of its descendants, so 
serves as an abstraction of the detail beneath. For 
example, the weight of a non-leaf requirement is 
recursively computed as the sum of the weights of its 
children. 
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Requirements are candidates for trade. 
Requirements are quantitatively related to the risks that 
impact them, and risks are in turn quantitatively related to 
the mitigations that serve to reduce those risks. Thus, the 
weights ascribed to requirements are at key to computing 
the relative “benefit” of a DDP model. 

The existence of especially problematic 
requirements (impacted by risks which cannot readily be 
mitigated) quickly becomes apparent when using DDP. 
This enables users to identify those requirements whose 
removal would admit far less expensive solutions. 
Risks 

Risks are all the things that, should they occur, lead 
to loss of requirements. Risks are assigned an a-priori 
likelihood (the chance of the risk occurring, if nothing is 
done to inhibit it). Generally, the a-priori likelihood is left 
at 1 (certainty). For example, the likelihood of some 
complex piece of software containing bugs (if nothing is 
done to inspect or test that software) is close to certainty. 
In instances where physical phenomena are involved, their 
likelihoods can be reasonably asserted to be somewhat 
less than certainty (e.g., the likelihood of a lightning 
during launch). Like requirements, risks are either “on” or 
“off”, and only those that are “on” contribute to DDP’s 
calculations. By default, risks start as “on”, forcing users 
to explicitly turn them “off” if they have reason to believe 
that they do not apply to the system at hand. 

Risk assessment is calculated, not directly 
estimated. A key difference between DDP and most other 
approaches to risk assessment is that DDP calculates the 
magnitude of a risk by summing its impacts on 
requirements; other approaches ask directly for an 
estimate of the severity of the risk itself. DDP’s 
disadvantage is the extra overhead in gathering the 
quantitative data on which to base its calculations. DDP’s 
advantage is that its computation of risk is a more 
disciplined process. Furthermore, it allows for trades in 
requirements space, an option that is not so readily 
pursued in traditional risk assessment. 

Risks are numerous. Like requirements, risks can 
be numerous. In typical DDP applications, experts have 
listed 30 - 200 risks. As with requirements, risks are 
organized into taxonomies for the purposes of navigation, 
reminders, and abstraction. 

For example, in (Feather et al., 2001) we specialized 
DDP to software assurance planning We pre-populated 
DDP with the Software Engineering Institute’s taxonomy 
of 64 software development risks (e.g., the “Product 
Engineering” category contains a “Requirements Risks” 
subcategory which in turn contains “Completeness: 
Incomplete requirements”). From this starting point, DDP 
allows users to discard risks that are irrelevant to their 
task, add risks that are not already included, and refine 
risks to greater levels of detail. 
Mitigations 

. 

Mitigations are all the activities that could be done to 

reduce the likelihood of risks and/or reduce their impact 
on requirements. Each mitigation is assigned cost, the 
costs of performing it. Mitigations are also assigned the 
time period within the development effort at which they 
would be performed (e.g., requirements, design). Like 
requirements and risks, mitigations either “on” or “off‘, 
and only those that are “on” contribute to DDP’s 
calculations of risk reduction. One of the primary 
purposes of a DDP application is to choose which 
mitigations should be “on”. 

Mitigations are numerous. Typical DDP 
applications have involved lists of 30 - 170 mitigations. 

Mitigations are choices, not requirements. It is 
important to realize that during the use of DDP, 
mitigations are choices. At the conclusion of a DDP study, 
the chosen mitigations then may become requirements on 
the development to follow. In a similar vein, failure to 
turn a mitigation “on” is not a risk per se. 

Mitigations can have multiple costs. Performing a 
mitigation can have multiple costs (e.g., schedule, 
budget). In spacecraft hardware designs we have tracked 
additional forms of cost (e.g., mass, power and volume). 

Mitigations’ time periods. The sequence of time 
periods is set for the given application. It might be 
organized into calendar units (e.g., quarters of the 
financial year), or into development stages (e.g., 
requirements, design). This information provides insight 
into the progression of mitigation spending over the 
course of the planned development. For multi-year 
projects, there may be constraints on resources (e.g., 
budgets) expended by year. As discussed in (Cornford et 
al., 2002), the information also provides key insight into 
the “risk profile” - how risk diminishes over the course of 
the planned development. Plans that reduce risks early 
are, in general, preferred over plans that attain the same 
final risk level but do so by reducing risks late. The reason 
is that all of these plans contain considerable uncertainty 
(remember, DDP is applied early in the lifecycle where 
solid information is lacking). A plan that reduces risk 
early can slip and still have reduced risks to tolerable 
levels by the originally planned launch date (Plan A in 
Figure 2) .  The same tolerance to slippage is not true of a 
plan that reduces risk late (Plan B in Figure 2). 
Impacts 

For each Requirement x Risk pair, we assert how 
much of that Requirement will be lost should that risk 
occur. This value we call the “impact”. It is expressed as a 
number in the range 0 - 1, meaning the proportion of the 
requirement that would be lost. Thus 0 means no loss 
whatsoever, and 1 means total loss of the requirement. 

Simple combination rule for impacts: impacts 
combine additively, e.g., if two different risks impact the 
same requirement, then their combined impact is the sum 
of their individual impacts. This may seem an overly 
simplistic combination rule, but in the early stages of risk 
assessment it suffices to capture the wide range of 
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problems that need to be considered. Recall that DDP is 
aimed at the early stages of planning, when detailed 
design information is absent. As designs mature, other 
more design-centric risk assessment methods become 
applicable (e.g., probabilistic risk assessment). 

Impacts are numerous: A given risk may have 
impacts on multiple requirements, and those impacts need 
not be identical. Likewise, a given requirement may be 
impacted by multiple risks, whose impacts need not be 
identical. In typical DDP applications, the numbers of 
impacts (i.e., Requirement x Risk pairs for which the 
impact value is non-zero) range from the many hundreds 
to the low thousands. 

Much of the power of the DDP process stems from 
its ability to handle a large number of such cross-linkings. 
We eschew a complex model of combination in order to 
retain this scalability, notably the scalability of eliciting 
the information from the experts. 

Requirements “at risk”: For each requirement, 
DDP computes the sum total impact on it. This indicates 
the extent to which the requirement is “at risk”. The effect 
of mitigations is to decrease risk, which in turn leads to 
increased requirements attainment. 

One seemingly strange consequence of our 
combination rule for impacts is that requirements can be 
more than completely impacted (e.g., impacts of 0.8 and 
0.7 add up to a total impact of 1.5)! We compute this 
metric as a guide to how much risk reduction is needed to 
attain a requirement. However, for assessing value, we 
compute another metric in which requirements that are 
more than completely impacted contribute zero. 
Effects 

For each Mitigation x Risk pair, we assert how much 
of the risk will be reduced if that mitigation is applied. 
This value we call the “effect”. It is expressed as a number 
in the range 0 - 1, meaning the proportion by which the 
risk would be reduced. Thus 0 means no reduction 
whatsoever, and 1 means total elimination of the risk. 

Simple combination rule for effects: when several 
mitigations reduce the same risk, their total effect is 
computed as: (1 - the product, for each mitigation M, of 
(1 - M’s effect)). 

Intuitively, mitigations act as “filters” in series: each 
mitigation filters out its effect’s proportion of the risks 
that enter it. E.g., a mitigation with effect of 0.8 on some 
risk and another mitigation with effect of 0.3 on that same 
risk together have effect: (1 - (1 - 0.8)*(1 - 0.3)) = ( 1  - 
0.2*0.7) = (1 - 0.14) = 0.86 on that risk. 

As was the case for impacts (Requirement x Risk 
pairs), each mitigation may effect multiple risks, and each 
risk may be “effected” by multiple mitigations. 

Sum total risk mitigation: For each risk, DDP 
computes the combined effect of all the selected 
mitigations at reducing the risk. This reduced risk value is 
in turn used to calculate the requirements “at risk” figure, 
to reflect the positive contributions that stem from those 

mitigations. To aid users in selecting mitigations, DDP 
also computes two metrics for each mitigation - its “solo” 
risk reducing effect @e., risk reduction it would 
accomplish if it were the only selected mitigation), and its 
“delta” risk reducing effect (i.e., the additional risk 
reduction, beyond that already achieved by the other 
selected mitigations, its selection would accomplish). 

We have recently begun to explore automatic search 
for optimal solutions (discussed later). However, to date, 
DDP applications have relied upon the users to manually 
select mitigations. The “solo” and “delta” metrics have 
proven useful guidance in these cases. 

ISSUES OF SCALE 
We have indicated typical ranges of the number of 

objects in a DDP model. As a deliberately daunting 
demonstration of the scale problem, Figure 3 shows the 
topology of a real DDP model, drawn in the style of 
Figure 1, but containing the full number of objects. 
The need for scale 

The need for handling this many objects and links 
derives from the area of application. DDP is used on 
complex technologies, upon which many factors from 
multiple disciplines have a bearing. The primary purpose 
of DDP is to take this large number of such factors into 
account, so as to emerge with an understanding of which 
factors are most important. For example, determine which 
of the risks are truly the most damaging, which of the 
requirements are proving the most problematic to attain, 
and which of the mitigations are most appropriate to select 
to reduce risk (and thereby attain requirements). 
Handling scale 

The DDP software has several features that facilitate 
working with these fairly large, albeit simplistic models. 
These features have been incorporated in DDP software 
from the start (Feather et al., 2000), and so have been used 
in all of our DDP applications to date. Briefly, they are: 

Multiple views - DDP offers multiple ways of 
viewing the information. For example, a tree viewer 
allows editing and viewing the tree structures of 
requirements, risks or mitigations. A matrix viewer (akin 
to simple spreadsheets) allows editing and viewing the 
impacts and effects. A bar chart viewer allows scrutiny of 
the computed values (e.g., requirements’ “at risk” levels). 

Hierarchy - tree structures serve to organize 
information (e.g., requirements) hierarchically. The 
multiple views are kept coordinated with respect the 
current status of the hierarchy, e.g., if a subtree of 
requirements is currently “collapsed”, then the 
corresponding rows in the matrix of impacts (between 
requirements and risks) are aggregated into a single row. 
The values of the aggregated row’s cells are computed 
automatically by aggregating the values of the cells of 
which the aggregation was composed. 

Compact views - impacts form a giant Requirement 
x Risk matrix, and effects form a giant Mitigation x Risk 
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matrix. These are generally rather sparse matrices @.e., the 
majority of the cells are blank, corresponding to a zero 
impact or effect). We take advantage of this sparseness to 
portray the matrix information in a “list” style, in which 
only the non-zero impactdeffects are listed alongside each 
Requirement/Risk/Mitigation. (This feature derives from 
the work of JPLers D. Howard and C. Hartsough.) 

Sorting - we offer the option to sort risks into 
descending order (commonly referred to as a “Pareto” 
chart). Our model makes the usual distinction between 
likelihood and impact (a.k.a., severity), so we are able to 
produce 2-dimensional charts that sort risks along both 
these dimensions - Figure 4. The upper right corner is the 
maximum possible risk (maximum impact and maximum 
likelihood). The axes of this chart are logarithmic scale; 
hence the diagonal boundaries between the three different 
shades of background are lines of constant risk. 

Calculations - DDP calculates a variety of metrics 
from the user-provided information. For example, for each 
requirement it computes the “at risk” metric as the sum of 
risk impacts on that requirement. The number of impact 
values (between Requirement x Risk pairs) and effect 
values (between Mitigation x Risk pairs) determines the 
complexity of these calculations. In practice, DDP 
models are “sparse” (approximately 10% of all possible 
these pairs have non-zero values). Nevertheless, a 
complete recalculation running DDP on a 1 GHz 
Pentiumo can take two or three seconds, and some 
displays of information take a noticeable time to be 
updated. For key operations (addingkhanginghemoving 
an impact or effect value, and selecting/unselecting a 
mitigation) DDP is programmed to incrementally 
recompute metrics. Exploiting the hierarchical structure of 
the information (e.g., use the root of a subtree of 
requirements as an aggregate in place of its many 
descendents) is a further option, not currently used. The 
extensions to the DDP model (described later) complicate 
the situation. It would be very desirable to derive efficient 
code from a lucid specification, in the style of the program 
transformation research community. 
Elicitation 

The bulk of the time for a DDP application goes into 
eliciting models from users. We typically decompose 
DDP applications into four half-day sessions. In each of 
these, we have on hand experts who represent all of the 
aspects of the system being studied - mission scientists, 
engineers from multiple disciplines, quality assurance 
personnel, etc. The first three sessions are devoted to 
populating DDP with the model information 
(requirements, risks, mitigations, impacts and effects), and 
the last session to decision making. 

Since many of the DDP applications to date have 
been studies of widely different technologies, there has 
been little opportunity for reuse between these studies. 
There have been efforts to pre-populate DDP with 
information specific to certain disciplines, e.g., the 

software assurance planning mentioned before, however 
at this point we have little experience with their use. As 
open question is the degree to which such pre-populated 
databases save time - will users spend as much time going 
through them as they would to build them from scratch? 

We have found that in eliciting information from a 
group of experts, we can use disagreement to drive the 
need for refining the information. For example, if there is 
disagreement about the impact of a risk on a requirement, 
this almost always stems from those experts thinking of 
different cases (e.g., the impact in the “nominal” scenario, 
vs. the impact in a high-criticality scenario). Subdividing 
the risk and/or the requirement into multiple subcases, and 
assigning appropriately different impact values to each, 
resolves these disagreements. Similarly, agreement 
indicates the lack of need to subdivide into greater depth. 
We do not always recognize the latter in advance, 
resulting in subcases that we find are being assigned the 
same values. When this occurs, we simply delete the 
myriad of subcases, and make do with the parent. 
Decision Making 

The primary purpose of DDP applications is to result 
in the selection of a set of mitigations that reduce risk (and 
thereby lead to attainment of requirements) in a cost- 
effective manner. On some occasions DDP applications 
have led to the discovery of problematic requirements - 
ones whose attainment is proving particularly expensive 
to achieve. 

We have also used DDP to compare alternatives. 
DDP allows for the turning on and off of individual 
elements (requirements, risks and mitigations), of subtrees 
of them, and indeed of arbitrary sets of them. 

In applications to date, we have relied on the human 
experts to make the decisions of which mitigations to 
select (and/or of which requirements to discard). This is 
clearly a challenging task, given the interconnectedness of 
DDP’s elements. In response, we have begun 
investigating techniques that automate search for (near) 
optimal solutions. In one approach, we adapted genetic 
algorithms to this purpose. The preliminary results are 
quite promising, and we intend to pursue this further. In 
another approach, we collaborated with Tim Menzies, 
who has a machine-learning based approach (Menzies and 
Hu, 2001) to identifying critical decisions to make (and 
which way to make them!). Again, the preliminary results 
are quite promising. A snapshot of a recently completed 
pilot study (Feather and Menzies, 2002) is shown in 
Figure 5. This shows a chart whose two dimensions are 
cost (the sum total cost of selected mitigations) and 
benefit (the sum total value of attained requirements, 
taking into account the beneficial risk-reducing effect of 
the selected mitigations). Each point represents a selection 
of mitigations. Some selections are very wastefil - they 
cost a lot, yet attain little benefit. These are the points 
towards the bottom right comer of the diagram. 
Conversely, some selections are very effective - they 
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attain near-maximal benefit, at significant cost savings as 
compared to many of the solutions. These are the points 
towards the upper left corner. The black points are those 
generated by random selection of mitigations, so their 
distribution illustrates the wide range of possibilities. The 
white region consists of a large number of individual 
white points, each of which is a solution recommended by 
Menzies’ machine learning based technique. 

VALIDITY OF THE MODEL 
The validity of a DDP model is often called into 

question, given that it is based on a large number of 
estimated values combined in a simplistic manner. We 
respond to this concern in three ways: reflection on the 
intended purposes of the model, mechanisms to explore 
the sensitivity of the model to its data, q d  population of 
the model with data based on past experience: 
Purpose of a DDP model 

DDP is best applied early in the lifecycle of a 
development. Its purpose is to guide developers to focus 
on the issues that are of most importance. Thus, the model 
need only have sufficient fidelity to be able to distinguish 
between alternatives, and need not (indeed, we argue 
should not) be used to compute absolute measures (e.g., 
probability of success). 

Anecdotal evidence culled from DDP applications is 
supportive of the value of DDP. Initially skeptical 
participants typically emerge convinced that DDP has 
helped. (Cornford et al., 2001 reports benefits of: 

Clarification of a customer requirement leading to 
considerable savings in work not required. 

0 Rejuvenation of a technology by identification of 
opportunities for its utilization. 
Support for adoption of a commercial software 
development environment (balancing the pros and 
cons of making this switch from current practice) 

Explorations of the sensitivity of a DDP model 
We recently added a capability to study the 

sensitivity of the model to variations in the model’s effect 
numbers (the quantitative estimates of how effective each 
mitigation is at reducing each risk). 

This capability offers a menu of ways of making 
changes to effect values. For the user’s selection, the tool 
then applies the change one-by-one to each of the non- 
zero effect values, recomputes benefit (i.e., requirements 
attainment), and builds a table listing in descending order 
variations of that benefit figure with respect to each effect 
value. Figure 6 shows the top portion of this table for an 
actual DDP model. This shows that the mitigation 
“Selectlmake laser” (in the “PACT” column) on the risk 
“Insufficient power” (in the “Failure Mode” column) has 
the greatest change on requirements attainment. 
Information such as this allows users to know which of 
the hundreds of such values to scrutinize most closely. 

In another approach to compute sensitivities, we 
applied Menzies’ machine learning (discussed earlier) to 

search for the impact and effect values most critical to 
changing the computed costs and benefits of an optimized 
solution. Application to an actual DDP dataset suggested 
that the solution was relatively robust. 
Population with experience-based data 

The ideal answer would be to populate the model 
with data based on experience, and use combination rules 
that yield answers in agreement with experience. In the 
software realm, we look to groups such as CeBASE 
consortium hm://www.cebase.org to gather such data. 

When DDP is applied to plan the development of 
novel technologies, data may be available for some 
aspects of the development, but lacking for the more 
novel factors. In such cases, we must continue to rely on 
at least some of the data being experts’ best estimates. 

EXTENSIONS OF THE MODEL 
In this section we describe some extensions to the 

core DDP model. Most of these have been incorporated 
within the DDP software, but we have not yet had chance 
to employ them in full-scale DDP applications. Generally, 
these are conservative extensions of the standard DDP 
model. They take effect if and only if optional additional 
information is provided when building a DDP model. 

The most significant of these concerns the 
partitioning of mitigations into three categories: 
“preventions”, “detections” and “alleviations”, and the 
ramifications of making this distinction. We have also 
allowed for the possibility that mitigations may increase 
certain risks. These extensions are described next. 
Categories of mitigations, and repair costs 
0 Preventions - mitigations that reduce the likelihood 

of risks occurring, e g ,  training of programmers 
reduces the number of mistakes they make. 
Detections - mitigations that detect risks, with the 
assumption that detected risks will be repaired, e g ,  
unit testing detects coding errors internal to the unit, 
which are then corrected. The net effect of detection 
and repair is a reduction in the likelihood of risks 
present prior to detection remaining afterwards. 
Alleviations - mitigations that decrease the impact 
(severity) of risks should they occur, e.g., 
programming a module to be tolerant of out-of-bound 
values input to it from another module. 

These extensions give rise to differences from the 
“standard” DDP model’s calculation of risks and costs: 

Risks: Alleviations reduce impact of risks, while 
preventions and detections reduce likelihood of risks. 
These effects can be viewed via the risk region chart 
shown in Figure 4. Users may find it more palatable 
to accept high likelihood but low impact risks than 
low likelihood but high impact risks. Calculation of 
risk as the product of impact and likelihood would be 
unable to differentiate between the two. It is common 
to make this distinction in traditional reasoning about 
risk. The difference here is that we have incorporated 
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the distinction into our existing framework, thus 
retaining its advantages of scalability and 
applicability to early-lifecycle planning. 
Costs: Mitigations in all three categories continue to 
have costs associated with them. However, detections 
also incur a cost of repair of the risks they detect. 
This repair cost is the product of the quantity of risk 
detected (computed as the reduction in likelihood 
attributed to the detection) and the basic repair cost 
associated with the risk itself (an additional attribute 
of risks). We allow for the repair cost associated with 
a risk to depend upon the time period in which the 
repair is performed. Recall that mitigations are 
associated with the time period in which they are 
performed. Hence, a repair triggered by a detection 
occurs in the time period of the mitigation. 

Using this capability, we can represent the escalation of 
costs of repair as time progresses. For example, the cost of 
repairing a requirements flaw may be tiny at requirements 
time, larger at design time, larger still at coding time, etc. 
Once this information is provided, the DDP calculations 
of cost then reflect the escalation of repair costs when 
risks are allowed to linger to later stages of development. 

It is well understood that early-lifecycle activities 
such as inspections can increase benefit (requirements 
attainment through reduction of risk) and decrease cost 
(fewer risks to be corrected at later phases in the lifecycle, 
when repair costs have escalated), e.g., (Kaner, 1996). In 
(Feather et al., 2001 we use the extended DDP model to 
recreate quantitatively such reasoning. 
Risks induced by mitigations 

Mitigations generally reduce risks, but some can also 
increase certain risks. For example, a vibration test of 
hardware used to detect flaws can potentially damage that 
hardware further. In the software world, additional code 
whose purpose is to make a design more fault tolerant 
(e.g., a software voting algorithm) can introduce risk if it 
is itself incorrectly implemented. Finally, repairs can 
introduce risks, e.g., bug fixes may introduce new bugs. 

We incorporate these phenomena within the DDP 
model by allowing for a mitigation to increase risks in 
addition to decreasing other risks (presumably it decreases 
some risks, otherwise it would be pointless to apply it!). 
Ongoing and future extensions 

further extensions to the DDP model. 
We are in the process of incorporating various 

Logical structure to risks, for example, and/or nodes 
of fault trees in probabilistic risk assessment. 
More sophisticated means to calculate requirements 
attainment than simply the sum of child requirements’ 
attainment (e. g . , maximum, root-mean-square). 
Expression and use of additional relationships among 
DDP elements. For example, the concept of one 
mitigation being a “necessary precursor” to another. 

In the absence of these capabilities in the current version 
of DDP, we rely on manual workarounds. For example, 

when we know that the combination of two mitigations 
M1 and M2 does not match that predicted by our 
formulae, we manually add a third mitigation, Ml&M2. 
We assign to this the combined effectiveness and cost 
values that we believe hold for the combination of the 
two. When selecting mitigations, we are careful to select 
at most one of { M1, M2, M1&M2 }. Such workarounds 
allow us to proceed with DDP applications, at the expense 
of a small amount of additional effort. 

We use actual DDP applications to gauge which 
manual workarounds are recurring and tiresome, thus 
motivating our choice of which extensions to work on 
next. We also try to be proactive in predicting new 
features (for which simple workarounds do not exist) of 
benefit for future applications. An example of this is the 
need to support simultaneous contributions to a shared 
DDP model. At present, we serialize DDP sessions to 
input information to the one and only model. This results 
in either a waste of the cumulative time of the experts 
present, and/or a failure to capture all the valuable 
information that emerges during the session. 

RELATED WORK AND CONCLUSIONS 

of other models of systems. We briefly discuss several: 
Estimation models 

COCOMO and COQUALMO models predict factors 
such as cost and quality based on inputs that characterize 
the development at hand (Boehm et al., 2000). 

Generally, estimation models such as these are 
“closed” - they are not intended to be extended with new 
factors (although they do encourage tuning the models to 
a given organization). In contrast, the DDP model is 
“open”, relying on expert users to input and link the 
factors that are relevant to the development at hand. 
(Kwtz and Feather, 2000) describes our work to mix of 
these approaches, linking DDP to NASA’s Ask Pete tool. 
The latter does estimation and planning of software 
assurance activities. In combination, the Ask Pete tool is 
used to build a first-cut model, and the DDP tool can then 
be used to tailor this to the development at hand 
Goal models 

The software engineering research community has 
shown increasing interest in models of “goals” (roughly 
speaking, precursors to requirements). See the mini- 
tutorial (van Lamsweerde, 2001) for an overview of this 
area. We dlscuss two of these kinds of models: 

The KAOS framework for goals, requirements, etc. 
(Bertrand et al., 1998) is used to build a logical structure 
of how system-wide requirements decompose to, 
ultimately, requirements on the individual components in 
a system. Models built in this framework seem well suited 
to exploring the functional behavior, and to some extent, 
non-functional aspects. DDP models are weaker in that 
they lack the logical structure of KAOS models, but 
conversely have emphasized more the quantitative aspects 

The DDP model has some similarity with a number 
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that predominate in imperfect solutions. 
The i* framework (Chung et al., 1999), (Mylopoulos 

et al., 2001) combines logical structures with qualitative 
models. Their framework’s combination rules support 
tradeoff analysis between a few major design alternatives. 
DDP models seem more appropriate when there are a 
large number of small alternatives. 
Bayesian Nets / Influence diagrams 

Influence diagrams (a form of Bayesian nets) offer a 
general framework in which factors can be combined to 
assess designs and study alternatives. (Burgess et ai., 
2001) uses them to compute the utility of requirements 
that are candidates for inclusion in the next release of a 
piece of software. In principle it would seem that a DDP 
model could be represented as an influence diagram, with 
a relatively “flat” topology (Figure 1). However, as seen 
in Figure 3, typical DDP applications give rise to rather 
voluminous such models. DDP is better tuned for decision 
making when a multitude of factors must be considered. 
Requirements Prioritization 

Requirements prioritization has also emerged as a 
topic of interest. 

(Karlsson and Ryan, 1997) developed a “cost-value” 
approach to prioritizing requirements. They use a cost- 
value diagram to plot each requirement’s relative value 
and implementation cost, facilitating the selection of an 
appropriate subset of requirements. 

WinWin (Boehm et al., 1994) and its custom tool (In 
et al., 2001) supports multiple stakeholders to identify 
conflicts between their respective evaluations of 
requirements, and locate feasible solutions that are 
mutually satisfactory combinations of requirements. 

These examples typify approaches in which users are 
asked to directly estimate the costs and benefits of 
individual requirements. Significant interactions among 
requirements (e.g., if two requirements can be achieved by 
sharing the same solutions to sub-problems) complicate 
this. DDP’s approach is to explicitly relate requirements 
to risks, and risks to mitigations. 

Risk estimation approaches (e.g., fault tree analysis, 
bayesian methods) appear well suited to the assessment of 
a single design. However, our application is the planning 
of mitigations, were the dnving concern is the cost- 
benefit-guided selection from among a large set of them. 
Conclusions 

We have outlined the DDP model, designed to fill 
the early-life cycle niche in risk-based estimation and 
planning. DDP thus complements a number of other 
modeling techniques. 

DDP’s key elements are requirements, risks and 
mitigations, are linked to one another in a quantitative 
manner. Custom tool support facilitates use of this model 
when relatively large numbers of items are involved. 

DDP has been successfully applied in early lifecycle 
decision-making. It appears well suited to applications 
where a multitude of factors must be considered 

simultaneously. We hl ly  expect use of DDP to continue. 
We also anticipate that recent extensions to the DDP 
model will fiuther its ability to compute costs and benefits 
associated with risk mitigations. 
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FIGURES 

Fig. 3 Topology of an actual DDP model 

I I; = attainment of requirements 

Z = cost of mitigations I 
Fig. 1 Topology of DDP’s risk-centric cost-benefit model 
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A dcvcloomcnt time Launch date 

Fig. 2 Risk Drofiles. over time 

Fig. 4 Risk region chart 
Fig. 5. Converging on optimal attainment of requirements 
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