
1 Three Papers Dealing With:

I Spacecraft Onboard Science Data Processing J I

I. Radiation Fault Modeling and Fault Rate Estimation for a COTS -based
Space- borne Supercomputer

I% Fault Injection Experiment Results in Space borne Parallel Application

III. Fault-Tolerant Systems Design - Estimating Cache Contents and Usage

Programs

Autonomous Robotic Vehicles Deep Space Exploration High Data Rate Instruments

Raphael Some, Won Kim, Garen Khanoyan, Leslie Callum, Ani1 Agrawal, Ashley Shamilian, Arbi Karapetian, Allan Nikora and John Beahan
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91 I09

Raphael. R.Some@pl.nasa.gov

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. This
project is part of NASA’s High Performance Computing and Communications Program, and is funded through the NASA Office of Space Sciences.

mailto:R.Some@pl.nasa.gov

Outline JPL

1. Project Goals and Reason D'etre

2. Technical Approach

3. Radiation Fault Model

W E : A COTS-based Spaceborn Supercomputer

Finding A Practical Balance Between Modeling and Experimentation

A Detailed View of Space Radiation Effects On Complex Systems

Determining Fault Effects on Science Data Processing Codes

A Tool For Uncovering Hidden Effects

Where To From Here?

4. Application Fault Injection Results

5. Cache Emulator

6. Summary and Conclusion

Project Goals and Reason D'etre JPL

*Move commercial scdabk supercomputing technology into space, in

Background
Funded by Office of Space Science (Code S) as part of
NASA's High Performance Computing and
Communications Program
Started in FY1996
Guidelined at $lOOM over 8 years

REE Impact on NASA and DOD Missions by FY05

Faster - Fly State-of-the-Art Commercial Computing Technologies within 18
month of availability on the ground

Better - Onboard computer operating at > 300MOPS/watt scalable to mission
requirements (> 1OO.x Mars Pathfinder power performance)

Cheaper - No high cost radiation hardened processors or special purpose
architectures

The Problem Set

REE Objectives

.Demonstrate power efficiencies of 300 -1000 MOPS per watt in an
architecture that can be scaled up to 100 watts, depending on on needs.

*Demonstrate new spaceborne applications on
computing testbeds which return analysis results to the earth i
data.

edded hi

*D evelop fault- t o ler ant e that permit reli for
10 years and more using commercially avail

.Explore ultra-low power onboard computer systems which
entire Solar System to exploration w ut the need for nucl

or derived compon

Project Overview

Feasibility?

Phase

>30 MOPSIwatt

Scalable Testbed

>300 MOPSIwatt / I
I I f \

Milestone Type:

0 Computing Testbed

System Software

Science Applications

I r / Demo spacebome applications
on embedded high-performance
computing testbed (PCA Milestone)

Baseline System Architecture JPL

Cluster Architecture for COTS Compatibility, Ease of Implementation
and Fault Tolerance

Reference Design: Two Level Processing
Node Architecture IJPL

[~2 Cache (2x) J

f 5 f 3

SDRAM Host Bridge PCI Bus (32 bit, 66 MHz)
t t t

\ f \ - SRAM(4x) Node Ctlr
FPGA

i / L J

Myricom

I I I I

Baseline Architecture JPL

Node Main Memory is SECDED protected

L2 Cache is at least parity protected

Mass Memory and node NVM is at least SECDED protected

All buseshetworks are dual redundant and protocol monitored

Normal communication between spacecraft and REE is via spacecraft high
speed data bus (1394) and mass memory file system

Spacecraft Control Computer can assume command via the spacecraft
housekeepinghack door bus (IIC)

All spacecraft avionics including control computer and data buses are rad hard
and SEU immune.

Approach to Understanding Radiation Faults JPL

1
[Device & System Architecture 1 4 Radiation Error Model

-1 Hardware Utilization Model
I -i

w. \I/ \ I /

System Model Cache Contents Estimator

Radiation Fault Modeling and Fault Rate Estimation
for a COTS Based Space-bome Supercomputer JpL

Provide fault rate data for each functional block of the system
No proprietary (component design) data
Sufficient granularity to allow derivation of error typeshates from basic fault rate data
Sufficient breadth to allow projection of fault rates in a range of space environments

LEO
GEO
Deep Space
Mars Surface
Solar Flare Conditions

Flexibility of system configuration (what if?)
Flexibility in systedcomponent technologies (next gen, previous gen, SOI.. .)
Relatively high confidence level estimates in the absence of test data
Convenient mechanism for data exchange between radiaition test engineers,

system designers, fault tolerance engineers, mission designers.. .

Methodology and Fundamental Concepts JPL

Decompose System into Functional Blocks
Devise Tests to Detect Functional Block Faults
For each Functional Block, Determine

Sensitivity of Gates and Latches

Number of Gates and Latches
If Previous Step Is Not Possible, Then

Measure Error TypesRates Directly & Treat as Monolithic Circuit
Build Hierarchical Fault Model:

Level 1 - Functional Blocks
Level 2 - Nodes (Subsystems)
Level 3 - System

Technology (Radiation Sensitivity)
Circuit Speed (Clock Rate Sensitivity)
Margin (I don't know what I don't know)

Untraceable Control Logic Faults

Proton, Heavy Ion, Clock Rate

Add Scaling Factors:

Add SEFI Factors:

Functional Block and Node level Model JPL

PPC 760 PPC 750

1

I I

REE Testbed Dual PPC750 Node

Functional Element Input Sheet AIPL

Interplanetary Space

DCF (protons+ions) 100 mil Aluminum

I I 1 I-- 5.00E-08 I Surface of Mars GCR - - - - - -

Block Level Detailed Worksheet JpL
_ I x _ I-

-CPU design - IBM Power

Latch fault rate LFR) 9.54E-07 _ _ _ _ . ,
Source I Param #Latches LFR LtchFaults

91 9875 , 0.72761438 " " Totals:
Chip area. mmY 625

x_--_ ̂ A - * - "
32
32

64s
521

12
40

- x-_ ~~

:Address ~~ bus width, bits
Data bus width, bits -----.;--- 8 _^-

~ " __ "

"I

" _
32-

Width of Real Page Number

-< --""x - -
Number of latches hokng current instructio

buffers (6 GP,6 FP, 3 CSR) 9.54E-07 0.000641 09,
" ~ X X ; ~

- _ 1

ction Cache entries

__ (No. ofBGnch History I_̂ Table entries

I -

Num MU enthes/TLB 128 9.54E-07 O

W idt K o f i M U T L B z t ry , 70 9.54

Latches 64 I 9:544E-07- 0s

10 9.54
x- - Tag bits per TLB entry (di

Number U TLB's

Number of I+D BATS (defined as SPRs)(shadowed) 16 1024 9.54E-07 0.00097691
408 9.54E-07 0.00038923: Number "I of I MMU mem segment registers, VSID+SLB

17920 9.54E-07 0.01709568g
_ ^ _ _ ^ -1 2

I -- 11-1" "

I

17

Node Level Summary

Node-level design

m

I

System Level Summary JPL

System-level design

I
Count

System totals:
INumber of nodes Der svstem 20
1 Additional system-level elements

Margin

3

Latch - Gate Total
Faultsh r Faultshr Faultsh r

139.17 I 0.91 I 140.08
138.91 I 0.91 I 139.82
0.26 I 0.00 1 1 0.26

System Fault Rate Summary

Conc lusions

1. The Radiaton Fault Model provides an effective vehicle for communication between
test and design organization and serves as a handy tool for organizing the work

2. The level of granularity seems to be sufficient for most system design work and can
be obtained without resorting to company proprietary design data

3. Initial studies of PPC603, PPC750 and G4 processors using technology scaling factors
and available component data show results consistent with experimental data.

3. Initial studies show:
A. No appreciable gate fault rate and no clock rate dependant fault rates
B. Fault rates for Mars surface, LEO, and GEO are relatively benign and can be

handled with Software Implemented Fault Tolerance (SWIFT)
Techniques or with low cost hardware monitors.

4. The model, in its current state, requires detailed knowledge of the tool - a user friendly
front end and orthogonalization of the radiation parameters would make it more
useful1 to the general community.

Follow On Work AJPL

1. Model Validation Experimentation

2. Model Productization

3. Orthogonalization of Circuit Sensitivities vs Space Environment

4. Inclusion of additional circuit types and components

Planned for FY'02-'03

Planned for FY'02-'03

Planned for FY'02-'03

Planned for FY'"''03

Since paper submission, the model has been extended to include the G4 processor
experimental data and updated FPGA data. Due to funding termination, however, the
future of this work is in question.

Pe
Orbit or Location

solar mm. GCR
solar max. GCR

Interplanetary Space
(per day) (per day) @er day) (per day)
2.5OE-06 2.50E-06 2.4OE-07 2.4OE-07

5.2OE-08 6.4OE-07 6.40E-07 5.2OE-08

~

600 k1n-98~

600 km-28"

Sudce of Mars-

Orbit or Location

Interplanetary Space

600 km-98"

600 km-28"

Surhce of Mars

Summary of PPC750 vs G4
.-Bit SEU R ate for GPRs and b'PR s (100 mil Aluminum Shielding)
Environmental Components I PPC750 I PPC750 I PPC7400 I PPC7400 I Peak Rate IAverage Rate I Peak Rate IAverage Rate

DCF protons 3.60E-04
DCF ions 1 1 2.6OE-03

Per-Bit SEU Rate for Data Cache (100 mil Aluminum Shic -
Environmental Components I PPC750 I PPC750

Peak Rate Average Rate
(per bit) (per bit)

solar mm. GCR 5.6OE-07 5.6OE-07
solar max. GCR 1.4OE-07 1.4OE-07

DCF portons 4.9OE-04 4.9OE-04
DCF ions 6,70E-04 5.60E-04

DCF (protons+ions) 1 - 16E-03
5.6OE-07 1.50E-07

solar max. GCR 1.4OE-07 4.60E-08
trapped protons 1.1 OE-05 1.7OE-07
DCF protons 4.9OE-04 7.8OE-05

DCF ions 6.7OE-04 1.4OE-04

solar mm. GCR

DCF (protons+ions) I 1.16E-03 I 2.18E-04
GCR I l.lOE-08 I 1.10E-08

trapped protons I 1.lOE-05 I 3.6OE-07
GCR I 3.6OE-08 1 3.6OE-08

dinp)
PPC7400 I PPC7400
Peak Rate Average Rate

(per bit) @er bit)
2.5OE-07 2.50E-07
6.3OE-08 6.3OE-08
2.6OE-04 2.6OE-04
2.8OE-04 " - ""- " 2.3OE-04
5.4OE-04 4.9OE-04
2.5OE-07 6.6OE-08
6.30E-08 2.OOE-08
5.50E-06 8.8OE-08

5.8OE-05

5.5OE-06 I 1.8OE-07
1.6E-08 I 1.60E-08

G4 Summary of PPC750 vs

Summary of PPC750 vs G4

hvironment
Shielding
Flare Status
Solar Mnimrm'Maximrm

JPL

hterplanetary Space (near Earth) Hgh- hcline 600km98" Earth Orbit 600km28" Mars Surface
100 MI (AI) 100 MI (AI) 100Ml(Al) NIA

NIA

No Flare Design Case Flare No Flare Design Case Flare NIA NIA

Solar Mn I Solar Max Solar Mn I Solar Max Solar Mn I Solar Max Solar Mn I Solar Max NIA

" I _II ___11--_111- 1111 " x ~~~ ~ " I -____ - I ---
Daily Average Single-Bit psetslDay) Detected by Parity Check

L2 Cache Pari-Check 256K I 2.36Eo6
PPC750 System Total

L2 Cache Parity-Check 256K I 2.36Et.06

2.643 0.661 4958.643 4956.661 1.51 0 1.020 1029.668 1029.1 77 1.751 0.170
2.643 0.661 4958.643 4956.661 1 SI 0 1.020 1029.668 1029.177 1.751 0.170

1.180 0.297 2313.980 2313.097 0.727 0.510 467.592 467.374 0.871 0.076
PPC7400 System Total

PFC7450 L1 Caches 5.65Et.05
PFC7450 L2 Cache & Tag 2.47Et.06

PPC7450 System Total

1.180 0.297 2313.980 2313.097 0.727 0.510 467.592 467.374 0.871 0.076

0.283 0.071 553.983 553.771 0.174 0.122 111.945 111.893 0.208 0.018
1.235 0.31 1 2421.835 2420.91 1 0.761 0.534 489.386 489.159 0.91 1 0.079
1.518 0.382 2975.818 2974.682 0.935 0.656 601.331 601.051 1.120 0.097

Fault Injection Experiment Results in Space borne
Parallel Application Programs AJPL

Determine the effects of faults on typical science data processing application(s):
Randomly inject single bit-flip faults throughout application spacehime
For each fault type/location, determine probability of:

CrasldHang
Incorrect Answer
Correct Execution

Determine feasibility of using a COTS fault tolerant computing system for this app:
Build stochastic (Markov type) system model

Inputs: System Architecture & Operation
SEU fault ratesAocations in mission environment
Probabalistic fault effects
System lifetime

Outputs: System Reliability for a range of missions
Mission life
Mission radiation environment

Fault Injection Experiment Results in Space borne
Parallel Application Programs cont. J ~ L

Module level (white box) testing:
Fault sensitivities and coverages of specific software modules
Error contribution of specific modules to program output

Global level (black box) testing:
Overall contribution of application to system reliability
Simulation of SEU arrival statistics

Injection into Code, Stack, Heap, Data segments and into hardware registers

Issues:
Statistical significance of results - how representative is the data of expected real world

Design useability - how useful is the resultant fault injection results data in devising
conditions?

fault tolerance strategies for this application and for general applications of this
type?

Can the system reliabitily model be used to perform system configurational and
environmental effects analysis?

m

2
X
CD

Clasify 0

Data Processing Flow

Statistical Error Test
Running average vs +/-2 Sigma

data collection*

includes verifier data

Filter b

Extract

1

Merge

0 200 400 600 800 1000

Figure 5 : Statistical error tests for Correct Runs

1 I Hi Classifier I

Texture Segmentation Application mJPL

1
/ \

\ 3.0 3.2 3.2

3.9 4.1 4.2 4.7
I + ...

0.3 0.8 1.4 2.0 4.9 9.2 21.1
Execution Time (seconds)

Functional block diagram and timeline of the texture segmentation program

Fault Injection Results
10 Crash/Hang Incorrect

100%

80%

60%

40%

20%

0%
Code Data Heap Stack All-Mem GPR

Global Fault Injection into Application Virtual Memory and GPR

95% of errors injected result in no failures
Code errors result in crashes or hangs - "fail silent" behavior is easily dealt with
Heap dominates memory and heap injections result in erroneous output
GPR errors mostly cause crashes or hangs, i.e., benign failures

Fault Injection Results JPL

JOCRASHIHANG INCORRECT CORRECT I
100%

80%

60%

40%

20%

0%

fft code gabor code kmeans code

I FFT time injecting to FFT code, Gabor time injecting Gabor code, Kmeans time injecting into Kmeans code 1
Gabor code is more sensitive to faults than FFT or Kmeans codes and has a relatively

high rate of incorrect outputs (bad errors)
Large percentage of faults still result in crashhang (good errors)

Y

0

to
Q

Q

m

3

Q

m a
r

E m m
U

c

E a

U

C

m

Y

8 E a
-0

8 8 n m 0 a

U

8
E

s

0

0

m

Experimental System
Physical QMR Core
Temporal "Pseudo-TMR" Application Execution on Single Application Node
Core loads code and data and commands execution three times
Application node is slaved to core and loads results and status to shared memory
Core monitors application and applicaton node status and votes results

If first two runs don't match, run a third time, if no two match - system failed

Overhead is relatively high:
4x simplex execution resources for the QMR core
2x+ resources for the pseudo-tmr application

However, this is still a relatively low cost if we consider that
computer provides 10 to 100 x higher performance:
than a state of the art radiation hardened computer.

a COTS state of the art
power ratio (M1PS:Watts)

Environment is Mars surface
How would we do?

What would our error rate be?
What would this contribute to they system (un)reliability?

\a

System Model Input Data Collection
Fault Injection Campaign JPL

Experiment Total Region
Number
of Runs

Nominal operation without any fault &
no JIFI.
Application execution without any fault
& JIFI.
Application execution with Single Fault
injected in registers.
Appli cation execution with Single Fault
injected in application code.
Application execution with Single Fault
Injected in application heap.
Application execution with Single Fault
injected in application stack.
Application execution with Single Fault -

ini'ected in amlication data. I I

1000 None

1000 None

1000 Registers

1000 Code

1000 Heap

1000 Stack

1000 Data

(GPRs)

Application execution with Multiple
Faults injected in application code.
Application execution with Multiple
Faults injected in All Memory.
Application execution with Multiple
Faults injected in registers.
Application execution with Multiple
Faults injected in memory and registers.
Application execution with Multiple

Fault s injected in memory and registers.

Number of Number of I Nodes Faults

1000 Code

1000 Memory

1000 Registers

1000 Memory and

1000 Memory and

(GPRs)

Registers

Registers

1 l o
1 l o
1 I 1
1 I 1
1 I 1
1

1

1 l 2
1 l 2
1 l 2
1 l 2
2 l 2

Number of Fault
Injected Runs per
Job
3

3

3

3

3

3

3

3

3

2

2

3

Run Level
Fault Injection Campaign Results JPL

10 CRASH/HANU INCORREC

100%

00%

60%

40%

20%

Reg: Code: Heap: Stack: Data: Code: All-Mem: Reg: Mem Mem
1 fault 1 fault 1 fault 1 fault 1 fault 2 faults 2 faults 2 faults & Reg: & Reg:
1 node I node 1 node 1 node 1 node 1 node I node 1 node 1 node 2nodes

Job Level
Fault Injection Campaign Results

Reg: 1 fault, 1 node
Code: 1 fault, 1 node
Heatx 1 fault. hode

Type of Experiment

92 1 322 11
985 333 0
982 333 0

INumber of Correct Number of Successfibumber of Failed Jobs

Data: 1 fault, 1 node
Code: 2 faults, 1 node
All Mem: 1 node

(See Table 1) babel Files out of 999 I Jobs I

998 333 0
950 328 5
924 328 5

No JIFI I999 I 3 3 3 I o

Zeg: 2 faults, 1 node
Mem & Reg;: 1 node

JIFI. no faults I999 I 333 I o

835 311 22
872 322 11

Stack: 1 fault, 1 node I 990 I 333

Mem & Reg: 2 nodes I641 I237 I 96

Final 81 State MarkovModel

How did we do?
Mars Surface Environment During a Realistic Mission - 3 months, no solar flares

0.9999+ easily achievable
Not very interesting!

i := 0.. 300

1

0.99

0.96

0.95

I
Week

U

U
SliEhtlv more interesting cases:

ability -

~

\

\

Estimated Reliability Over 300 Weeks for Deep
SPace Environment. No Solar Flare

1

0.8

0.2

0

\
\

1

Hour

E 2 14 16 18
10

Estimated Reliability Over 20 Hours for Deep
Space Environment, Design Case Solar Flare

Issues and Notes JPL

System case analyzed is unrealistic
Fault set is limited
System software not included
Significant sections of the system hardware not included
Multi-bit faults not considered
Multi-fault runs not considered

On the other hand
Verifier was binary type (worst case)
TMR miscompare is considered a failure, but this is a detected occurance and

would not lead to erroneous data in a real system
No application level fault tolerance was implemented for this test

So, while no final conclusion can be drawn, it does seem that COTS based systems are
promising and that the overall approach of fault injection testing coupled with
stochastic system modeling is likewise a promising approach to analysis of these
systems and an aid in their design.

Estimating Cache Contents and Usage

Use of cache memories significantly alters the SEU vulnerability of codes as well as
fault effects and error popagation paths.

Internal caches are highly vulnerable to SEU
Ll resident code and data is unprotected and likely to be the source of errors
L1 cache data may be copied back to L2 cache and eventually to main memory
Ll cache code is vulnerable to SEU and the longer resident, the higher the

Caches are smaller than main memory, thus the exposure time of a given data
probability of error

or code item is limited to its residency in cache

It is generally not possible to inject faults into caches

Cache fault effects may be determined through an analytical process based on
experimentaly determined cache residency data

Estimating Cache Contents and Usage JPL

To gain insight into system fault behavior:
Provide a probabalistic time varying cache contents mapping

Identify, per module - code, data, stack, heap contents in cache
Identify residency time
Identify vulnerability time

Use System Model to combine:
Cache residency data from Cache Contents Estimator
Fault response data from fault injection experiments
Cache vulnerability data from radiation fault model

Use System Model to determine:
System fault ratedeffects and impacts of same on:

System reliability
Ssytem availability

Approach AJPL

Capture instruction stream from executing application
GD debugger provides:

Single Step function
Hooks to pull out:

PC value
Effective Address of data references

Feed instruction stream addresses to a cache simulator
Cache Simulator provides:

Time Tag
Updated contents of I and D Caches
Updated contents of Cache Tags and State Registers
HitMiss Ratios
Percent Cache Utilization (containing valid or active data)
Cache content histogram (user specifiable memory ranges)

t
 1

Dynamic Application Address Extractor
PAAX) JPL

Parameters required:

Count - number of instructions to step through

Stepval- the step unit

break - start - location where stepping starts

break - end - location where stepping stops

Logfile - odoff capturing output into a log file

Outputfile - odoff the printing of EA and PC in a file

cache - sim - odoff output file for the cache simulator

Appparams - input arguments for the application

Appname - name of the application executable

Apppath the path to the application executable

Cache Simulator (Cache Sim)
User defined Cache Definitio

t t -
Cache content

I CacheSim and usage -
User input

PCEA values

Cache Configuration File

128 Sets Word size (bytes) 4

Par meter Value

I I I I I I I

I I I I I I I
v I -I I I

a a -

Sets 128

-
- Block 0 Address Tag 0

-
Block 1 Address Tag 1 -

~2 ~ d d r e s s ~ a g 2 -

Blodc3 AddrmTag3 -
W4 AddressTag4 I

W 5 AddrwTag5 -

Block 6 Address Tag 6 -

-

-
-

-
-

-

Associativity 8
Block size (words) 8 A

I I
I I I I I I -

- State Words 10-1

- state Words [e71 -
- state Words [&7] -
- State vwds la-71 -
- State Words 10-71 -
- State Words [O-q -

Slate words t0-71 -

-
I I I I I I I

I I I -
I I I I I I I
I I I I I -
I I I I I I I
I I 1 I -
I I I I
I I I I I I 1 -

I 1 I I I I I
I I I I I I 1 -
I I I I I I I

-
I I I I I I I

I I I
3

Block7 AddressTag7 d State words 10-71 -
I I I I I I 1

DAAX and Cache Sim Outputs

Sample DAAX Output

0x10009044 0x20003504
0x10009048 Ox200034e4
0x1000904~
0x10009050
0x10009054
0x10009058
0x100090~8 Ox200034eO
0x10009058
0x100090~8 Ox200034eO
ox1ooo9occ
Ox100090dO
Ox100090d4
Ox100090d8
Ox100090da
Ox100090dc

Ox1000be48
Ox1000be4c
Ox1000b9fO Ox7fffed64
Ox1000b9f4 Ox7fffed70
Ox1000b9f8 Ox7fffed00
...

Sample CacheSim Output

I n s t cache usage: 4.79% f u l l
Data cache usage: 2.37% f u l l

Final Thought on Cache Contents Estimator

Applications only - no provision for OS code
Write through cache mode only (ignores valid bits)
Assumes regular and symetric cache structure
Works in virtual address space only

Configurable for any PPC family cache structure
Works well with JIFI and other REE tools which are virtual address oriented

Future work should include:
OSkemel level code/address flow capture
Automated interface between DAAX and Cache Sim

But, it is fbnctional and usehl in its current state

Summary and Conclusions JFL

The use of COTS parts in NASA and Military spacecraft is a growing certainty
The increasing vulnerability of COTS State of the Art components to transient upset,

even in a terrestrial environment, is a clear and present danger to mission
critical systems

characterization of component and system vulnerabilities, fault modes and
effects, as well as low cost techniques for increased system reliability and fault
mitigation.

Preliminary results show the viability of software implemented fault tolerance and low
cost hardware assisted fault tolerance as an approach to onboard COTS based
high end computing systems

terrestrial systems

The REE project has pioneered the development of tools and methods for cost effetive

Extensions of this work also point the way to low cost solutions for highly reliable

The REE project was zero-funded for FY'03.. . ..
. . . .and so it goes.

