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Project Goals and Reason D'etre JPL 

*Move commercial scdabk supercomputing technology into space, in 

Background 
Funded by Office of Space Science (Code S) as part of 
NASA's High Performance Computing and 
Communications Program 
Started in FY1996 
Guidelined at $lOOM over 8 years 

REE Impact on NASA and DOD Missions by FY05 

Faster - Fly State-of-the-Art Commercial Computing Technologies within 18 
month of availability on the ground 

Better - Onboard computer operating at > 300MOPS/watt scalable to mission 
requirements (> 1OO.x Mars Pathfinder power performance) 

Cheaper - No high cost radiation hardened processors or special purpose 
architectures 



The Problem Set 



REE Objectives 

.Demonstrate power efficiencies of 300 -1000 MOPS per watt in an 
architecture that can be scaled up to 100 watts, depending on on needs. 

*Demonstrate new spaceborne applications on 
computing testbeds which return analysis results to the earth i 
data. 

edded hi 

*D evelop fault- t o ler ant e that permit reli for 
10 years and more using commercially avail 

.Explore ultra-low power onboard computer systems which 
entire Solar System to exploration w ut the need for nucl 

or derived compon 



Project Overview 

Feasibility? 

Phase 

>30 MOPSIwatt 

Scalable Testbed 

>300 MOPSIwatt / I  
I I f \  

Milestone Type: 

0 Computing Testbed 

System Software 

Science Applications 

I r / Demo spacebome applications 
on embedded high-performance 
computing testbed (PCA Milestone) 



Baseline System Architecture JPL 

Cluster Architecture for COTS Compatibility, Ease of Implementation 
and Fault Tolerance 



Reference Design: Two Level Processing 
Node Architecture IJPL 

[ ~2 Cache (2x) J 

f 5 f 3 

SDRAM Host Bridge PCI Bus (32 bit, 66 MHz) 
t t t 

\ f \ - SRAM(4x) Node Ctlr 
FPGA 

i / L J 

Myricom 

I I I I 



Baseline Architecture JPL 

Node Main Memory is SECDED protected 

L2 Cache is at least parity protected 

Mass Memory and node NVM is at least SECDED protected 

All buseshetworks are dual redundant and protocol monitored 

Normal communication between spacecraft and REE is via spacecraft high 
speed data bus (1394) and mass memory file system 

Spacecraft Control Computer can assume command via the spacecraft 
housekeepinghack door bus (IIC) 

All spacecraft avionics including control computer and data buses are rad hard 
and SEU immune. 



Approach to Understanding Radiation Faults JPL 

1 
[ Device & System Architecture 1 4 Radiation Error Model 

-1 Hardware Utilization Model 
I -i 

w. \I/ \ I /  

System Model Cache Contents Estimator 



Radiation Fault Modeling and Fault Rate Estimation 
for a COTS Based Space-bome Supercomputer JpL 

Provide fault rate data for each functional block of the system 
No proprietary (component design) data 
Sufficient granularity to allow derivation of error typeshates from basic fault rate data 
Sufficient breadth to allow projection of fault rates in a range of space environments 

LEO 
GEO 
Deep Space 
Mars Surface 
Solar Flare Conditions 

Flexibility of system configuration (what if?) 
Flexibility in systedcomponent technologies (next gen, previous gen, SOI.. .) 
Relatively high confidence level estimates in the absence of test data 
Convenient mechanism for data exchange between radiaition test engineers, 

system designers, fault tolerance engineers, mission designers.. . 



Methodology and Fundamental Concepts JPL 

Decompose System into Functional Blocks 
Devise Tests to Detect Functional Block Faults 
For each Functional Block, Determine 

Sensitivity of Gates and Latches 

Number of Gates and Latches 
If Previous Step Is Not Possible, Then 

Measure Error TypesRates Directly & Treat as Monolithic Circuit 
Build Hierarchical Fault Model: 

Level 1 - Functional Blocks 
Level 2 - Nodes (Subsystems) 
Level 3 - System 

Technology (Radiation Sensitivity) 
Circuit Speed (Clock Rate Sensitivity) 
Margin (I don't know what I don't know) 

Untraceable Control Logic Faults 

Proton, Heavy Ion, Clock Rate 

Add Scaling Factors: 

Add SEFI Factors: 



Functional Block and Node level Model JPL 

PPC 760 PPC 750 

1 

I I 

REE Testbed Dual PPC750 Node 



Functional Element Input Sheet AIPL 

Interplanetary Space 

DCF (protons+ions) 100 mil Aluminum 

I I 1 I-- 5.00E-08 I Surface of Mars GCR - - -  - - -  



Block Level Detailed Worksheet JpL 
_ I x _  I- 

-CPU design - IBM Power 

Latch fault rate LFR) 9.54E-07 _ _  _ _  . ,  
Source I Param #Latches LFR LtchFaults 

91 9875 , 0.72761438 " "  Totals: 
Chip area. mmY 625 

x_--_  ̂ A - * -  " 
32 
32 

64s 
521 

12 
40 

- x-_ ~~ 

:Address ~~ bus width, bits 
Data bus width, bits -----.;--- 8 _^- 

~ " __ " 

"I 

" _  
32- 

Width of Real Page Number 

-< --""x - - 
Number of latches hokng current instructio 

buffers (6 GP,6 FP, 3 CSR) 9.54E-07 0.000641 09, 
" ~ X X ;  ~ 

- _  1 

ction Cache entries 

__  (No. ofBGnch History I_̂  Table entries 

I -  

Num MU enthes/TLB 128 9.54E-07 O 

W idt K o f i M U  T L B z t  ry , 70 9.54 

Latches 64 I 9:544E-07- 0s 

10 9.54 
x- - Tag bits per TLB entry (di 

Number U TLB's 

Number of I+D BATS (defined as SPRs)(shadowed) 16 1024 9.54E-07 0.00097691 
408 9.54E-07 0.00038923: Number "I of I MMU mem segment registers, VSID+SLB 

17920 9.54E-07 0.01709568g 
_ ^ _ _ ^  -1 2 

I -- 11-1" " 

I 

17 



Node Level Summary 

Node-level design 
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System Level Summary JPL 

System-level design 

I 
Count 

System totals: 
INumber of nodes Der svstem 20 
1 Additional system-level elements 

Margin 

3 

Latch - Gate Total 
Faultsh r Faultshr Faultsh r 

139.17 I 0.91 I 140.08 
138.91 I 0.91 I 139.82 
0.26 I 0.00 1 1  0.26 



System Fault Rate Summary 



Conc lusions 

1. The Radiaton Fault Model provides an effective vehicle for communication between 
test and design organization and serves as a handy tool for organizing the work 

2. The level of granularity seems to be sufficient for most system design work and can 
be obtained without resorting to company proprietary design data 

3. Initial studies of PPC603, PPC750 and G4 processors using technology scaling factors 
and available component data show results consistent with experimental data. 

3. Initial studies show: 
A. No appreciable gate fault rate and no clock rate dependant fault rates 
B. Fault rates for Mars surface, LEO, and GEO are relatively benign and can be 

handled with Software Implemented Fault Tolerance (SWIFT) 
Techniques or with low cost hardware monitors. 

4. The model, in its current state, requires detailed knowledge of the tool - a user friendly 
front end and orthogonalization of the radiation parameters would make it more 
useful1 to the general community. 



Follow On Work AJPL 

1. Model Validation Experimentation 

2. Model Productization 

3. Orthogonalization of Circuit Sensitivities vs Space Environment 

4. Inclusion of additional circuit types and components 

Planned for FY'02-'03 

Planned for FY'02-'03 

Planned for FY'02-'03 

Planned for FY'"''03 

Since paper submission, the model has been extended to include the G4 processor 
experimental data and updated FPGA data. Due to funding termination, however, the 
future of this work is in question. 



Pe 
Orbit or Location 

solar mm. GCR 
solar max. GCR 

Interplanetary Space 
(per day) (per day) @er day) (per day) 
2.5OE-06 2.50E-06 2.4OE-07 2.4OE-07 

5.2OE-08 6.4OE-07 6.40E-07 5.2OE-08 

~ 

600 k1n-98~ 

600 km-28" 

Sudce  of Mars- 

Orbit or Location 

Interplanetary Space 

600 km-98" 

600 km-28" 

Surhce of Mars 

Summary of PPC750 vs G4 
.-Bit SEU R ate for GPRs and b'PR s (100 mil Aluminum Shielding) 
Environmental Components I PPC750 I PPC750 I PPC7400 I PPC7400 I Peak Rate IAverage Rate I Peak Rate IAverage Rate 

DCF protons 3.60E-04 
DCF ions 1 1 2.6OE-03 

Per-Bit SEU Rate for Data Cache (100 mil Aluminum Shic - 
Environmental Components I PPC750 I PPC750 

Peak Rate Average Rate 
(per bit) (per bit) 

solar mm. GCR 5.6OE-07 5.6OE-07 
solar max. GCR 1.4OE-07 1.4OE-07 

DCF portons 4.9OE-04 4.9OE-04 
DCF ions 6,70E-04 5.60E-04 

DCF (protons+ions) 1 - 16E-03 
5.6OE-07 1.50E-07 

solar max. GCR 1.4OE-07 4.60E-08 
trapped protons 1.1 OE-05 1.7OE-07 
DCF protons 4.9OE-04 7.8OE-05 

DCF ions 6.7OE-04 1.4OE-04 

solar mm. GCR 

DCF (protons+ions) I 1.16E-03 I 2.18E-04 
GCR I l.lOE-08 I 1.10E-08 

trapped protons I 1.lOE-05 I 3.6OE-07 
GCR I 3.6OE-08 1 3.6OE-08 

dinp) 
PPC7400 I PPC7400 
Peak Rate Average Rate 

(per bit) @er bit) 
2.5OE-07 2.50E-07 
6.3OE-08 6.3OE-08 
2.6OE-04 2.6OE-04 
2.8OE-04 " - ""- " 2.3OE-04 
5.4OE-04 4.9OE-04 
2.5OE-07 6.6OE-08 
6.30E-08 2.OOE-08 
5.50E-06 8.8OE-08 

5.8OE-05 

5.5OE-06 I 1.8OE-07 
1.6E-08 I 1.60E-08 



G4 Summary of PPC750 vs 



Summary of PPC750 vs G4 

hvironment 
Shielding 
Flare Status 
Solar Mnimrm'Maximrm 

JPL 

hterplanetary Space (near Earth) Hgh- hcline 600km98" Earth Orbit 600km28" Mars Surface 
100 MI (AI) 100 MI (AI) 100Ml(Al) NIA 

NIA 

No Flare Design Case Flare No Flare Design Case Flare NIA NIA 

Solar Mn I Solar Max Solar Mn I Solar Max Solar Mn I Solar Max Solar Mn I Solar Max NIA 

" I _II ___11--_111- 1111 " x ~~~ ~ " I  -____ - I --- 
Daily Average Single-Bit psetslDay) Detected by Parity Check 

L2 Cache Pari-Check 256K I 2.36Eo6 
PPC750 System Total 

L2 Cache Parity-Check 256K I 2.36Et.06 

2.643 0.661 4958.643 4956.661 1.51 0 1.020 1029.668 1029.1 77 1.751 0.170 
2.643 0.661 4958.643 4956.661 1 SI 0 1.020 1029.668 1029.177 1.751 0.170 

1.180 0.297 2313.980 2313.097 0.727 0.510 467.592 467.374 0.871 0.076 
PPC7400 System Total 

PFC7450 L1 Caches 5.65Et.05 
PFC7450 L2 Cache & Tag 2.47Et.06 

PPC7450 System Total 

1.180 0.297 2313.980 2313.097 0.727 0.510 467.592 467.374 0.871 0.076 

0.283 0.071 553.983 553.771 0.174 0.122 111.945 111.893 0.208 0.018 
1.235 0.31 1 2421.835 2420.91 1 0.761 0.534 489.386 489.159 0.91 1 0.079 
1.518 0.382 2975.818 2974.682 0.935 0.656 601.331 601.051 1.120 0.097 



Fault Injection Experiment Results in Space borne 
Parallel Application Programs AJPL 

Determine the effects of faults on typical science data processing application(s): 
Randomly inject single bit-flip faults throughout application spacehime 
For each fault type/location, determine probability of: 

CrasldHang 
Incorrect Answer 
Correct Execution 

Determine feasibility of using a COTS fault tolerant computing system for this app: 
Build stochastic (Markov type) system model 

Inputs: System Architecture & Operation 
SEU fault ratesAocations in mission environment 
Probabalistic fault effects 
System lifetime 

Outputs: System Reliability for a range of missions 
Mission life 
Mission radiation environment 



Fault Injection Experiment Results in Space borne 
Parallel Application Programs cont. J ~ L  

Module level (white box) testing: 
Fault sensitivities and coverages of specific software modules 
Error contribution of specific modules to program output 

Global level (black box) testing: 
Overall contribution of application to system reliability 
Simulation of SEU arrival statistics 

Injection into Code, Stack, Heap, Data segments and into hardware registers 

Issues: 
Statistical significance of results - how representative is the data of expected real world 

Design useability - how useful is the resultant fault injection results data in devising 
conditions? 

fault tolerance strategies for this application and for general applications of this 
type? 

Can the system reliabitily model be used to perform system configurational and 
environmental effects analysis? 
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Texture Segmentation Application mJPL 

1 
/ \ 

\ 3.0 3.2 3.2 

3.9 4.1 4.2 4.7 
I +  ... 

0.3 0.8 1.4 2.0 4.9 9.2 21.1 
Execution Time (seconds) 

Functional block diagram and timeline of the texture segmentation program 



Fault Injection Results 
10 Crash/Hang Incorrect 

100% 

80% 

60% 

40% 

20% 

0% 
Code Data Heap Stack All-Mem GPR 

Global Fault Injection into Application Virtual Memory and GPR 

95% of errors injected result in no failures 
Code errors result in crashes or hangs - "fail silent" behavior is easily dealt with 
Heap dominates memory and heap injections result in erroneous output 
GPR errors mostly cause crashes or hangs, i.e., benign failures 



Fault Injection Results JPL 

JOCRASHIHANG  INCORRECT CORRECT I 
100% 

80% 

60% 

40% 

20% 

0% 

fft code gabor code kmeans code 

I FFT time injecting to FFT code, Gabor time injecting Gabor code, Kmeans time injecting into Kmeans code 1 
Gabor code is more sensitive to faults than FFT or Kmeans codes and has a relatively 

high rate of incorrect outputs (bad errors) 
Large percentage of faults still result in crashhang (good errors) 
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Experimental System 
Physical QMR Core 
Temporal "Pseudo-TMR" Application Execution on Single Application Node 
Core loads code and data and commands execution three times 
Application node is slaved to core and loads results and status to shared memory 
Core monitors application and applicaton node status and votes results 

If first two runs don't match, run a third time, if no two match - system failed 

Overhead is relatively high: 
4x simplex execution resources for the QMR core 
2x+ resources for the pseudo-tmr application 

However, this is still a relatively low cost if we consider that 
computer provides 10 to 100 x higher performance: 
than a state of the art radiation hardened computer. 

a COTS state of the art 
power ratio (M1PS:Watts) 

Environment is Mars surface 
How would we do? 

What would our error rate be? 
What would this contribute to they system (un)reliability? 



\a 



System Model Input Data Collection 
Fault Injection Campaign JPL 

Experiment Total Region 
Number 
of Runs 

Nominal operation without any fault & 
no JIFI. 
Application execution without any fault 
& JIFI. 
Application execution with Single Fault 
injected in registers. 
Appli cation execution with Single Fault 
injected in application code. 
Application execution with Single Fault 
Injected in application heap. 
Application execution with Single Fault 
injected in application stack. 
Application execution with Single Fault - 

ini'ected in amlication data. I I 

1000 None 

1000 None 

1000 Registers 

1000 Code 

1000 Heap 

1000 Stack 

1000 Data 

(GPRs) 

Application execution with Multiple 
Faults injected in application code. 
Application execution with Multiple 
Faults injected in All Memory. 
Application execution with Multiple 
Faults injected in registers. 
Application execution with Multiple 
Faults injected in memory and registers. 
Application execution with Multiple 

Fault s injected in memory and registers. 

Number of Number of I Nodes Faults 

1000 Code 

1000 Memory 

1000 Registers 

1000 Memory and 

1000 Memory and 

(GPRs) 

Registers 

Registers 

1 l o  
1 l o  
1 I 1  
1 I 1  
1 I 1  
1 

1 

1 l 2  
1 l 2  
1 l 2  
1 l 2  
2 l 2  

Number of Fault 
Injected Runs per 
Job 
3 

3 

3 

3 

3 

3 

3 

3 

3 

2 

2 

3 



Run Level 
Fault Injection Campaign Results JPL 

10 CRASH/HANU INCORREC 

100% 

00% 

60% 

40% 

20% 

Reg: Code: Heap: Stack: Data: Code: All-Mem: Reg: Mem Mem 
1 fault 1 fault 1 fault 1 fault 1 fault 2 faults 2 faults 2 faults & Reg: & Reg: 
1 node I node 1 node 1 node 1 node 1 node I node 1 node 1 node 2nodes 



Job Level 
Fault Injection Campaign Results 

Reg: 1 fault, 1 node 
Code: 1 fault, 1 node 
Heatx 1 fault. hode 

Type of Experiment 

92 1 322 11 
985 333 0 
982 333 0 

INumber of Correct Number of Successfibumber of Failed Jobs 

Data: 1 fault, 1 node 
Code: 2 faults, 1 node 
All Mem: 1 node 

(See Table 1) babel Files out of 999 I Jobs I 

998 333 0 
950 328 5 
924 328 5 

No JIFI I999 I 3 3 3  I o  

Zeg: 2 faults, 1 node 
Mem & Reg;: 1 node 

JIFI. no faults I999 I 333 I o  

835 311 22 
872 322 11 

Stack: 1 fault, 1 node I 990 I 333 

Mem & Reg: 2 nodes I641  I237 I 96 



Final 81 State MarkovModel 



How did we do? 
Mars Surface Environment During a Realistic Mission - 3 months, no solar flares 

0.9999+ easily achievable 
Not very interesting! 

i := 0.. 300 

1 

0.99 

0.96 

0.95 

I 
Week 

U 

U 
SliEhtlv more interesting cases: 

ability - 

~ 

\ 

\ 

Estimated Reliability Over 300 Weeks for Deep 
SPace Environment. No Solar Flare 

1 

0.8 

0.2 

0 

\ 
\ 

1 

Hour 

E 2 14 16 18 
10 

Estimated Reliability Over 20 Hours for Deep 
Space Environment, Design Case Solar Flare 



Issues and Notes JPL 

System case analyzed is unrealistic 
Fault set is limited 
System software not included 
Significant sections of the system hardware not included 
Multi-bit faults not considered 
Multi-fault runs not considered 

On the other hand 
Verifier was binary type (worst case) 
TMR miscompare is considered a failure, but this is a detected occurance and 

would not lead to erroneous data in a real system 
No application level fault tolerance was implemented for this test 

So, while no final conclusion can be drawn, it does seem that COTS based systems are 
promising and that the overall approach of fault injection testing coupled with 
stochastic system modeling is likewise a promising approach to analysis of these 
systems and an aid in their design. 



Estimating Cache Contents and Usage 

Use of cache memories significantly alters the SEU vulnerability of codes as well as 
fault effects and error popagation paths. 

Internal caches are highly vulnerable to SEU 
Ll  resident code and data is unprotected and likely to be the source of errors 
L1 cache data may be copied back to L2 cache and eventually to main memory 
Ll  cache code is vulnerable to SEU and the longer resident, the higher the 

Caches are smaller than main memory, thus the exposure time of a given data 
probability of error 

or code item is limited to its residency in cache 

It is generally not possible to inject faults into caches 

Cache fault effects may be determined through an analytical process based on 
experimentaly determined cache residency data 



Estimating Cache Contents and Usage JPL 

To gain insight into system fault behavior: 
Provide a probabalistic time varying cache contents mapping 

Identify, per module - code, data, stack, heap contents in cache 
Identify residency time 
Identify vulnerability time 

Use System Model to combine: 
Cache residency data from Cache Contents Estimator 
Fault response data from fault injection experiments 
Cache vulnerability data from radiation fault model 

Use System Model to determine: 
System fault ratedeffects and impacts of same on: 

System reliability 
Ssytem availability 



Approach AJPL 

Capture instruction stream from executing application 
GD debugger provides: 

Single Step function 
Hooks to pull out: 

PC value 
Effective Address of data references 

Feed instruction stream addresses to a cache simulator 
Cache Simulator provides: 

Time Tag 
Updated contents of I and D Caches 
Updated contents of Cache Tags and State Registers 
HitMiss Ratios 
Percent Cache Utilization (containing valid or active data) 
Cache content histogram (user specifiable memory ranges) 



t
 1 



Dynamic Application Address Extractor 
PAAX) JPL 

Parameters required: 

Count - number of instructions to step through 

Stepval- the step unit 

break - start - location where stepping starts 

break - end - location where stepping stops 

Logfile - odoff capturing output into a log file 

Outputfile - odoff the printing of EA and PC in a file 

cache - sim - odoff output file for the cache simulator 

Appparams - input arguments for the application 

Appname - name of the application executable 

Apppath the path to the application executable 



Cache Simulator (Cache Sim) 
User defined Cache Definitio 

t t - 
Cache content 

I CacheSim and usage - 
User input 

PCEA values 



Cache Configuration File 

128 Sets Word size (bytes) 4 

Par meter Value 

I I I I I I I 

I I I I I I I 
v I -I I I 

a a - 

Sets 128 

- 
- Block 0 Address Tag 0 

- 
Block 1 Address Tag 1 - 

~2 ~ d d r e s s ~ a g 2  - 

Blodc3 AddrmTag3 - 
W4 AddressTag4 I 

W 5  AddrwTag5 - 

Block 6 Address Tag 6 - 

- 

- 
- 

- 
- 

- 

Associativity 8 
Block size (words) 8 A 

I I 
I I I I I I - 

- State Words 10-1 

- state Words [e71 - 
- state Words [&7] - 
- State vwds la-71 - 
- State Words 10-71 - 
- State Words [O-q - 

Slate words t0-71 - 

- 
I I I I I I I 

I I I - 
I I I I I I I 
I I I I I - 
I I I I I I I 
I I 1 I - 
I I I I 
I I I I I I 1 - 

I 1 I I I I I 
I I I I I I 1 - 
I I I I I I I 

- 
I I I I I I I 

I I I 
3 

Block7 AddressTag7 d State words 10-71 - 
I I I I I I 1 



DAAX and Cache Sim Outputs 

Sample DAAX Output 

0x10009044 0x20003504 
0x10009048 Ox200034e4 
0x1000904~  
0x10009050 
0x10009054 
0x10009058 
0x100090~8 Ox200034eO 
0x10009058 
0x100090~8 Ox200034eO 
ox1ooo9occ 
Ox100090dO 
Ox100090d4 
Ox100090d8 
Ox100090da 
Ox100090dc 

Ox1000be48 
Ox1000be4c 
Ox1000b9fO Ox7fffed64 
Ox1000b9f4 Ox7fffed70 
Ox1000b9f8 Ox7fffed00 
... 

Sample CacheSim Output 

I n s t  cache usage:  4.79% f u l l  
Data cache usage:  2.37% f u l l  



Final Thought on Cache Contents Estimator 

Applications only - no provision for OS code 
Write through cache mode only (ignores valid bits) 
Assumes regular and symetric cache structure 
Works in virtual address space only 

Configurable for any PPC family cache structure 
Works well with JIFI and other REE tools which are virtual address oriented 

Future work should include: 
OSkemel level code/address flow capture 
Automated interface between DAAX and Cache Sim 

But, it is fbnctional and usehl in its current state 



Summary and Conclusions JFL 

The use of COTS parts in NASA and Military spacecraft is a growing certainty 
The increasing vulnerability of COTS State of the Art components to transient upset, 

even in a terrestrial environment, is a clear and present danger to mission 
critical systems 

characterization of component and system vulnerabilities, fault modes and 
effects, as well as low cost techniques for increased system reliability and fault 
mitigation. 

Preliminary results show the viability of software implemented fault tolerance and low 
cost hardware assisted fault tolerance as an approach to onboard COTS based 
high end computing systems 

terrestrial systems 

The REE project has pioneered the development of tools and methods for cost effetive 

Extensions of this work also point the way to low cost solutions for highly reliable 

The REE project was zero-funded for FY'03.. . .. 
. . . .and so it goes. 




