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1 Introduction 
The more we know about software costs and benefits, the 
more precisely we can analyze the trade-offs between op- 
tions in a software project. Sadly, in the usual case, pre- 
cise knowledge is absent and analysts must make do with 
what little information is known. But how bad can that 
be? That is, how little information can we have and still 
be able to make some definite conclusions? 

Our experience has been that, in early lifecycle, the en- 
tire space of options is known. What is unknown, how- 
ever, is the domain knowledge that restricts that space. 
For example, while we might not predict exactly the lines 
of code in the system we are building, we can offer upper 
and lower bounds on that size. 

For some years now, we have been exploring early life- 
cycle cost-benefit choices that surveys and summarizes 
this space of options. Our method uses the following tech- 
niques: 

Disjunctive modelling: In disjunctive modelling, 
when we don't know, we include the whole range 
as possible values for a variable. 
Monte Carlo simu1ation:Simulators are built which, 
when accessing a variable for the first time, selects 
and caches a random value from the possible range. 
If that variable is ever accessed twice, then the cache 
is used to return the same value as selected early in 
the simulation. 

Machine learning to summaries the simu1ations:The 
Monte Carlo simulations generate too much data for 
a human analyst to read and understand. Machine 
learners can automatically find the smallest number 
of variables that most influence the outcome of the 
model. 

In the best case, the machine learner finds emergent sta- 
ble conclusions from within the space of possible behav- 
iors. In the worst case, no such stable conclusions exist 
and the learnt summaries will not be enlightening. This 
worst case result has yet to be seen, and we have theo- 
retical reasons for believing that, on average, we should 
expect to find a small number of variables that control the 
larger space of all options [9, 121. For some years now, 
we have repeatedly observed a curious narmw funnel e$ 
fect. In many domains, it has been observed that a small 
number of critical variables control the remaining vari- 
ables within a system, the metaphor being that all pro- 
cessing runs down the same narrow funnel [lo]. The con- 
cept of narrow funnels has been reported in many domains 
under a variety of names including: master-variables in 
scheduling [ 13; prime-implicants in fault-tree analysis [6 ] ;  
the dominance filtering used in Pareto optimization of 
designs [5]; and the base controversial assumptions of 
HT4 [8]. Whatever the name, the core intuition in all 
these terms is the same: what happens in the total space 
of a system can be controlled by a small critical region. 
Where the narrow funnel effect exists, the space of op- 
tions within a large mace reduces to iust the range of a 
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Baseline: no what-ifs 
acap=3 
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data = 1 ..4 
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programmer capability 
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experience with tools 

ruse = 1 ..5 
docu = 0..4 
time = 2 . 3  
stor = 2 . 3  
pvol = 1 ..4 
acaD = 0..4 

Figure 1: A NASA software project. Unknowns in the 
current situation are shown as ranges or, in the case of 
total lack of knowledge, a “?”. 

1 -  

level of reuse 1 ,2 ,3  3 
doc0 requirements 1 ,2 ,3  3 
runtime constraints ? 
main memory storage 2 , 3 , 4  2 
platform volatility 1 
analvst caoabilitv 1.2 2 

rization methods will be shown: TARZAN, and its de- 
scendant, TAR2. 

2 Case Study 1: COCOMO I1 
Menzies & Sinsel explored a space of 54 million options 
to find two key control variables [13]. In that application, 
a COCOMO-based tool [7] was used to evaluate the risk 
that a NASA software project would suffer from develop- 
time overrun (that project is shown in Figure 1). 

The tool used in that study required a guesstimate of 
the source lines of code (SLOC) in the system and certain 
internal tuning parameters which, ideally, are learnt from 
historical data. Lacking such data, Menzies & Sinsel used 
three guesses for SLOC and three sets of tunings which 
they took from the literature. 

In that study, feuding stakeholders proposed 11 
changes to a project. Some of the project features were 
unclear and, for those features, project managers could 

Figure 2: TOP: A decision tree (left) and a pruned tree 
(right) holding all branches that do not contradict acap=2. 
BOTTOM: Number of branches to different risk classifi- 
cation. Legend: 0 =low risk =high risk. 

only offer ranges for the required inputs to the COCOMO- 
based tool. These ranges offered 2930 possible combina- 
tions for the inputs. When combined with the other uncer- 
tainties, this generated a space of 54 million possibilities 
(2930 * 211 *three guesses for SLOC * three tunings). 

Faced with this overdose of possibilities, Menzies & 
Sinsel performed 50,000 Monte Carlo simulations where 
the inputs were taken from the 54 million possibilities. A 
machine learning program generated decision trees from 
the 50,000 runs. A tree query language called TARZAN 
then swung through the learnt trees looking for the least 
number of attribute ranges that had the biggest impact on 
the overall software development risk. 

TARZAN treated the learnt trees as a space of possi- 
bilities within the logged behavior. TARZAN ran what- 
if queries by pruning all branches in the learnt trees that 
contradicted some what-if possibility. For example, if we 
wonder “what-if acap=2”, then Figure 2, top left, would 
be pruned to Figure 2, top right. This particular “what-if’ 
turns out to be a bad idea. The histograms in Figure 2, 
bottom, show that this pruning drives us into a situation 
where the ratio to low risk to high risk projects changes 
from 3:2 to 1:l. That is, if acap=t,then we increase our 
chances of a high-risk project. 

Figure 3 shows some of the what-if queries conducted 
over the trees learnt from the 50,000 runs. The baseline 
risk profile is shown in cell A1 of Figure 3: prior to the 
what-if queries, the learnt trees hold branches to 7,24,8 
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Figure 3: Number of branches to different risk classifi- 
cations. Legend: 0 =low risk =medium risk 

=highrisk. 

low,medium,high risk projects respectively. Seven of the 
proposed changes had little impact on the baseline. Of the 
remaining four proposed changes, two are clearly supe- 
rior. Cell A2 shows that that having moderately talented 
analysts and no schedule pressure (acap=[2], sced=[2]) 
reduced the risk in this project nearly as much as any 
other, larger subset. Exception: B2 applies actions to re- 
move all branches to medium and high risk projects. Nev- 
ertheless, Menzies & Sinsel recommended A2, not B2, 
since A2 seemed to achieve most of what B2 can do, with 
much less effort. 

Note that Figure 3 takes kth of a page to display and 
shows the key factors that control the classifications of 
54,000,000 possibilities. This astonishing reduction in the 
argument space is consistent with the COCOMO-based 
tool containing narrow funnels. 

3 Case Study 2: JPL models 
Analysts at the NASA Jet Propulsion Laboratory some- 
times debate satellite design by building a semantic net- 

work connecting design decisions to satellite require- 
ments [2]. This network linksfuults and risk mitigation 
actions that effect a tree of requirements written by the 
stakeholders. Potential faults within a project are mod- 
elled as influences on the edges between requirements. 
Potential fixes are modelled as influences on the edges 
between faults and requirements edges. 

This kind of requirements analysis seeks to maximize 
our coverage of the requirements while maximizing the 
ways the actions reduce the impact of the faults and 
minimizing the costs of the actions. Optimizing on all 
these criteria is complicated by the interactions inside the 
model. For example, in Figure 4, fault2 and require4 
are inter-connected: if we cover require4 then that makes 
fault2 more likely which, in turn, makesfault2 more likely 
which reduces the contribution of require5 to require3. 

The net can be executed by selecting actions and see- 
ing what benefits results. One such network included 99 
possible actions; i.e. 2’’ M lo3’ combinations of actions. 
Note the black line, top-left, of Figure 5. All the dots 
below this line were generated via 10,000 random selec- 
tions of the decisions, and the collection of their associ- 
ated costs and benefits. All the dots above this line rep- 
resent high benefit, low cost projects found by the TAR2 
machine learner [4] described in the appendix. In a result 
consistent with funnel theory, the learner could search a 
space of lo3’ decisions to find 30 (out of 99) that crucially 
effected the costhenefit of the satellite. Note that this 
means TAR2 also found 99-30=67 decisions that could 
be ignored. 

For comparison purposes, a genetic algorithm (GA) 
was also applied to the Figure 5 domain [4]. The GA 
also found decisions that generated high benefit, low cost 
projects. However, each such GA solution commented on 
every possible decisions and there was no apparent way 
to ascertain which of these are the most critical decisions. 
The TAR2 solution was deemed superior to the GA solu- 
tion by the domain experts, since the TAR2 solution re- 
quired just 30 actions. 

4 Conclusion 
Even when faced with incomplete information, it may still 
be possible to find stable conclusions about cost-benefit 
trade-offs. 
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Figure 5: Results from the satellite domain. The dots be- 
low the line show the initial output of the model: note 
the very large spread in the costs and benefits. The dots 
above the line show the final outputs of the model after 5 
iterations of TAR2 learning. 

Faces denote requirements; 
Toolboxes denote actions; 
Skulls denote faults; 
Conjunctions are marked with one arc; e.g. re- 

quire1 if require2 and require2. 

Disjunctions are marked with two arcs; e.g. faul t l  
if fault2 or fault3. 

Numbers denote impacts; e.g. action5 reduces the 
contribution of fault3 to faul t l ,  faultl  reduces 
the impact of require& and action1 reduces the 
negative impact of faul t l .  

Oval denotes structures that are expressible in the 
latest version of DDP (under construction). 

oracle. Right: explanation of symbols. 

APPENDIX: The TAR2 machine 
learner 
Classical machine learning (e.g. C4.5 [ 141) can be applied 
to learn implications between attribute ranges and results 
(e.g.): 

X > 1 A Y < 0 + class = highCostProjed 

However, if applied to a non-trivial requirements inter- 
action model a large number of such implications result. 
Some form of summarization is required. 

One way to do this is to study pairs of rules that lead 
to different results and reporting the changes to attribute 
ranges that change ( e g )  a highCostProject into a 
1owCostProject. TAlUAN implemented such a search 
as a post-processor to C4.5. TAR2 performs the same 
search directly, without needing C4.5 [ 1 11. Starting with 
examples, TAR2 finds range settings that are highly asso- 
ciated with some "good" outcome (e.g ZowCostProject) 
and not highly associated with some "bad" outcome (e.g. 
highcostproject) .  

TAR2 outputs implications of the form ( e g )  

X > 1 A Y < 0 + less "bad" and more "good" 

where "less" and "more" are measures of the change in 
the frequency of "good" and '%ad" before and after ap- 
plying X > 1 and Y < 0 to the examples. The set of 
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attribute ranges (X > 1 and Y < 0) is called a treatment. 
Such treatments are the constraints that TAR2 is propos- 
ing on future actions in order to increase the chances of 
less “bad” and more “good”. 
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