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Abstract 

Small, tracked mobile robots designed for general ur- 
ban mobility have been developed for the purpose of 
reconnaissance and/or search and rescue missions in 
buildings and cities. Autonomous stair climbing is a 
significant capability required for many of these mis- 
sions. I n  this paper we present the design and im- 
plementation of a new set of estimation and control 
algorithms that increase the speed and effectiveness of 
stair climbing. We  have developed: (a) a Kalman fil- 
ter that fuses visual/laser data with inertial measure- 
ments and prowides attitude estimates of improved 
accuracy at a high rate, and (ai) a physics based con- 
troller that minimizes the heading error and maxi- 
mizes the effective velocity of the vehicle during stair 
climbing. Experimental results using a tracked vehi- 
cle validate the improved performance of this control 
and estimation scheme over prewious approaches [l]. 

1 Introduction 

As a significantpaxt of many urban reconnaissance 
and/or search and rescue mission scenarios, stairs 
are formidable and critical obstacles. Being able to 
autonomously climb stairs in a fast, efficient, and 
robust way could mean the difference between a suc- 
cessful mission and an unsuccessful one. 
A small, tracked robot (see Fig. 1) designed for gen- 
eral urban mobility is used in this research to develop 
the algorithms necessary to autonomously navigate 
stairs at  high speeds. 
Previous work on autonomous stair climbing [l] in- 
volved the use of asi ngle forward-looking camera 
as the basic navigation sensor. Edge detection al- 
gorithms applied to the camera images allowed for 
estimation of heading angle, 8, and center position 
%see Fig. 2) at approximately 4 Hz. Heading an- 
gle and center position were then heuristically com- 
bined to regulate the two track speeds to keep the 
vehicle heading directly up the stairs while remain- 
ing in the center of the staircase. Due to the time 

between measurements of 0.25 sec, the top speed of 
the vehicle during stair climbing was limited by ap- 
proach. This work will be described in more detail 
in Section 3. 

Figure 1: Vehicle climbing stairs 

In this paper we present a set of new estimation and 
control algorithms for improving the speed, accu- 
racy, and effectiveness of autonomous stair climbing. 
Our main motivation has been the introduction of 
a new mechanical chassis with enhanced capabilities 
in terms of torque and maximum velocity. Specifi- 
cally, the new version of the robot has a top speed of 
approximately 2.0m/s (on flat ground) compared to 
the previous vehicle's maximum velocity of 0.80m/s. 
This increase in speed has resulted in faster dynam- 
ics for the vehicle and has amplified the magnitude 
of the disturbances. These additional challenges ac- 
centuated the deficits of the previous approach and 
heightened the necessity for a new set of estimation 
and control algorithms capable of processing infor- 
mation from a diverse set of sensors and operating 
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at a significantly higher rate (30 Hz compared to 4 
Hz previously). 
The new stair climbing algorithm can be divided into 
five discrete components: (i) avisi on-based head- 
ing and center position estimator, (ii) a laser-based 
heading and center position estimator, (iii) a Kalman 
filter to merge the laser/vision data with gyro and 
tilt sensor data, (iv) a physics-based heading con- 
troller, and (v) a centering controller. These algo- 
rithms are described in Sections 3 through 6. Section 
7 presents the experimental results from testing these 
algorithms on the actual vehicle. We derive our con- 
clusions in Section 8 and suggest possible directions 
of future work. 
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trolytic tilt sensor, a pair of cameras, and a LADAR. 
Only one of the cameras was used by the edge detec- 
tion algorithm described in Section 3. 
The gyroscopes are Systron-Donner QRSll solid- 
state gyros with operational ranges of f200"/s. The 
tilt sensor is part of a Precision Navigation TCM2- 
50 magnetometer and tilt sensor package and has 
a range of f50" of roll and pitch. The stereo pair 
consists of two Videology 20VC3405 B/W cameras 
with frame-grabbers that provide 640 x 480 resolu- 
tion. The LADAR is a SICK LMS-200, a single axis 
scanner with a 180" field of view and a 75 Hz scan 
rate. The range of the scanner is calculated using 
a pulsed time-of-flight measurement with a 905 nm 
laser. This sensor is capable of 0.25" sample spacing 
and in its default mode has a maximum range of 8 
meters, 1 mm resolution and f 5  mm accuracy. 

Figure 2: Diagram of vehicle 

2 Hardware Description 

2.1 Vehicle 
The vehicle used for this research has a mass of ap- 
proximately 20kg and overall dimensions of 60 x 50 x 
17 cm (see Fig. 1). It has three kinematic degrees 
of freedom (DOF): two independently controlled mo- 
tors turn the main tracks on the sides of the vehicle 
as well as the tracks on the arms, and one motor 
turns both of the arms about a pivot point at the 
front of the vehicle. The tracks are made of molded 
rubber and are approximately 7.5cm wide, with lcm 
high cleats oriented perpendicular to the motion of 
the track and spaced about 4cm apart. 

2.2 Sensors 
The sensor suite used for these algorithms includes 
the following sensors: 3 gyroscopes, a 2 DOF elec- 

3 Vision Algorithm 

The vision algorithm incorporated in our system es- 
timates vehicle heading, 8, and center position, 9, 
(see Fig. 2). The interested reader is referred to 01 
for a detailed description. Here we summarize its 
main features. 
The algorithm is divided into two consecutive steps. 
The first of these steps is edge detection and linlcing. 
In order to increase robustness to varying conditions, 
such as those within shadowy and low contrast envi- 
ronments, a low threshold was selected for the edge 
detection algorithm. While this choice maximizes 
the likelihood of detection of an existing edge, it also 
increases the frequency of false positives. Appropri- 
ate filtering is introduced to reduce the number of 
detected edges. These filters include straight line, 
parallel and close, and length filters. Additionally, 
linking of small collinear edges that are close to one 
another is performed. 
The second step is to estimate the heading and center 
position from the resulting edges. With the assump- 
tion that the vehicle body plane and the stair edge 
plane are parallel, there exists a direct mapping from 
the edge endpoints in the image frame to the vehicle 
heading: 

where k is the slope of the 2D stair edge, ym is the 
y-intercept of the edge, and yo is one coordinate of 
the projection center of the image plane. A figure 
of merit, Ge, is associated with the estimation of 
heading: 

(2) 
C e d g e s  Lh 
C e d g e s  

Ge = 

where Lhis the horizontal length of each detected 
edge and is the associated uncertainty approxi- 
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Finally, the ratio of the distances from the left and 
right endpoints of the stair edges is calculated with 
simple distance equations. 

4 Laser Algorithm 

Like the vision-based algorithm discussed above, the 
laser algorithm produces both a heading measure- 
ment and an estimate of how well-centered the robot 
is within the stairway. Because the LADAR per- 
forms several functions in addition to its stair climb- 
ing role, it must be mounted such that the scanning 
plane is perpendicular to the robot's vertical axis. 
In this configuration, the LADAR can not view indi- 
vidual steps while climbing. Instead the laser algo- 
rithm detects straight line segments which are pre- 
sumed to represent solid walls bounding one or more 
sides of the stairwell. Some stairways are bounded 
by balustrades (vertical posts) which support a hand 
railing rather than a solid wall. The current imple- 
mentation does not handle this case although such 
an enhancement would be straightforward. 
The algorithm first uses a robust estimation tech- 
nique to find straight line segments within a scan. 
Those line segments are then used to compute the 
robots heading and the distances to the walls on each 
side. 
Each individual scan consists of 361 range mea- 
surements obtained at  0.5' intervals in a counter- 
clockwise direction. A sliding window determines a 
subset of the scan's range measurements which are 
then fed into the linefitting algorithm. If a line that 
adequately approximates that subset is found, the 
window is grown to include additional measurements 
and the line-fitting algorithm is applied again. This 
step is iterated upon until no adequate linear approx- 
imation can be identified. At this point the parame- 
ters of the line segment are recorded, the window is 
shifted to a point just past the previous sub-set, and 
the same process is repeated. 
The line fitting itself is based on a random-sampling 
least median of squares technique [Z]. First, a pair 
of points from the data within the sliding window 
is randomly selected. The median distance between 
the line determined by these two samples and the 
distance to each of the remaining measurements of 
the data set is then calculated. If the median error 
(or alternatively the m-th largest error) is within a 
preset threshold, the data set is determined to be suf- 
ficiently approximated by the line containing the two 
test points. If the threshold is exceeded, a different 
pair of points is selected from the data set and the 
test is repeated. If, after a predetermined number 

of attempts, no satisfactory line has been found, the 
line-fitting portion of the algorithm returns failure. 
The extraction of robot heading from the set of lines 
can be made more robust by making the following as- 
sumptions: (i) the robot's heading is always within 
the interval [-45", 45'1 (where 0" denotes the direc- 
tion directly up the stairs) (ii) the visible bound- 
ing walls are either aligned (i.e. the left and right 
walls) or are perpendicular (the wall at  the top of 
the stairs) to the stairway. Using the above as- 
sumptions the heading of the robot can be calculated 
from any of the line segments found within a scan as 
mod(Owall,7r/Z), where Owall is the direction of the 
line segment. 
In practice, numerous line segments are found within 
a single scan. In order to increase accuracy, the 
robot heading is calculated as the average heading 
(weighted by line segmentle ngth). The distance to 
the left and right walls are computed in a similar 
fashion. 

5 Kalman Filter Based Attitude Estima- 
tion 

5.1 Dynamic Model Replacement 
In order to estimate the attitude of the robot, we 
have implemented a Kalman filter observer. Sensor 
modeling was selected instead of dynamic modeling. 
The main reasons for this are: (i) dynamic modeling 
would have to be redone every time there is a 
modification to the robot, (ii) dynamic model-based 
observers require a large number of states that 
increase the computational needs without producing 
superior results [3].l 

5.2 Attitude Kinematics and Error State 

The three-parameter Euler angle representation has 
been used in most applications of the Kalman fil- 
ter in robot localization [6, 71. However the kine- 
matic equations for Euler angles involve non-linear 
and computationally expensivetrigonometri c func- 
tions. The computational cost using quaternions is 
less than using Euler angles. It is also more compact 
because only four parameters, rather than nine, are 
needed. Furthermore, in the Euler angle representa- 
tion the angles become undefined for some rotations 
(the gimbal lock situation) which causes problems in 
Kalman filtering applications [8, 91. Amongst all the 
representations for finite rotations, only those of four 
parameters behave well for arbitrary rotations [lo]. 
The physical counterparts of quaternions are the ro- 
tational axis, A, and the rotational angle, 0,  that 

Equations 

'The interested reader is referred to [4] or [5] for a detailed 
discussion on the subject of sensor vs. dynamic modeling. 



are used in the Euler theorem regarding finite rota- 
tions. Taking the vector part of a quaternion and 
normalizing it, we can find the rotational axis, and 
from the last parameter we can obtain the angle of 
rotation Ill]. Following the notation in [12] a unit 
quaternion is defined as: 

A sin 6 

q =  [ 3 = [ cos6 ] (4) 

with the constraint qTq = 1, A = [7~ ,n~n , ]~  is the 
unit vector of the axis of rotation and 6 is the angle 
of rotation. 
The rate of change of the quaternion with respect to 
time is given by: 

where 3 = e is the rotational velocity vector. 
Based on the gyro model in [13] the angular velocity 
w' is related to the gyro output 3, according to the 
equation: 

with 

+ 
(6) 

(7) 

- 4  

w = wm - b - iir 

E{Zr( t>}  = o , ~{6i,(t>$(t '>l = Nrb(t - t') 

where b' is the drift-rate bias and 5, is the drift-rate 
noise assumed to be a Gaussian white-noise process. 
The drift-rate bias is not astatic quantity but is 
driven by a second Gaussian white-noise process, the 
gyro drift-rate ramp noise: 

+ 
b = 5, (8) 

with 

~ [ n , ( t ) ]  = o , ~[ii,(t)z:(t')] = Nw6(t - t'). (9) 

These two noise processes are assumed to be uncor- 
related (E[?i,(t)ZT(t')] = 0). 
At this point we present an approximate body- 
referenced representation of the error state vector. 
The error state includes the bias error and the 
quaternion error. The bias error is defined as the 
difference between the true and estimated bias. - - -  

A b =  b -  bi (10) 

The quaternion error here is not the arithmetic dif- 
ference between the true and estimated (as it is for 
the bias error) but it is expressed as the quaternion 

which must be composed with the estimated quater- 
nion in order to obtain the true quaternion. That 
is: 

6q = q @  q;l% q = 6q@ qi (11) 
The advantage of this representation is that since the 
incremental quaternion corresponds very closely to a 
small rotation, the fourth component will be close to 
unity and thus the attitude information of interest is 
contained in the three vector component 6f where 

6 q N  [ 71. 
Starting from equations: 

and 

f 
where 6 is the true rate of change of the attitude 
and di is the estimated rate from the measurements 
provided by the gyros, it can be shown [5] that 

4 

Using the infinitesimal angle approximation in Eq. 
(4), 6q'can be written as 

1 -  
sf= -66 2 (16) 

and thus Eq. (15) can be rewritten as 

d -  - 4  - 
-66 = -LGm - biJ66-  ( A b + & )  
dt (17) 

Differentiating Eq. (10) and making the same as- 
sumptions for the true and estimated bias as in Eqs. 
(6) and (8), the bias error dynamic equation can be 
expressed as 

d -  
- A b  = 6,. 
dt 

Combining Eqs. (17) and (18) we can describe the 
error state propagation as 

- 1 3 x 3  0 3 x 3  

or in a more compact form 

d 
- A x  = F A X  + Gn 
dt 

This last equation describes the system model em- 
ployed in the currentKa1 man filter implementation 

(20) 



[5]. This estimator combines the gyroscopes angu- 
lar rates with the absolute orientation measurements 
from the vision/laser algorithm in order to estimate 
both the attitude of the vehicle and the gyro bi- 
ases. As shown in [4], this estimator acts as a high 
pass filter on the gyro signals by filtering out the 
low frequency noise component (bias) while weigh- 
ing more their contribution during high frequency 
motion when the vision/laser algorithm is suscepti- 
ble to disturbances. If absolute orientation measure- 
ments are available continuously, the filter is capable 
of continuously tracking the gyro biases. In our case 
attitude updates are available at  a lower rate than 
the gyro measurements. Therefore the filter updates 
the bias estimates only intermittently (Fig. 3) based 
on its effect on the attitude estimates during the pre- 
vious interval of motion. The resulting attitude esti- 
mates are then fed to the control algorithm in order 
to determine the appropriate steering commands. 
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Figure 3: Bias Estimation (simulation results): The 
flat parts of the estimate depict the constant bias as- 
sumption in the integrator. The sharp step changes 
occur when absolute attitude measurements become 
available (every 100sec). 

6 Control System 

6.1 Overview 

There are three main goals of this stair climbing con- 
trol algorithm: (i) maximize the time that the vehicle 
is heading directly up the stairs, (ii) keep the vehicle 
at a safe distance away from the edges of the stair- 
case, (iii) accomplish the first two goals while moving 
as quickly as possible. 
The first goal is necessitated partly by the observa- 
tion that the actual stair climbing speed is a non- 
linear function of the vehicle heading. If the heading 

Figure 4 :  Control System Block Diagram 

is perturbed slightly off from zero, track slip increases 
dramatically. 
Under ideal conditions the first twogoals are not 
mutually exclusive and a single tiered control system 
could be designed that would minimize the heading 
error while traveling straight up the stairs. As long 
as the vehicle started at  the center of the stairs then 
it could be expected that it would finish close to the 
center of the stairs. Unfortunately, there are signifi- 
cant disturbances in this system due to the complex 
interactions of the tracks and the stairs. The mag- 
nitude of these disturbances increases with the stair 
climbing speed therefore control becomes more dif- 
ficult when attempting to climb stairs at a higher 
rate. The fact that the system state is significantly 
affected by these disturbances creates the need for a 
two tiered control system. This approach minimizes 
the heading error while the vehicle is near the center- 
line of the stairs. Whenever the vehicle approaches 
the side of the staircase the centering controller steers 
the robot towards the centerline and resumes nomi- 
nal operation as soon as the vehicle is a safe distance 
away from the side of the staircase. 
Two state variables are used for control purposes 
during stair climbing (see Fig. 2). The first vari- 
able is the heading of the robot in the world frame, 8. 
This variable is computed based on the attitude esti- 
mation from the Kalman filter (Section 5). The sec- 
ond variable is a normalized distance from the center 
of the stairs, k. This variable is taken directly from 
the vision or the laser algorithm described above. 
Two different control schemes are implemented for 
each of these state variables. For the heading, a 
model-based control loop was designed. For the cen- 
tering, a step function with hysteresis is used. Both 
of these schemes are described below; see Fig. 4 for a 
system block diagram. In order to reduce the control 



variable to a single input, a constant linear velocity 
input is assumed. 

Vehicle 
Dynamics 

Figure 5: Motor subsystem block diagram 

6.2 Heading Control 

Model. A vehicle system model based on first prin- 
ciples is developed in order to design a heading con- 
troller for use during stair climbing. A detailed de- 
scription of modeling techniques for tracked vehicles 
is presented in [14] and [15]. Here we have approxi- 
mated the dynamics of the tracked vehicle climbing 
stairs as a first order linear system. This approxima- 
tion does not invalidate the model, it simply limits 
its range of application. The main advantage of this 
linearized model is that it allows for the use of formal 
control system design techniques when designing the 
heading controller. 
The model consists of two motor subsystems (see Fig. 
5) and a vehicle dynamics model. 
Each motor controller is modeled as a PD controller, 

kp + k d s  (21) 

and each motor is modeled as a first order system, 

km 
rs+1 '  

As can be determined from the open loop step re- 
sponse of the motor, its rise time is approximately 
7 = 20ms. This is extremely fast compared to the 
dynamics of the vehicle, thus a kinematic relation- 
ship between w, , ,~  and Tm-cmd closely approxi- 
mates the controller dynamics. This relationship can 
be expressed as 

Tm-cmd k m c w m - e r r  (23) 

where k,, is defined as the motor controller gain. 
By applying the final value theorem to Eq. (21), it 
can be shown that k,, = k , .  The rotational velocity 
of the vehicle, w v e h ,  the track velocity, V t r a c k ,  the 
torque about the point 0, TO, and the force exerted 
by each track, are given by: 

wueh = ( V L  - VR)/b (24) 

&rack = w m r s / n g  (25) 
T O  = (b/z)(FL - FR)  (26) 

Ftrack = T m ( n g / r s )  (27) 
where VL and VR are left and right track velocities, 
respectively,b is the distance between the tracks, wm 
is the angular velocity of the motor, T ,  is radius of 
the sprocket that drives the track, and ng is the gear 
ratio between the motor and the sprocket. Based on 
Eqs. (24 - 27) the relationship between W v e h  and To, 
is: 

To = kuehwueh-err = kueh(Wueh-des - Wveh-act)  (28) 

where 

The vehicle dynamics are modeled as 
K u e h  = ( k m c / 2 ) ( b  n g / r s ) ' .  (29) 

WoI, = To + mgdcG sin a sin 6 - M, (30) 
where WO is the rotational acceleration, I ,  is the mo- 
ment of inertia, m is the mass, g is gravitational ac- 
celeration, dCG is the longitudinal distance from the 
center of gravity to point 0, 6 is the heading, M ,  
is the turning resistance, and a is the inclination of 
the staircase. Replacing ICgrav for m g d  sin a, and in- 
voking the small angle approximation for sin 6, this 
model can be written in standard state-space form: 

where 2 1  is 6 and z~ is Wueh.  

Most of these parameters, such as dCG, rS ,  and ng,  
are easily measured or are known parameters of the 
vehicle. M ,  is calculated as: 

M, = pW/2L (32) 
where W is the weight of the vehicle, L is the 
contact length of the tracks, and p is the coefficient 
of lateral resistance estimated from experimental 
data in [16]. I ,  is computed by weighing individual 
subcomponents of the vehicle and measuring their 
location relative to the CG. 

Controller Design. Once the state-space model 
shown in Eq. (31) is developed, many techniques 
can be employed to design the controller. The de- 
sign technique selected for this application is a pole 
placement method. This approach has the advan- 
tage of being able to explicitly specify the resulting 
dynamics of the controlled system within the con- 
straints of the actuators[l7]. 
Eq. (31) is compactly written as: 

2 = AZ+ B + CU. (33) 



The result of this design is a control law expressed 
as: 

U =  -KZ (34) 
where, u = Wv&-des is the control input, Z is the 
state vector, A,  B ,  and C are system matrices, and 
K is a vector of controller gains. 
A few modifications to Eq. (33) are required before 
applying the pole placement design method. The 
first of these is to discretize it. The discretization 
rate is chosen to be equal to the control rate, which 
is specified to be 30 Hz. Based on simulations of 
the model this rate is determined to be fast enough 
to react to the dynamics of the vehicle while slow 
enough to place reasonable computational demands 
on the system. The discretized form of Eq. (33) is: 

Z(k  + 1) = @ Z ( k )  + ,O + I'u(k) (35) 

where a, p, and I' are the discrete system matrices. 
The second modification is the augmentation of the 
state with an integral term. This is to eliminate any 
steady state error that may occur in the system. The 
third modification is to add a reference signal to the 
equation to allow for the centering control to affect 
the system when rendered necessary. The result of 
these last two modifications is 

where XI is the integral state variable, kI is its gain, 
and r ( k )  is the reference signal computed by the cen- 
tering controller. 
The design of the heading controller affects several 
aspects of the system. The first obvious effect is on 
the dynamics of the resulting system in terms of sta- 
bility, response speed, and damping. A secondary 
consideration, contradictory to the first, is the mini- 
mization of the energy expended during stair climb- 
ing. A balance of these two is achieved by selecting 
a damped system on the order of C = 0.7 without 
affecting the natural frequency of the system signif- 
icantly. The effect of the controller design on the 
response of the system can beiter ated on both in 
simulation and experimentation to refine the design. 

6.3 Centering Control 

The input to the centering controller, as mentioned 
above, is the ratio 2. The output of this controller 
is used as the reference signal for the heading con- 
troller (see Fig. 2). 
Compared to the heading controller, a much sim- 
pler approach to centering control is employed. Stair 

climbing experiments with this vehicle indicate that 
the optimal heading is 0 = 0 and that the effective- 
ness of tracks on stairs quickly decreases as a non- 
linear function of heading. The physics of this can 
be explained by the fact that nearly all of the force 
transmitted between the tracks and the stairs dur- 
ing stair climbing occurs when a track cleat slides 
against a stair edge. With each of the tracks gener- 
ally spanning three stair edges, this situation takes 
place almost continuously when the vehicle is facing 
directly up the stairs, and never when the vehicle is 
facing slightly angled to the stairs. 
This fact dictated our approach to centering con- 
trol. Since the only significantly negative impact of 
not going up the center of the stairs is the threat of 
interactions with the side of the staircase, there is 
generally a region in the center of the stairs that can 
be considered homogeneously safe. In this region the 
centering controller sends a reference signal of zero 
to the heading controller. When % reaches a mini- 
mum or maximum threshold, the centering controller 
modifies the reference signal of the heading controller 
to steer the vehicle towards the center of the stair- 
case. Toa void oscillations of the reference signal 
around these threshold values a hysteresis function 
is selected, so that the thresholds have different val- 
ues depending on the direction the center position, g, approaches these from. 

7 Experimental Results 

There are three parameters that quantify the im- 
provement of stair climbing performance: effective 
velocity, V,f f ,  root mean square of heading, O R M S ,  

and root mean square of the normalized center po- 
sition, ( l n ( % ) ) ~ ~ s .  Note that Kff is the length of 
the staircase divided by the time of ascent, not the 
commanded speed of the vehicle. 
Table 1 shows the comparison of these three param- 
eters averaged over multiple experiments using the 
previous algorithm [l] and the new algorithm pre- 
sented in this paper. These results indicate that the 
new algorithm has doubled the effective stair climb- 
ing velocity while improving the root mean square of 
the heading by 8% and the root mean square of the 
normalized center position by 31%. 
Figures 6 and 7 show the results from example runs 

using the previous algorithm and the new algorithm. 
These plots are not representative of the entire data 
set (primarily due to significant variability between 
different trials), but they do show the differences in 
performance of the algorithms. 
In contrast, as can be seen in Fig. 7, the heading in 
the previous algorithm oscillates widely. This is due 
to the constant modification of the reference head- 
ing based on the center position. In addition, the 



Table 1:  Comparison of previous and new algo- 
rithms 

large variations in both heading and center position 
are the result of not considering the dynamics of the 
vehicle in the controller design. 
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Figure 6:He ading and center position of sta. 
climbing run using new algorithm 

8 Conclusions 

This research was mainly motivated by the improve- 
ment of the mechanical ability of a tracked urban ve- 
hicle to climb stairs. In order to  fully realize the stair 
climbing capabilities of the new robot, improvements 
to the previously implemented stair climbing algo- 
rithm [l] were necessary. We have described the de- 
sign and implementation issues pertinent to a set of 
new estimation and control algorithms that enhance 
the stair climbing capabilities of the robot. Exper- 
imental results have validated the improvement in 
speed and effectiveness of the new stair climbing al- 
gorithms compared to [l]. 
As part of our future work we intend to extend these 
algorithms to control the behavior of the vehicle dur- 
ing two separate phases: right before and after land- 
ing. Currently the velocity of the robot at the top of 
the stairwell is not reduced resulting in abrupt land- 
ing. Finally, after the vehicle has landed, it has to  
search for the beginning of the new flight of stairs 
and align itself towards this. Web elieve that our 
new estimation and control algorithms will signifi- 
cantly impact the speed and accuracy of these tasks. 
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Figure 7: Heading and center position of stair 
climbing run using old algorithm 

Acknowledgments 
The authors would like to thank the rest of the 
DARPA TMR team at JPL for their contributions 
to this research: Robert Hogg, Chuck Bergh, Steve 
Goldberg, and Carlos Villalpando. 
This work was supported by the Tactical Mo- 
bile Robotics Program of the Defense Advanced 
Research Projects Agency (DARPA) Advanced 
Technology Office under contract NAS 7-1407, task 
order 15089. 

References 
[l] Y .  Xiong and L. Matthies, “Vision-guided au- 

tonomous stair climbing,” in International Confer- 
ence on Robotics and Automation, San Francisco, CA, 
April 2000, pp. 1842-7. 

[2] David M. Mount, Nathan S. Netanyahu, Kathleen 
Romanik, Ruth Silverman, and Angela Y .  Wu, “A 

, practical approximation algorithm for the LMS line 
estimator,” in Symposium on Discrete Algorithms, 
1997, pp. 473482. 

[3] E. J. Lefferts and F. L. Markley, “Dynamics modeling 
for attitude determination,” AIAA Paper 76-1910, 
Aug. 1976. 

[4] S. I. Roumeliotis, G .  S. Sukhatme, and G. A. Bekey, 
“Circumventing dynamic modeling: Evaluation of the 
error-state Kalman filter applied to mobile robot lo- 
calization,” in Proceedings of the 1999 IEEE Interna- 
tional Conference on Robotics and Automation, De- 
troit, MI, May 10-15 1999, vol. 2, pp. 1656-1663. 

Robust Mobile Robot Lo- 
calization: From single-robot uncertainties to multi- 
robot interdependencies, Ph.D. thesis, Electrical En- 
gineering Department, University of Southern Cali- 
fornia, Los Angeles, CA, May 2000. 

[6] Y .  Fuke and E. Krotkov, “Dead reckoning for a lu- 
nar rover on uneven terrain,” in Proceedings of the 

[5] Stergios I. Roumeliotis, 



1996 IEEE International Conference on Robotics and 
Automation, 1996, pp. 411416. 

[7] Ph. Bonnifait and G. Garcia, “A multisensor local- 
ization algorithm for mobile robots and it’s real-time 
experimental validation,” in Proceedings of the 1996 
IEEE International Conference on Robotics and Au- 
tomation, 1996, pp. 1395-1400. 

“A survey of attitude representa- 
tions,” Journal of the Astmnautical Sciences, vol. 
41, no. 4, pp. 439-517, 0ct.-Dec. 1993. 

[9] W. F. Phillips and C. E. Hailey, “Review of attitude 
representations used for aircraft kinematics,” Journal 
of Aircmft, vol. 38, no. 4, pp. 718-737, Ju1.-Aug. 2001. 

“On the parameterization of the 
three-dimensional rotation group,” SIAM Rev., vol. 
6, no. 4, pp. 422-430, Oct. 1964. 

[ll] J. J. Craig, Introduction to Robotics, chapter 2, pp. 
55-56, Addison-Wesley, 2nd edition, 1989. 

[12] E. J. Lefferts, F. L. Markley, and M. D. Shuster, 
“Kalman filtering for spacecraft attitude estimation,” 
Journal of Guidance, Control, and Dynamics, vol. 5, 
no. 5, pp. 417429, Sept.-Oct. 1982. 

[13] R. L. Farrenkopf, “Analytic steady-state accuracy so- 
lutions for two common spacecraft estimators,” Jour- 
nal of Guidance and Control, vol. 1, pp. 282-284, 

[14] J.Y. Wong, Theory of Ground Vehicles, John Wiley 
and Sons, 1993. 

1151 M.G. Bekker, Theory of Land Locomotion, University 
of Michigan Press, 1956. 

[16] I. Hayashi, “Practical analysis of tracked vehicle 
steering depending on longitudinal track slippage,” 
in Proc. 5th Int. Conf. of the International Society 
for Terrain- Vehicle Systems, Detroit-Houghton, MI, 
1975. 

[17] G.F. Franklin, J.D. Powell, and M. Workman, Dig- 
ital Control of Dynamic Systems, Addison Wesley 
Long”, 1998. 

[SI M. D. Shuster, 

[lo] J. Stuelpnagel, 

July-Aug. 1978. 




