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1. Introduction 

Flexible structure dynamics depend on the location and gains of actuator and sensors. 
This fact is often underestimated, although it is an important factor in the planning of 
structural dynamic tests, and in designing structural controllers. In this work we describe 
the impact of actuators and sensors gains and locations on structural Sroperties, which 
includes structural controllability and observability, and structural a x i  modal norms. 
Using these properties we show how to detect a damage of structural members, how to 
place actuators and sensors for structural testing and control, and how to tune actuators or 
sensors to excite a selected mode or a set of selected modes. The reader can find 
background material in my book [ 5 ] .  The analysis is conducted in modal state-space 
coordinates, which are described at the beginning of this paper. 

2. Modal State-Space Representation 

In this section both the standard and generalized state-space representations of a structure 
are discussed. Both representations are presented in modal coordinates. 

2.1. STANDARD STATE-SPACE REPRESENTATION 

Models of a linear time-invariant system are described in a standard form called state 
space representation, which is of the following form 

X =  Ax+Bu 
(1) y = c x  

In the above equations the N-dimensional vector x is called the state vector, the s- 
dimensional vector u is the system input, and the r-dimensional vector y is the system 
output. The A, B, and C matrices are real constant matrices of approprihte dimensions (A 
is NxN, B is Nxs, and C is r x w .  

A structural model, however, is typically represented by the well-known second-order 
model. Let n, be a number of degrees of fieedom of the system, let r be a number of 
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outputs, and let s be a number of inputs. A flexible structure in nodal coordinates is 
represented by the following equation: 

Mq+ Dq+ Kq  = B<,u 

Y = coqq + C,,”9 

In this equation q is the n, x 1 displacement vector; u is the s x 1 input vector, y is the 
output vector, r x 1 ; M is the mass matrix, n, x n, , D is the damping matrix, n, x n, , and 
K is the stiffness matrix, n, x nd . The input matrix Bo is n, x s , the displacement output 
matrix C, is r x n ,  , and the velocity output matrix C,, is r x n ,  . The mass matrix is 
positive definite, and the stifhess and damping matrices are positive semidefinite. On 
details of the derivation of these types of equations see [ 141, and [7]. 

The same equation can be represented in modal coordinates. Define the matrix of 
mode shapes (or modal matrix) Cg of dimensions n, x n  , which consists of n natural 
modes of a structure 

@=[4 42 ... 4”l 

where 4j, i = 1, ..., n , is the ith modal vector. The modal matrix diagonalizes mass and 
stiffness matrices M and K, namely 

The matrices M ,  and K,,, are diagonal. The matrix M ,  is called modal mass matrix, 
and K,,, is modal stiffness matrix. 

The same transformation can be applied to the damping matrix 

where Dm is the modal damping matrix. This matrix is not always obt;?ined diagonal. A 
damping matrix that can be diagonalized by the above transformation is called a matrix of 
proportional damping. For example, a linear combination of the stifhess and mass 
matrices, D = a,K + a,M , produces a proportional damping matrix, see [2], [7] (a, and 
a2 are non-negative scalars). 

The second-order structural model (2) can be also expressed in modal coordinates by 
introducing a new variable, q, , called a modal displacement, such that 

After some manipulations (see [SI) Eq.(2) is in the form 
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q, + 2ZRqm + R2qm = B,u 

Y = Cmqqm +Cmvqm 
(7) 

In the above equation R = diug(w,, w,, .... w,) is the matrix of natural frequencies, Z is 
the modal damping matrix, Z = diug(c, ,  c,,. .. ,<,) . where Ci is the damping of the ith 

mode. The modal input matrix B, is obtained as 

and in Eq.(7) we used the following modal displacement and rate matrices 

Note that equation (7) is a set of uncoupled equations, since the matrices R and Z 
are diagonal. Thus, this set of equations can be re-written as follows 

" 
i = 1 ..... n, where y = c y i ,  bmi is the ith row of B,,, . and cmqi . c,,. are the ith columns 

i = l  

of Cmq and C,, , respectively. In the above equations yi is the system output due to the 
zth mode dynamics. Note that the structural response y is a sum of modal responses y j ,  
which is a key property used to derive structural properties in modal coordinates. 

Based on Eq.( lo), 'the modal state-space representation (A,,,, B,, C,) of a structure 
can be obtained, see [ 5 ] .  It is characterized by the block-diagonal state matrix, A,,, 

4, = diag(&) = 

. . . . . . .  0 0 0 0  
0 0 0 0 0  
0 0 0 . . . . . . .  0 0  
0 0 0 . . . . . . .  0 0  

. . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  
0 0 0 0 . . . . . .  0 0 

0 0 0 0 . . . . . .  0 0 

i = I, 2, .... n, where Ai are 2x 2 blocks (with non-zero elements marked by 0 ) .  The 
modal input and output matrices are divided accordingly 
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where B,, and C,; are 2 xs, and r x 2  blocks, respectively. 
The state x of the modal representation consists of n independent components, x, , 

i.e., x = {x, , x2, ... x:} . The ith component represents the ith mode, and consists 

of two states x,T = {x,, x , ~ }  . The ith component, or mode, has its own state-space 
representation (A,,,;, Bmi , Cmi) , and is independently obtained fiom the following state 
equations 

T T T  

xi = A,,,p; + Bmiu 

y; = c,;xi (13) 

Two modal representations can be distinguished. The first one, called modal model 1, 
has the component defined as follows 

xi = { 7 }, 
while the second one (modal model 2) as follows 

where qmi and qmi are the ith modal displacement and modal velocity. 

models 
The following state-space representation (A,,,;, B,";, Cmj ) correspond to the above 

0 modal model 1 

0 modal model 2 
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2.2. GENERALIZED STATE-SPACE REPRESENTATION 

Here we consider a more complex model, which is used to describe a system under 
testing or control. It is called a generalized model, and consists of two kinds of inputs, 
denoted u and w, and of two kinds of outputs, denoted y and z, see Fig. 1. 

W Z 
b 

Figure 1. The generalized model consists of two inputs (u - actuator and w - disturbance) and two 
outputs 0, - sensor, and z - performance) 

The inputs to the generalized model consist of two vector signals: 
0 

0 

The actuator input, denoted u, which consists of all inputs handled by the 
controller, or applied as test inputs. 
The disturbance vector, w, which consists of noises and disturbances that are not 
part ofthe controller action or are not a part of the test input. 

The sensor vector, y: it is the controller feedback signal or the measured test 
signal. 
The performance vector, z: the signal that represents closed-loop performance or 
test performance. 

The outputs of the generalized model consist of two vector signals: 
0 

0 

The input and output selection in the generalized model are listed in Table 1. 

TABLE 1. Inputs and outputs of a generalized model of a structure under testing or 
control 
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Let A be the state matrix of the system, Bu and B, are the input matrices of u and w, 

respectively, and Cy and C, are the output matrices of y and z, respectively; then the 
state space representation of the generalized model is as follows 

X = Ax + B,u + B,w 

Y = Cy% 

z = C,Z 

This model is transformed into the modal state-space representation the same way as the 
standard model previously described. 

3. Controllability and Observability 

System dynamics, excited at the input and measured at the output, are described by the 
state variables. However, the input may not be able to excite all states; consequently, it 
cannot fully control the system. Also, not all states may be represented at the output i.e., 
state dynamics may not be fully observed. Based on these two observations, we call a 
system controllable if the input excites all states and we call it observable if all the states 
are represented in the output 

3.1. GRAMMIANS 

We use grammians to evaluate the system controllability and observability properties. 
They are defined as follows (see, for example, [9], and [ 151) 

m m 

W, = jeA'BBTeAr'dz, W, = jeAr'CTCeA'dz 
0 0 

and are obtained fiom the Lyapunov equations: 

A Wc + We A7' + BB" = 0, A" w, -t w, A + C7C = 0 (20) 

For stable A, the obtained grammians W, and W, are positive definite. 
The eigenvalues of the grammians change during the coordinate transformation. 

However, the eigenvalues of the grammian product are invariant. These invariants are 
denoted yi , 

where i = 1,  . . . , N , and are called the Hankel singular values of the system. 
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3.2. BALANCED REPRESENTATION - WHERE ACTUATORS AND SENSORS 
ARE EQUALLY IMPORTANT 

Consider a case when controllability and observability grammians are equal and diagonal 
(see [ 121) i.e., when 

where r = diag(y ,,..., y,) , and yi 2 0 , i = 1, . .., N. The diagonal entries yi are called 
Hankel singular values of the system (earlier introduced as eigenvalues of product of the 
controllability and observability grammians). For a matrix that transforms a system into a 
balanced representation see [5]. 

The diagonality means that each state has an independent measure of controllability 
and observability. The equality means that each state is equally controllable and 
observable. The diagonality of grammians allows to evaluate each state (or mode) 
separately, and to determine how important they are for testing and for control purposes. 
Indeed, if a state is weakly controllable and, at the same time, weakly observable, it can 
be neglected without impacting the accuracy of analysis, dynamic testing, or control 
design procedures. On the other hand, if a state is strongly controllable and strongly 
observable, it must be retained in the system model in order to preserve accuracy of 
analysis, test, or control system design. 

3.3.  INPUT AND OUTPUT GAINS AS AN ALTERNATIVE MEASURE 
OF CONTROLLABILITY AND OBSERVABILITY 

Consider the input and output matrices in modal coordinates, as in Eq.(12). Their two- 
norms, 1 1 2  and [IC,,, [ I 2 ,  are called the input and output gains of the structure 

They contain information on structural controllability and observability. Additionally, 
each mode has its own gain, namely llBm, I ( 2  , which is the input gain of the ith mode, and 

llC,,,, 1 1 2  , which is the output gain of the ith mode, where Bmi and C,, are given in modal 
coordinates, as in (16) and (17); thus, by definition 

It is easy to show that the gains of a structure are the root-mean-square sum of the 
modal gains 
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3.4. CONTROLLABILITY AND OBSERVABILITY OF A STRUCTURAL MODEL 

In the following approximate relationships are used and denoted with the approximate 
equality sign “z”. They are applied in the following sense: two variables, x and y, are 
approximately equal (x  E y) if x = y + E and l l~ l l  <c llyll. 

Assuming small damping, the grammians in modal coordinates are diagonally 
dominant. This is expressed in the following property: 

W, E diag(w,,I,), W ,  E diag(w,,Z,) (27) 

i = 1, ..., n , where w,, > 0 and w,,, > 0 are the modal controllability and observability 
coefficients. Using this property the approximate Hankel singular values are obtained as a 
geometric mean of the modal controllability and observability coefficients 

The profiles of grammians and system matrix A in modal coordinates are drawn in Fig. 2.  

System matrix A Grammians 

Values: 0 zero, IJ small, large 

Figure 2. Profiles of the system matrix A (diagonal) and the grammians (diagonally dominant) in 
the modal coordinates. 

Next, we express the grammians of each mode in a closed form. Let Bmi and C,,,, be 
the 2xs and rx2 blocks of B,,, and Cm , then the diagonal entries of the controllability and 
observability grammians are as follows (for the derivation see [ 5 ] ) :  
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Note from (29) that for a balanced structure the modal input and output gains are 
approximately equal 

The approximate Hankel singular values are obtained from 

Example 1. Comparing the exact and approximate Hankel singular values of the 
International Space Station structure. The input is a force at node marked by a white dot 
at the top of Fig. 3, and the output is a rate at this node. The results in Fig. 4 show good 
coincidence between the exact and approximate Hankel singular values. 

Control Moment Gyros 

1 1 1  Excitation and ~ 

measurement 

K-- 

I Cable 
Antenna Boom ---\ -~ 

Figure 3. The finite element model of the Intemational Space Station structure. 

The closeness of the balanced and modal representations can be also observed in the 
closeness of the system matrix A in both representations. It was shown already that the 
matrix A in modal coordinates is diagonal (with 2x2 block on the diagonal). It can also be 
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shown, see [ 5 ] ,  that the system matrix A in balanced coordinates is diagonally dominant 
with 2 x 2 blocks on the diagonal, while B, and C are divided into 2 x s and r x 2 blocks. 
The profiles of the grammians and a system matrix A are drawn in Fig. 5 .  

0 10 20 30 40 50 
mode number 

Figure 4. Exact (0) and approximate ( 0 )  Hankel singular values for the International Space Station 
structure are almost identical. 

System matrix A 
U U  

Grammians 

Values: zero, Q small, large. 

Figure 5. Profiles of the system matrix A (diagonally dominant) and the grammians (diagonal) in 
balanced coordinates. 

4. Norms 

System norms serve as measures of intensity of structural response to standard 
excitations, such as unit impulse, or white noise of unit standard deviation. The 
standardized response allows comparing different systems. We consider H1, b, and 
Hankel norms. It is shown that for flexible structures the H2 norm has an additive 
property: it is a root-mean-square (rms) sum of the norms of individual modes. The H, 
and Hankel norms are also determined fkom the corresponding modal norms, by selecting 
the largest one. On the other hand, all three norms of a mode with multiple inputs (or 
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outputs) can be decomposed into the rms sum of norms of a mode with a single input (or 
output). These two properties allow for the development of unique and efficient model 
reduction methods and actuator/sensor placement procedures. 

4.1. DEFINITIONS OF SYSTEM NORMS 

Let ( A , B , C )  be a state-space representation of a linear system and let 
G(w) = C(jwZ - A)-' B be its transfer function. The H2 norm of the system is defined as 

It can be interpreted as root-mean-square response of the system, performed over all the 
elements of the matrix transfer fbnction and over all fi-equencies. A convenient way to 
determine the H2 norm is to use the following formulas 

where Wc and Wo are the controllability and observability grammians. 
The H, norm is defined as 

where o,(G(w)) is the largest singular value of G(w) . The H, norm of a single-input- 
single-output system is the peak of the transfer fhction magnitude. It can be computed as 
a maximal value of p ,  such that the solution S of the following algebraic Riccati 
equation is positive definite, see [17], p.238 

A T S + S A + p - 2 S B B T S + C T C  = O  (35) 

It is an iterative procedure where one starts with a large value of p and reduces it until 
negative eigenvalues of S appear. 

The Hankel norm of a system is a measure of the effect of its past input on its future 
output [ 1 ,  p. 1031. It is defined as 

It is determined from the controllability and observability grammians as follows 
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where Am(.) denotes the largest eigenvalue. Thus, the Hankel norm of the system is 
therefore the largest Hankel singular value of the system, llGllh = y,- . 

4.2. NORMS OF A SINGLE MODE 

For structures in the modal representation each mode is independent, thus the norms of a 
single mode are independent as well. Consider the ith natural mode and its state-space 
representation (Ami, Bmi, Cmi) ,  see( 13). For this representation one obtains the following 
closed-form expression for the H2 norm, see [ 5 ] :  

The Ha norm of a natural mode can be approximately expressed in the closed-form as 
follows: 

In order to prove this, note that the largest amplitude of the mode is approximately at the 
ith natural fiequency, thus 

The Hankel norm is approximately obtained f?om the following formula: 

Comparing the above equations one obtains the approximate relationships between 
HZ, Ha, and Hankel norms of the ith mode 

The above relationship is illustrated in Fig.6. 

Example 2. The determination of the H2 norm for a simple system, as in Fig.7, is 
illustrated. For this system m, = 11, m, = 5 ,  m3 = 10, k,  = 10, k, = 50, k, = 55, and 
k4 = 10. The damping matrix is proportional to the stiffness matrix D = 0.01K. The 
single input u is applied to the three masses, such that f ;  = u , f, = 2u, f ,  = - 5 u ,  and 
the output is a linear combination of the mass displacements y = 2q, - 2q2 + 3q, , where 
qi is the displacement of the ith mass and is the force applied to that mass. 
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-. t --. 
! 

10-1 i- , . , , , , , , I --. , , , 1 .  , I  , ,.- 

1 o - ~  lo-* 1 0-1 loo 
modal damping, ci 

Figure 6. Modal norms versus modal damping 

The transfer function of the system and of each mode is shown in Fig.8. It is observed 
that each mode is dominant in the neighborhood of the mode natural frequency, thus the 
system transfer function coincides with the mode transfer function near this frequency. 
The shaded area shown in Fig.9a is the H2 norm of the second mode. Note that this area is 
shown in the logarithmic scale for visualization purposes and that most of the actual area 
is included in the neighborhood of the peak. 

The H2 norms of the modes determined from the (38) are: IlC, 1 1 2  = 1.9399, 

f29 92 f39 93 

Figure 7. A simple structure. 

Example 3. The determination of the H, norm of a simple structure and its modes, as 
in Example 2, i s  illustrated. The H, norm of the second mode is shown in Fig.9a as the 
height of the second resonance peak. The H, norm of the system is shown in Fig.9b as 
the height of the highest (first in this case) resonance peak. The H, norms of the modes, 
determined fiom (39) are: llG, [Im E 18.9229 , llG2 Ilm E 1.7454 , llG, [Im E 1.2 176 . 
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frequency, radls 

Figure 8. The transfer function of the system and of each mode. 

(a) 
I 

I 
I 
- 

I 

I 
I 

A- 

1 0-1 1 oo I O 1  I o2 
frequency, radls 

10-I I O '  
frequency, radls 

1 oo 1 o2 

Figure 9. H2 and H, norms (a) of the second mode and (b) of the structure (single-input-single 
output case). 
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Example 4. Determination of the H, norm of a single mode from the Ricccati 
equation (35). This norm is equal to the smallest positive parameter p for which the 
solution S of this equation is positive definite 

Due to almost-independence of modes, the solution S of the Riccati equation is 
diagonally dominant, S z diag(s,, s2, ..., s,) , where, by inspection, one can find si as a 
solution of the following equation 

where i = 1,2, ..., n ,  and A,,,; is given by Eq.(17), B,; is two-row block of B, 

corresponding to block A,,,; of 4, and C,; is two-column block of C,: corresponding to 
block A,,,, of A,. For the balanced mode the Lyapunov equations (20) are 

Introducing them to the previous equation we obtain 

or, for a stable system 

s, 2 --s,+p, P,’ 2 z o  
Yi 

with two solutions sy) and s,!~) 

For pi = 2yi one obtains sy) = s,? = 2yi = pi . Moreover, pi = 2y; is the smallest pi for 
which a positive solution si exists. It is indicated in Fig.10 by plots of s,? (solid line) 
and s!~) (dashed line) versus pi ,  and for y; = 0.25, 0.5, 1, 2, 3, and 4 ; the circle “0” 

denotes locations for which llG;II, = p,,, = 2y, . 

from the set {p, ,  p2, 

which can be easily verified in Fig. 10. Thus, 

In order to obtain positive definite S, all si must be positive. Thus, the largest p, 

p,,} is the smallest one for which S is positive definite, ... 
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“0 1 2  3 4 5 6 7 8 9 10 

Pi 

Figure 10. Solutions s,? (solid lines) and si(’) (dashed lines); note that pi = 2y, at locations 
marked “0”. 

Example 5. k, H2 and Hankel norms of a truss. Consider a truss presented in Fig. 1 1. 
Vertical control forces are applied at nodes 9 and 10, and the output rates are measured in 
the horizontal direction at nodes 4 and 5. For this structure, the H2 and H, norms of each 
mode are given in Fig. 12a. 

From (41) it follows that the ratio of the H, and H2 norms is 

Figure 11. A 2D truss structure. 

hence, the relationship between the H, and H2 norms depends on the width of the 
resonance. For a wide resonant peak the H2 norm of the zth mode is larger than the 
corresponding H, norm. For a narrow resonant peak the H, norm of the ith mode is 
larger than the corresponding H2 norm. This is visible in Fig. 12a, where neither norm is 
dominant. 
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The exact Hankel singular values and the approximate values, obtained from (37) and 
(40), respectively, are shown in Fig. 12b. A good coincidence between the exact and 
approximate values is observed. 

m I 

500 1000 1500 2000 2500 3000 3500 4000 
natural frequency, radls 

mode number 

Figure 12. The 2D truss: (a) H2 (0) and H, (*) approximate norms, and (b) the exact (0) and the 
approximate ( 0 )  Hankel singular values. 

4.3. NORMS OF A MODE WITH MULTIPLE ACTUATORS AND SENSORS 

Above we considered norms of modes with multiple actuators and sensors. Here we 
continue to consider the same problem, but we decompose the norms into more 
elementary noms. Consider a flexible structure with s actuators and n modes, so that the 
modal input matrix B consists of n block-rows of dimension 2 x s 

and the ith block-row Bmi of B, that corresponds to the ith mode has the form 
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where Bm, corresponds to the kth actuator at the ith mode. 
Similarly to the actuator properties one can derive sensor properties. For r sensors of 

an n mode structure, the output matrix is as follows: 

cm =[G, cm2 ... cmn], cm; = (44) 

where Cmi is the output matrix of the ith mode, and Cmji is the 1 x2 block of thejth output 
at the ith mode. 

Denote Gmlk the ith mode with kth actuator only, i.e. with the state-space 
representation ( 4j, Bmik, C m i ) .  Let GmV be a structure with jth sensor only, i.e. with the 
state-space representation (Ai, Bmj,C,, ,+).  The question arises as to how the norm of a 
mode with a single actuator or sensor corresponds to the norm of the same mode with 
multiple actuators or sensors. 

We show that the H2, H,, and Hankel norms of the ith mode with a set of s actuators 
is the rms sum of the corresponding norms of the ith mode with a single actuator, i.e., 

where 11.11 denotes either HZ, H,, or Hankel norm. In order to show it, note that the norm 
of the ith mode with the kth actuator and the norm of the ith mode with all actuators are 

where ai = 2&& for the H2 norm, a;. = 26iwi for the H, norm, and ai = 4 6 p i  for 
the Hankel norm. But, from the definition of the norm and from (43) it follows that 

Introducing the above equation to the previous one, one obtains (45). 
Similarly to the actuator properties one can derive sensor properties. For r sensors of 

n modes the output matrix is as in Eq.(44). For this output matrix the Hz, H,, and Hankel 
norms of the ith mode of a structure with a set of r sensors is the rms sum of the 
corresponding norms of the mode with each single actuator from this set., Le., 
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i = 1, . . ., n. These properties are illustrated in Fig. 13a,b. 

I 

s actuators 
at ith mode 

- - 
r sensors ith mode at ith mode 

Figure 13. Decomposition of the H2, &, and Hankel norms of a mode into (a) actuator norms, 
and (b) sensor norms 

4.4. NORMS OF AN ENTIRE STRUCTURE 

The HZ, H,, and Hankel norms of the entire structure are expressed in terms of the norms 
of its modes. Let G(w) = C,(jwI - A,)-' B, be the transfer function of a structure, and 
let (A,,,,Bm,Cm) be its modal state-space representation. The system H2 norm is, 
approximately, the rms sum of the modal norms 

where n is the number of modes. 

diagonally dominant, thus the H2 norm can be expanded as follows: 
In order to show it, note that the controllability grammian W, in modal coordinates is 

Consider H, norm of a structure in modal coordinates. Due to the independence of the 
modes, the system H, norm is the largest of the mode norms, Le., 
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This property says that for a single-input-single-output system the largest modal peak 
response determines the worst-case response. 

The Hankel norm of the structure is the largest norm of its modes, Le., 

where y- is the largest Hankel singular value of the system. 

might be drawn for sensor norm decomposition. 
The above decompositions are illustrated in Fig.14 for actuators. A similar figure 

- 
s actuators 
first mode 

I -  

s achiators 
second mode 

I m a  I 

s actuators 
nth mode n modes 

- 
structure 

Figure 14. Combined decomposition of norms of a structure (H2, b, and Hankel) into modal 
norms and actuator norms 

Example 6. Obtaining norms of the entire structure from modal norms. Using modal 
norms from Examples 2 and 3 find the H2 and Hm norms of the structure. 
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The H2 norm of the entire structure is represented by the shaded area in Fig.8b, which is 
approximately a sum of areas of each mode. We find fiom Eq.(47) that the approximate 
value of the system norm is the rms sum of modal norms, that is 
IIGl12 z J2.O14l2 +0.31522 +0.44052 = 2.0141. This value is equal to the exact value of 
the system norm. 

The H, norm is the largest of the modal norms, see Eq.(48); using the results of 
Example 3 we found that the system norm is equal to the largest (first) modal norm, i.e., 
that llGllm = llGj ]Im z 18.9619 ; it is equal to the exact value of the system norm computed 
independently. 

Example 7. Using norms to detect structural damage. We illustrate the application of 
Hz modal and sensor norms to determine damage locations. In particular, we localize 
damaged elements, and assess the modes particularly impacted by the damage. 

Denote norm of the jth sensor of a healthy structure by IIGXh, 1 1 2 ,  and norm of the jth 

sensor of a damaged structure by llGX4 ti2. The jth sensor index of the structural damage is 
defined as a weighted difference between the jth sensor norms of a healthy and damaged 
structure, Le., 

The sensor index reflects the impact of the structural damage on the jth sensor. 
Similarly, denote the norm of the ith mode of a healthy structure by llGmh, , and the 

norm of the ith mode of a damaged structure by [lGmd, 1 1 2 .  The ith mode index of the 
structural damage is defined as a weighted difference between the ith mode norm of a 
healthy and damaged structure, Le., 

The ith mode index reflects impact of the structural damage on the ith mode. 
A structure with fKed ends as in Fig. 15 is analyzed. The cross section area of the steel 

beams is 1 cm’. Two damage cases are considered. First, as a 20% reduction of the 
stiffness of the beam No 5 ,  and the second case as a 20% reduction of the stifkess of the 
beam No17. The structure was more densely divided near the damage locations to better 
reflect the stress concentration. Nineteen strain-gage sensors are placed at the beams 1 to 
19. A vertical force at node P excites the structure. 

For the first case the sensor and the modal indices are shown in Fig. 16a,b. The sensor 
indices in Fig.16a indicate that the sensor No 5 ,  located at the damaged beam, suffered 
the most changes. The modal indices in Fig.16b show that the first mode was heavily 
affected by the damage. 
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The sensor and modal indices for the second case are shown in Fig. 17a,b. Fig. 17a shows 
the largest sensor index at location No 17, of the damaged beam. The modal indices in 
Fig. 17b show that the tenth and the second modes were the most affected by the damage. 

Figure 15. The beam structure: healthy elements are black, damaged elements are white, and 
numbers refer to the sensors. 

4.5. NORMS OF A GENERALIZED STRUCTUW 

Consider a structure as in Fig. 1, with inputs w and u, and outputs z and v. Let G,“, be the 
transfer matrix from w to z,  let Gwy be the transfer matrix from w to y, let be the 
transfer matrix from u to z, and let Guy be the transfer matrix from u to v. Let G,,, , Guy, , 
G,,,, and G, be the transfer functions of the ith mode. The following multiplicative 
properties of modal norms hold: 

In order to prove it, denote by B, and Bmu the modal input matrices of w and u, 

respectively; let C,  and C,, be the modal output matrices of z and y ,  respectively; and 
let B,, , B,, , C,, , and Cmp be their ith blocks related to the ith mode. The H, norms 
are approximately determined from (39) as 
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where al = 2 6  for the H2 norm, a, = 2<w, for the H, norm, and al = 4601, for 
the Hankel norm. Introducing the above equations to (50), the approximate equality is 
proven by inspection. 
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Figure 16. Sensor and modal indices for damage case 1 : sensor index for the damaged element No 
5 is high, modal index shows that the first mode is predominantly impacted. 
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Figure 17. Sensor and modal indices for damage case 2: sensor index for the &maged element No 
17 is high, modal index shows that the modes No 10,2, and 4 are predominantly impacted. 

The above property shows that for each mode the product of norms of the 
performance loop (i.e. fiom the disturbance to the performance) and the control loop (Le. 
from the actuators to the sensors) is approximately equal to the product of the norms of 
the cross-couplings: between the disturbance and sensors, and between the actuators and 
performance. The physical meaning of this property lies in the fact that by increasing the 
actuator-sensor link, one increases automatically the cross-link: the actuator-performance 
link and the disturbance-sensors link. It shows that sensors not only respond to the 
actuator input but also to disturbances, and actuators not only impact the sensors but also 
the performance. 

5. Model Reduction 

Model reduction is a part of dynamic analysis, testing, and control. Typically, a model 
with a large number of degrees of fteedom (developed for the static analysis) causes 
numerical difficulties in dynamic analysis, to say nothing of the high computational cost. 
In the system identification approach, on the other hand, the order of the identified 
system is determined by the reduction of the initially oversized model that includes a 
noise model. Finally, in structural control, the complexity and performance of a model- 
based controller depends on the order of the structural model. In all cases the reduction is 
a crucial part of the analysis and design. Thus, the reduced-order system solves the above 
problems if it acquires the essential properties of the full-order model. 

In this section we consider structural model in modal coordinates, namely modal 
models 1 and 2, as in Eq.(16) and (17). The states ofthe model are as follows 

where x, is the state corresponding to the ith mode. It consists of two states, see (14) 

Let llG, 11 denote either Hz, H,, or Hankel norm of the rth mode, and let the states in the 
state vector (5  1) be in the descending norm order. Now, the norm of the first mode is the 
largest one and the norm of the last mode is the smallest, which is marked in Eq.(5 1 )  with 
the norm value indicator (largest norm is indicated with black color. the smallest with 
white color). 

A reduced-order model is obtained by evaluating the modal states and truncating the 
least important. Since the modes with the smallest norm are the last ones in the state 
vector, a reduced-order model is obtained here by truncating the last states in the modal 
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vector. How many of them? It depends on the system requirements, and is up to design 
engineer to check the reduced model accuracy. Let(4,,Bm,Cm) be the modal 
representation corresponding to the modal state vector x as in (51). Let x be partitioned 
as follows: 

x = { : )  
(53) 

where x, is the vector of the retained states, and x, is a vector of truncated states. If 
there are k < n retained modes, x, is a vector of 2k states, and x, is a vector of 2(n-k) 
states. Let the state triple (A, ,  B, , C, ) be partitioned accordingly, 

The reduced model is obtained by deleting the last 2(n-k) rows of An, and B,,, , and the 
last 2(n-k) columns of A,,, and C, . 

Modal reduction by a truncation of a stable model always produces a stable reduced 
model, since the poles of the reduced model have not been changed. 

Example 8. Reduction of the truss model. Consider a 2D truss as in Example 5. Its 
model is reduced in modal coordinates using the H, norm. The approxirnate norms of the 
modes are shown in Fig. 18. From this figure the system norm (the largest of the mode 
norms) is IlGll, = 1.6185 . Based on the modal norms it was decided that in the reduced- 
order model we reject all modes of the H, norm less than 0.00003. The area where the H, 
norm is less than 0.00003 lies below the dashed line in Fig.18, and the modes that have 
the H, norm in this area are deleted. Consequently, the reduced model consists of three 
modes (No. 1,2, and 4). The transfer function of the full and reduced models (from the 
second input to the second output) is shown in Fig. 19a and the corresponding impulse 
response is shown in Fig. 19b. Both figures indicate a small reduction error, which is 
obtained as (IlGll, - llGrIlm)/llGllm G IIG,llm /IIGllm = 0.0040 . 

natural frequency, 
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Figure 18. H, norms of the 2D truss modes. 
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Figure 19. Magnitude of the transfer function (a), and impulse responses (b) of the full (solid line) 
and reduced (dashed line) truss models show that mainly the high-frequency modes were deleted, 

and overlapped impulse responses. 

6. Actuator and Sensor Placement 

A typical actuator and sensor location problem for structural testing can be described as a 
structural test plan. The plan is based on the available information on the structure itself, 
on disturbances acting on the structure, and on the expected structural performance. The 
preliminary information on structural properties is typically obtained from the fmite- 
element model. The disturbance information includes disturbance location and 
disturbance spectral contents. The structure performance is commonly evaluated through 
the displacements or accelerations of selected structural locations. 

In general it is not possible to duplicate the dynamics of a rea1 structure during 
testing. This happens not only due to physical restrictions or limited knowledge of 
disturbances, but also because often the test actuators cannot be located at the location of 
actual disturbances and sensors cannot be placed at locations where the performance is 
evaluated. Thus, to conduct the test close to the real conditions, one uses the available (or 
candidate) locations of actuators and sensors and formulates the selection criteria and 
selection mechanisms. 

The control design problem of a structure can be defined in a similar manner. 
Namely, actuators are placed at the allowable locations and they are not necessarily 
collocated with the locations where disturbances are applied; sensors are placed at the 
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sensor allowable locations, which are generally outside the locations where performance 
is evaluated. 

For simple test articles, an experienced test engineer can determine the appropriate 
sensor or actuator locations in an ad hoc manner. However, for first-time testing of large 
and complex structures the placement of sensors and actuators is neither an obvious nor a 
simple task. In practice, heuristic means are combined with engineering judgment and 
simplified analysis to determine actuator and sensor locations. In most cases the locations 
vary during tests (in a trial and error approach) to obtain acceptable data to identify target 
modes. The actuator and sensor placement problem was investigated by many 
researchers, as reported in a review article [ 161. 

For a small number of sensors or actuators a typical solution to the location problem 
is found through a search procedure. For large numbers of locations the search for the 
number of possible combinations is overwhelming, time consuming and does not 
necessarily give the optimal solution. The approach proposed here consists of the 
determination of the norm of each sensor (or actuator) for selected modes and then grade 
them according to their participation in the system norm. This is a computationally fast 
(non-search) procedure with a clear physical interpretation. 

6.1. PROBLEM STATEMENT 

Given a larger set of sensors and actuators, the placement problem consists of 
determining the locations of a smaller subset of sensors or actuators such that the €IZ, H,, 
or Hankel norms of the subset are as close as possible to the norm of the original set. In 
this chapter this placement problem is solved in the modal coordinates. 

and S be the sets of the candidate sensor and actuator locations, chosen in 
advance as allowable locations of actuators of population S and as allowable locations of 
sensors of population R. The placement of s actuators from S actuator candidate 
locations, and the placement of r sensors from R sensor candidate locations is considered. 
Of course, the number of candidate locations is larger than the number of final locations, 
i.e., R > r and S 

Let 

s. 

6.2. PLACEMENT INDICES AND MATRICES 

Actuator and sensor placement problems are solved independently, however both 
procedures are similar. Denote the H2, H,, or Hankel norms of the ith mode with thejth 
actuator only or the ith mode with the kth sensor only 

where a, = 2% for the H2 norm, ai = 2<pi for the H, norm, and ai = 4<pi for 
the Hankel norm. Denoted by G is the transfer function of the system with all S candidate 
actuators. The placement index a, that evaluates the kth actuator at the ith mode in 
terms of either HZ, H,, or Hankel norm is defined with respect to all the modes and all 
admissible actuators 
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where 11.11 denotes H2 . H,, or Hankel norm, respectively, and k = 1, .... S,  i = 1, .... n, 

and where w, 20 is the weight assigned to the kth actuator and the ith mode n is a 
number of modes and Gk is the transfer function of the ith mode and of the kth actuator. 
The weight reflects the importance of the mode and the actuator in applications. We 
evaluate actuator importance using a placement matrix in the following form 

c =  

a,, a,* ... Olk ... (TIS 

a,, ... cT2k ... 

a,, a,, ... a, ... (Tis 

a,, a,, ... a, ... an,s 

. . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . .  

t 
kth actuator 

+ ithmode 
(57) 

The kth column of the above matrix consists of indexes of the kth actuator for every mode 
and the ith row i s  a set of the indexes of the ith mode for all actuators. 

Similarly to actuators, the sensor placement index akj evaluates the kth sensor at the 
ith mode 

k = 1, .... R, i = 1, .... n, where w, 2 0 is the weight assigned to the kth sensor and the 
zth mode, n is a number of modes, and G, is the transfer function of the zth mode and kth 
sensor. The sensor placement matrix is defined as follows 

c =  

- 
a,, ... CTlk ... a,, 
a,, ... ... 

a,, ... a,, ... aiR 

. . . . . . . . . . . . . . .  

. . . . . . . . . . . .  
... I 

ith mode 
(59) 
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where the kth column consists of indexes of the kth sensor for every mode and the ith row 
is a set of the indexes of the ith mode for all sensors. 

The placement matrix gives an insight into the placement properties of each actuator 
since the placement index of the kth actuator is determined as the rms s u m  of the kth 
column of C. The vector of the actuator placement indices is defined as 
aa = [a,, aaoZ ... and its kth entry is the placement index of the kth actuator. In 
the case of the H2 norm, it is the rms sum of the kth actuator indexes over all modes 

In the case of the H, and Hankel norms, it is the largest index over all modes 

a,k = mv(aik) ,  i = 1 ,..., n, k = 1 ,..., S (61) 
I 

Similarly, the vector of the sensor placement indices is defined as 
... 0 . ~ 1 ~  and its kth entry is the placement index of the kth sensor. In a, = [os, 

the case of the H2 norm, it is the rms sum of the kth sensor indexes over all modes 
as2 

In the case of the H, and Hankel norms, it is the largest index over all modes 

ask = mp(oik) ,  i = 1 ,..., n, k = 1 ,..., R (63) 

The vector of the mode indices is defined as follows: a, =[a,, a,, ... a,,I7, 
and its ith entry is the index of the ith mode. This entry is an rms sum of the ith mode 
indices over all actuators 

a,,,, = @ a i ,  i = l ,  ..., n 
k=l 

or an rms sum of the ith mode indices over all sensors 

a,,,, = & a i ,  i = l ,  ..., n 

The actuator placement index, 0, , is a nonnegative contribution of the kth actuator 
at all modes to the H1, H,, or Hankel norms of the structure. 
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0 The sensor placement index, o , ~ ~ ,  is a nonnegative contribution of the kth sensor at 
all modes to the H2, H,, or Hankel norms of the structure. 
The mode index, a,,,, , is a nonnegative contribution of the zth mode for all actuators 
(or all sensors) to the HZ, H,, or Hankel norms of the structure. 

The determination of the H, actuator and modal indices for the pinned beam is 
illustrated in Fig.20. Six actuators are located on the beam and four modes are 
considered. The second mode index is the rms sum of indices of all actuators for this 
mode and the third actuator index is the largest of these actuator indices over four modes. 
From the above properties it follows that the index oak (a,)characterizes the 
importance of the kth actuator (sensor), thus it serves as the actuator (sensor) placement 
index. Namely, the actuators (sensors) with small index a, (a,) can be removed as the 
least significant ones. Note also that the mode index a,,,, can also be used as a reduction 
index. Indeed, it characterizes the significance of the ith mode for the given locations of 
sensors and actuators. The norms of the least significant modes (those with the small 
index a,,,, ) should either be enhanced by the reconfiguration of the actuators or sensors, 
or be eliminated. 

am2 = K+ ...+ 

0 2 4 6 8 10 12 14 
node number 

Figure 20. The determination of the H, actuator and modal indices of a pinned beam (0 - actuator 
location; and * - actuators used for the calculation of the indices); the second mode index is the 

rms sum of indices of all six actuators for this mode, while the third actuator index is the largest of 
this actuator indices over all four modes. 
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Actuator Sensor 
(fixed location) (variable location) 

Example 9. Placing sensors on a beam to detect up to four modes. Consider a beam as 
shown in Fig.21 with a vertical force at node 6. By using the placement technique 
presented above and the H, norm, one shall find the best places for displacement sensors 
in the y-direction to sense the first, second, third, and fourth mode; and to sense 
simultaneously the first two modes, the first three modes, and the first four modes. 

Each node of a beam has 3 degrees of freedom: horizontal displacement x, vertical 
displacement y ,  and rotation in the figure plane 8. Denote a unit vector 
e, = [O,O,. . ., 1,. . . ,O] that has all zeros except 1 at the ith location, then the displacement 
output matrix for sensors located at ith node is Ci, = e,,_, . The input matrix is Bo = e; . 

The H, norm IlG, 11, for the kth mode (k=l,2,3,4) and ith sensor location is obtained 
from (55) using Bo and C,, as above. From these norms the sensor placement indices 
for each mode are obtained from (58),  using weight such that max(o,,, ) = 1 . 

FigureZI. A beam with a fixed actuator and a moving sensor. 

The plots of a,, are shown in Fig.22a,b,c,d. The plot of the sensor indices for the 
first mode is shown in Fig.22a. It shows the maximum at node 7 or 8, indicating that the 
sensors shall be placed at these nodes. The plot of the sensor placement indices for the 
second mode is shown in Fig.22b. It shows two maximal values, at nodes 4 and 11, 
indicating these two locations as the best for sensing the second mode. The plot of the 
sensor placement indices for the third mode is shown in Fig.22c, showing two maximal 
values at nodes 3 and 7, indicating that these two locations are the best for sensing the 
third mode. Finally, the plot of the sensor placement indices for the fourth mode is shown 
in Fig.22d. It shows 4 maximal values at nodes 2, 6, 9, and 13, indicating that these four 
locations are the best for sensing the fourth mode. 

Next, the indices for the first two modes are determined using Eq.(61), namely 
omlz, = max(om,,,am2,). The plot of this index is shown in Fig.23b with the index 
reaching its maximum at four locations: 4, 7, 8, and 11. These locations are the best for 
sensing the first and the second modes. Clearly, locations 7 and 8 serve for first mode 
sensing, while locations 4 and 11 serve for second mode sensing. 

Next, the indices for the first three modes are determined, using Eq.(61), Le., 
= max(a,,,,a,,,,o,,,). The plot of this index is shown in Fig.23~ with the index 

reaching its maximum at six locations: 3, 4, 7, 8, 11 and 12. These locations are the best 
for sensing the first, second, and third modes. Obviously, locations 7 and 8 serve for first 
mode sensing, locations 4 and 11 serve for second mode sensing, and locations 3 and 12 
serve for third mode sensing. 
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Finally, the indices for the first four modes are determined using Eq.(61), 
omlU4, = max(o,,, ,om2, ,om3,,om4,). The plot of this index is shown in Fig.23d, with the 
index reaching its maximum at eight locations: 2, 3, 4, 7, 8, 11, 12, and 13. These 
locations are the best for sensing the first, second, third, and fourth modes. Locations 7 
and 8 serve for first mode sensing, locations 4 and 11 serve for second mode sensing, 
locations 3 and 12 serve for third mode sensing, and locations 2 and 13 serve for fourth 
mode sensing. 

~~ __ __ 

0 5 10 15 0 5 10 15 
node number node number 

Fzgure22 H, indices as a function of sensor locations: (a) for the first beam mode, (b) for the 
second beam mode, (c) for the third beam mode, and (d) for the fourth beam mode. 

So far in this example we used the H, norms and indices. It is interesting to compare 
the sensor placement using the H2 norms and indices. First, the H2 norm llGkII, for the 
kth mode (k=1,2,3,4) and ith sensor location is obtained fiom(55) using Bo and C,,, as 
above. Next, the indices for the first two modes are determined using Eq.(62), namely 
cr2,12, = ,/-. The plot of this index is shown in Fig.24b, where the index reaches 
its maximum at locations 5 and 10. Next, the indices for the first three modes are 
determined, using Eq.(62), i.e. CT~,,~,, = ,/-. The plot of this index is 
shown in Fig.24c, where the index reaches its maximum at locations 4 and 11. Finally, 
the indices for the first four modes are determined using Eq.(62), i.e. 
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C T ~ , ~ ~ ~ ~ ~  = Ja,,,, 2 +&, +u& +& . The plot of this index is shown in Fig.24d, where 

the index reaches its maximum at locations 3 and 12. 

node number 

7 '  1 

1.21 (a i 

"0 5 10 15 
node number 

0 5 10 15 0 5 10 15 
node number node number 

Figure 23. H, sensor placement indices as a function of sensor locations: (a) for the first mode, (b) 
for the first two modes, (c) for the first three modes, and (d) for the first four modes. 

A comparison of the H, and H2 indices in Fig.23 and Fig.24 shows that the H2 index 
variation is more dramatic with the change of sensor location, while the H, index 
variations are flatter (as the result of selection of maximal values). Thus the first index is 
a more sensitive measure of the sensor (or actuator) location. Due to the flattening action 
of the H, norm, the H, indices show slightly different sensor locations. 

6.3 .  PLACEMENT FOR A GENERALIZED STRUCTURE 

The problem of actuator and sensor placement presented in this section refers to the 
generalized structure. For this model we derive the placement rules based on the 
properties of the structural norms and illustrate their application with the truss sensor 
location. Consider a structure as in Fig.1 with inputs w and u, and outputs z and y. 
Denote Gwz as the transfer matrix fkom w to z,  Gwy as the transfer matrix fkom w toy, G, 
as the transfer matrix fkom u to z, and Guy as the transfer matrix fiom u to y. Denote 
G,,, , Guy , Gwy3 , and G, as the transfer functions of the ith mode. 

The following multiplicative properties of modal norms hold: 
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Figure 24. H2 sensor placement indices as a function of sensor locations: (a) for the first mode, (b) 
for the first two modes, (c) for the first three modes, and (d) for the first four modes. 

Define the actuator transfer function as Cui = [G,,$ Gu,]. Introducing (45) and the 
modal norms (55) to (66) one obtains the following property: 

where G,,kyi is the transfer fbnction of the ith mode from the kth actuator to the output y 

and a,, is the disturbance weight of the ith mode, defined as 
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To show it, note that 

Note also that from Eq.(45) one obtains 

where Gukzj is the transfer function of the ith mode from the kth actuator to the 
performance z. Introducing the above equations to Eq.(69) we obtained the following 

relationship: llG,,i 112 = k( llGUkzi l(2 + llGukr l(2 ) . Next, Eq.(66) gives 
k=l 

which, introduced to the previous equation gives (67). Note that the disturbance weight 
a,, does not depend on the actuator location: it characterizes structural dynamics caused 
by the disturbances w. 

Similarly, one obtains the additive property of the sensor locations of a generalized 
structure. Define the sensor transfer h c t i o n  as Gyi =[Gw. Guyl ] ,  thus 

IIGp 112 E IIGwy, 112 + ilGuYl 1 1 2  , then the following property holds: 

where 

is the performance weight of the ith mode. Note that the performance weight azj 
characterizes part of the structural dynamics that is observed at the performance output; 
hence, it does not depend on the sensor location. 

The above properties are the basis of the actuator and sensor search procedure of a 
generalized structure. The actuator index evaluates the actuator usefulness in test, and is 
defined as follows: 
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o,, ... aZk ... azs 

where llGu 112 = IlG,,,, 11’ + llG, 112, while the sensor index is 

. . . . . . . . . . . . . . . . . .  
ai, ai, ... a, ... o, 

where llGy 112 = [IC, 112 + IlGWY 112 . 
The indices are the building blocks of the actuator placement matrix C 

+ ith mode 
(74) . . . . . . . . . . . . . . .  

=“I O n 2  ..’ onk ”’ ... 
7 

kth actuator 

and a similar matrix for sensor placement. 
The placement index of the kth actuator (sensor) is determined from the kth column of 

C. In the case of the H2 norm, it is the rms sum of the kth actuator indexes over all modes, 

k = 1, .... S or R ,  and in the case of the H, and Hankel norms it is the largest index over 
all modes 

i = l ,  .... n, k-1, .... S o r R .  
This property shows that the index for the set of sensorslactuators is determined from 

the indexes of each individual sensor or actuator. ‘This decomposition allows for the 
evaluation of an individual sensorlactuator through its participation in the performance of 
the whole set of sensorslactuators. 

Example 10. Sensor placement for a generalized structure. Consider the 3D truss as 
in Fig.25. The disturbance w is applied at node 7 in the horizontal direction. The 
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performance z is measured as rates of all nodes. The input u is applied at node 26 in the 
vertical direction, and the candidate sensor locations are at the nodes 5 ,  6,  7, 12, 13, 14, 
19, 20, 21, 26, 27, and 28 in all three directions (total of 36 locations). Using the first 50 
modes, the task is to select a low number of sensors that would measure, as close as 
possible, the disturbance-to-performance dynamics. 

Figure 25. A 3D truss structure. 

First, the H, norms of each mode of G,,, Gw,, G,, and G, are determined and 
presented in Fig.26a,b. Next, the validity of Eq.(66) is checked. Indeed, it holds since the 
plots Of gl ( k )  = (I'wzk Ilm llGuyk Ilm and Of g2 ( k )  = IIGwyk (Im llGuzk (Im Overlap in Fig'27' 

Next, the sensor weights a,# are determined for each mode, and shown in Fig.28. The 
placement indices ok for each sensor are determined from (76), and their plot is shown 
in Fig.29. Note that some sensors with a high value of o, are highly correlated. After 
removing the highly correlated locations, the two locations k = 29 and k = 30 remained. 
They correspond to node 14 in they- and z-directions. 

7.6. SIMULTANEOUS PLACEMENT OF ACTUATORS AND SENSORS 

Simultaneous selection of sensor and actuator locations is an issue of certain importance, 
since fixing the locations of sensors while placing actuators (or vice versa) limits the 
improvement of system performance. The presented placement algorithm is developed 
for structures using either HZ, H,, or Hankel modal norms. The algorithm consists of 
determination of either H1, H,, or Hankel norms for a single mode, single actuator, and 
single sensor. Based on these norms the sensor and actuator placement matrices are 
generated for each considered mode to evaluate sensor and actuator combinations, and to 
determine the simultaneous actuator and sensor locations that maximize each modal 
norm. 
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Figure 26. The H, norms of the 3D truss modes: (a) G,, ( 0 )  and G,,,, (0); ard (b) Gwy ( 0 )  and 

G, (0) 

mode number 

Figure 27. Overlapped plots of g, ( k )  ( 0 )  and g, ( k )  (0) show that Eq.(66) holds. 
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Figure 28. Modal weights for the 3D truss to accommodate disturbances in the generalized model. 

sensor number 

Figure 29. Sensor indices for the 3D truss show the importance of each sensor. 

In this section the symbol 11.11 will denote either HZ, H,, or Hankel norm. For the set R 
of the candidate actuator locations, one shall select a subset r of actuators, and 
concurrently for the set S of the candidate sensor locations, one shall select a subset s of 
sensors. The criterion is the maximization of the system norm. 

Recall that the norm ~ ~ G o k ~ ~  characterizes the ith mode equipped with thejth actuator 
and the kth sensor. Previously we defined the placement index for actuators and for 
sensors separately, see Eqs.(56) and (58).  Here, for each mode, we define the actuator 
and sensor placement index 

The placement index o,,~ is a measure of the participation of theJth actuator and the 
kth sensor in the impulse response of the ith mode. Using this index the actuator and 
sensor placement matrix of the ith mode is generated 
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a,,, ... Uilk ... airs 
a;,, ... OiZk ... OiZS 

. . . . . . . . . . . . . . .  
oij2 ... Oijk ... a$ 

a,, ... aim ... aiRI 

1' 
kth sensor 

. . . . . . . . . . . . . . .  
+ j th actuator 

i=l, .... n. For the rth mode the jth actuator index oat is the rms sum over all selected 
sensors, and the kth sensor index asik is the rms sum over all selected actuators 

These indices, however, cannot be readily evaluated since for evaluation of the 
actuator index one needs to know the sensor locations (which have not been yet selected), 
and vice versa. This difficulty can be overcome by using the property similar to Eq.(66). 
Namely, for the placement indices we obtain 

This property can be proven by the substitution of the norms as either in Eq.(38), (39) or 
(40) into the above equation. 

It follows fkom this property that by choosing the two largest indices for the zth mode, 
sayo,,& and a,!, (such that aVk > a,lm), the corresponding indices a,,, and a,, are also 
large. In order to show it, note that a,,m IaIlllm I azlk holds and a I silk 5 a,,k also 
holds as a result of (80) and the fact that a,,m I avk and a,, I oVk . In consequence, by 
selecting individual actuator and sensor locations with the largest indices one 
automatically maximize the indices (79) of the sets of actuators and sensors. 

The determination of locations of large indices is illustrated with the following 
example. Let qZ4 , aIs8, and a,,, be the largest indices selected for the first mode. They 
correspond to 2, 5 ,  and 6 actuator locations and 3, 4, and 8 sensor locations. They are 
marked in dark color in Fig.30. According to (80) the indices oI2,, CT,,, , a,,,, a,,, , 
a164, and a168 are also large. They are marked in white color with white spots in Fig.30. 
Now we see that the rms summation for actuators is over all selected sensors (3, 4, and 
8), the rms summation for sensors is for over all selected actuators (2, 5, and 6), and that 
both summations maximize the actuator and sensor indices. 
Example 11. Simultaneous placement of actuator and sensor for a clamped beam as 
in Fig.21 The candidate actuator locations are the vertical forces at nodes 1 to 14 and the 
candidate sensor locations are the vertical rate sensors located at nodes I to 14. Using the 
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H, norm and considering the first four modes, we shall determine at most 4 actuator and 
4 sensor locations (one for each mode). 

1 2 3 4 5 6 7 8 9 1 0  

sensor number 

Figure 30. An example of the actuator and sensor placement matrix for the first mode; the largest 
indices are dark, and the large indices are dark with white spots. 

In this example n=4 and R=S=14. Using Eqs.(79) the placement matrices for the first 
four modes were determined and plotted in Figs.3 la-d. Before the placement procedure is 
applied the accuracy of Eq.(80) is checked. For this purpose the second mode is chosen, 
Le., i=2, and the following actuator and sensor locations are selected: j=k=3, l=m=q, and 
q=1, ..., 14. For these parameters Eq.(80) is as follows 

q=l, .  ..,14. The plots of the left- and right-hand side of the above equations are shown in 
Fig.32, showing good coincidence. 

The maximal values of the actuator and sensor index in the placement matrix 
determine the preferred location of the actuator and sensor for each mode. Note that for 
each mode four locations - two sensor locations and two actuator locations - have the 
same maximal value. Moreover, they are symmetrical with respect to the beam center, 
see Fig.3 1. We selected four collocated sensors and actuators at the left-hand side of the 
beam center, one for each mode. Namely, for mode 1 - node 8, for mode 2 - node 4, for 
mode 3 - node 3, and for mode 4 - node 2. 

7. Modal Actuators and Sensors 

In some structural tests it is desirable to isolate (Le., excite and measure) a single mode. 
Such technique considerably simplifies the determination of modal parameters, see 
Ref.[ 131. This was first achieved by using the force appropriation method, called also the 
Asher method, see [ l l ] ,  or phase separation method, see 131. In this method a spatial 
distribution and the amplitudes of a harmonic input force are chosen to excite a single 
structural mode. Modal actuators or sensors were presented also in 141, [lo], and [SI with 
application to structural acoustic problems. This section follows Ref.[6]. 
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2 4 6 8 10 12 14 
actuator location 

2 4 6 8 10 12 14 
actuator location 

2 4 6 8 10 12 14 
actuator location 

2 4 6 8 10 12 14 
actuator location 

Figure 31. Actuator and sensor placement matrix, with dark color representing the high value of its 
entries, and locations of the largest (actuator, sensor) placement indices being: (a) (8,8), (7,7), (7,8), 
and (8,7) for mode 1, (b) (4,4), (4,l I), (1 1,l l), (1 1,4) for mode 2, (c) (1 2,12), (3,12), (1 2,3), (3,3) 

for mode 3, and (d) (2,2), (2,13), (13,2), (13,13) for mode 4 

Figure 32. The verification of Eq.(80): 0 denotes s, = a2,,a2, , denotes s, = CT, ,~~ , , ,  , and 
s, = s2 . 
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In this section we present a technique to determine the actuator or sensor locations 
and their gains to excite and sense a target mode or a set of targeted modes. The 
technique is based on the relationship between the modal and nodal coordinates of the 
actuator or sensor locations. Being distinct from the force appropriation method it does 
not require the input force to be a harmonic one. Rather, it determines the actuator 
locations and actuator gains, while the input force time history is irrelevant (modal 
actuator or sensor acts as a filter). The locations and gains, for example, can be 
implemented as a width-shaped piezoelectric film. Finally, the method allows for 
excitation and observation of not only a single structural mode but also of a set of 
selected modes, each one with the assigned amplitude. 

A structural model in this section is described by the second order modal model, see 
Eq.(7). In modal coordinates the equations of motion of each mode are decoupled, as in 
Eq.( 10). Thus if the modal input gain is zero, the mode is not excited; if the modal output 
gain is zero, the mode is not observed. This simple physical principle is the base for the 
more specific description of the problem in the following sections. 

7.1. MODAL ACTUATORS 

The task in this section is to determine the locations and gains of the actuators such that 
nm modes of the system are excited with approximately the same amplitude, where 
1 s n, I n , and n is the total number of considered modes. This task is solved using the 
modal equations (7) or (10). Note that if the ith row, b,, , of the modal input matrix, B, , 
is zero the ith mode is not excited. Thus, by assigning the entries of b,,,, either 1 or 0 one 
makes the ith mode either excited or not. For example, if one wants to excite the first 
mode only, B, is a one-column matrix of a form B, = [I 0 ... 01' . On the other 
hand, if one wants to excite all modes independently and equally, one assigns a unit 
matrix, B, = I .  

Given (or assigned) the modal matrix B,,, , the nodal matrix Bo is derived fiom Eq.(8) 
. Equation (8) can be re-written as follows 

where R = M;'cDT and matrix R is of dimensions n x nJ . Recall that the number of 
assigned modes is n, I n  . If the assigned modes are controllable, i.e. the rank of R is 
n, , the least-square solution of Eq.(81) is 

In the above equation R' denotes the pseudoinverse of R, i.e., R' = VC-'UT where 
U ,  C, and V are obtained from the singular value decomposition of R, Le., R = UCVT . 

The input matrix Bo in Eq.(82) defines the modal actuator and it can be determined 
alternatively ftom the following equation 
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Bo = MOB, (83) 

which does not require pseudoinverse and is equivalent to Eq.(81). Indeed, left- 
multiplication of Eq.(83) by Or gives @Bo = @*MOB,,, or OTBo = M,B,,,. Left- 
multiplication of the latter equation by Mi'  results in Eq.(8 1). 

Example 12. Modal actuator for a beam, single mode case. Consider a clamped beam 
as in Fig.2 1. The vertical displacement sensors are located at nodes from 2 to 15 and the 
single output is a sum of the sensor readings. Actuator locations shall be determined such 
that the second mode with modal gain of 0.01 is excited while the remaining modes are 
not excited. The first nine modes are considered. 

The assigned modal matrix is in this case B,' =[0 0.01 0 0 0 0 0 0 01' . 
From (82), for this modal input matrix, a nodal input matrix Bo is determined. It contains 
gains for the vertical forces at the nodes from 2 to 15. The gain distribution of the 
actuators is shown in Fig.33a. Note that this distribution is proportional to the 
displacements of the second mode shape. This distribution can be implemented as an 
actuator with a gain proportional to its width. Thus the shape of an actuator that excites 
the second mode is shown in Fig.33b. 
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Figure 33. Actuator gains (a) and the corresponding actuator width (b) that excite the second 
mode. 

For the above input and output the magnitude of the transfer h c t i o n  are presented in 
Fig.34. The plot shows clearly that only the second mode is excited. 

If one wants to excite the ith mode with certain amplitude, say a,, the H ,  norm can 
be used as a measure of the amplitude of the ith mode. In case of a single-input-single- 
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output system, the Hm norm of the ith mode is equal to the height of the ith resonance 
peak. In case of multiple inputs (or outputs) the H, norm of the ith mode is 
approximately equal to the root-mean-square sum of the ith resonance peaks 
corresponding to each input (or output). It is approximately determined as follows 

--. 

frequency, Hz 

Figure 34. Magnitude of a transfer function with the second-mode modal actuator: only the second 
mode is excited. 

Assume a unity input gain for the current mode, i.e. llbml [Iz = 1, so that the current 
amplitude a,, is 

In order to obtain amplitude a, one has to multiply a,,, by the weight w,, such that 
a, = w,a,, . Introducing ( 8 5 )  to the latter equation one obtains the weight 

Define the weight matrix W = diag(w,, wz,. . ., w,,) , then the matrix that sets the 
required output modal amplitudes is 
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Example 13. Modal actuator for a beam, multiple mode case. All nine modes of the 
same beam need to be excited with the amplitude of 0.01 by a single actuator. For this 
case, the matrix B, is as follows B: =O.Olx[l 1 1 1 1 1 1 1 l]' and the 
weighting matrix is obtained from Eq.(86). The resulting gains of the nodal input matrix 
Bo (shown in Fig.35a) do not follow any particular mode shape. The width of an actuator 
that corresponds to the input matrix Bo and excites all nine modes is shown in Fig.35b. 

The plot of the transfer function of the single-input system with the input matrix Bo is 
shown in Fig.36. The plot shows that all nine modes are indeed excited, with 
approximately the same amplitude of 0.01 cm. 
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Figure 35. Actuator gains (a), and corresponding actuator width that excites all nine modes. 

7.2. MODAL SENSORS 

The modal sensor determination is similar to the determination of modal actuators. The 
governing equations are derived from Eq.(9) 

If one wants to observe a single mode only (say ith mode), one assumes the modal 
output matrix is in the form Cmq = [0 . . . 0 1 0 . . . 01, where 1 stands at the ith 
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position. If one wants to observe n,,, modes one assumes the modal output matrix is in the 

form Cw = [ cq, , cq2 . . . , cqn ] where cq, = 1 for selected modes, otherwise cq, = 0 . The 
corresponding output matrix is obtained from (88) 

where Q,+ is the pseudoinverse of Q, . Similarly, one obtains the rate sensor matrix C,, 

for the assigned modal rate sensor matrix C,,,, 

Above we assumed that the assigned modes are observable, i.e. that the rank of Q, is n,,, , 
where n,,, is the number of the assigned modes. 

The following are alternative equations for determination of modal sensors 

These equations are equivalent to Eqs.(88). Indeed, right-multiplication of the first 
equation of (91) by Q, gives Co,@ = C,,,qM;'OTMQ,, hence Coq@ = C,,,,M;'M,, 

consequently Coq@ = C,,,,, , Le., the first equation of (88) is obtained. Similarly one can 
show the equivalence of the second equation of (91) and (88). 

IO" 1 I I 

l o o  IO' IO2 i o 3  
frequency, Hz 

Figure 36. Magnitude of a transfer function for the nine-mode modal actuator shows the nine 
resonances of the excited modes. 

Multiple modes with assigned modal amplitudes ai are obtained using the sensor 
weights. The weighted sensors are obtained from equation similar to Eq.(86). Namely, 
the ith weight is determined from the following equation 
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where ai is the amplitude of the ith mode. 

Example 14. Modal sensors for a beam and for all modes. The beam from Fig.21 with 
three vertical force actuators located at nodes 2, 7, and 12 is considered. The task is to 
find the displacement output matrix Co, such that the first nine modes have equal 
contribution to the measured output with amplitude 0.0 1. 

The matrix Cmq that excites the first nine modes is the unit matrix of dimension 9 of 
amplitude u,=O.Ol, i.e., Cmq = 0 . 0 1 ~  W x l ,  . The gains that make the mode amplitudes 
approximately equal are determined from Eq.(92). The output matrix Coq is determined 
from Eq.(89). For this matrix the magnitudes of the transfer functions of the 9 outputs in 
Fig.37 show that all nine of them have a resonance peak of 0.01. 

I O 0  

@ lo-*  s 
8 
c .- 
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E 
I O 4  

I O 0  I O ’  I O 2  i o 4  
frequency, Hz 

Figure 37. Magnitude of the transfer function with the nine single-mode sensors. 

Example 15. Modal sensors for a beam, for all but one mode. The beam with actuators 
as in Example 14 is considered. Find the nodal rate sensor matrix C,, such that all nine 
modes but mode 2 contribute equally to the measured output with the amplitude of 0.0 1. 

The matrix C,,,, that gives in the equal resonant amplitudes of 0.01 is as follows: 
C,,,, = O.OlxWx[l 0 1 1 1 1 1 1 11, where the weight W is determined from 
(92) and the output matrix C,, is obtained from (90). For this matrix the magnitude of 
the transfer function is shown in Fig.38, dashed line. This magnitude is compared with 
the magnitude of the transfer function for the output that contains all the 9 modes (solid 
line). It is easy to notice that the second resonance peak is missing in the plot. 
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resonance peak 

L I 1  1 L 1 1  

1 oo 10' IO2 1 o4 
frequency, Hz 

Fzgure 38 Magnitude of the transfer function with the nine-mode sensor (solid line), and with the 
eight-mode sensor where the second mode is missing (dashed line). 

8. Conclusions 

In this paper we discussed the importance of locations and gains of sensors and actuators 
in structural dynamics. They impact the controllability and observability of a structure 
and its norms. Using modal state space representation the norms can be used to locate 
sensors and actuators for structural testing and control, and to sense andior excite a single 
mode or a set of selected modes. 
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