
A Risk-Centric Model for Value
Martin S. Feather

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91 I09

+ I 818 354 1194

Steven L. Cornford
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91 109

+ I 818 353 5365

Maximization
Julia Dunphy

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91 109

+ I 818 354 1701
Martin.S.Feather@Jpl.Nasa.Gov Steven.L.Cornford@Jpi.Nasa.Gov Julia.Dunphy@Jpl.Nasa.Gov

ABSTRACT
We describe an approach that makes value maximization possible
during the earliest phases of software development. In this
context it is challenging to determine which of many possible
concerns are most critical, and therefore the basis for decision-
making. Yet, decisions made in these early stages have the
greatest opportunity to influence the future course of
development.

Our approach is based on the use of a risk-centric model that we
have been developing and applying to assessment and planning of
systems development (not necessarily software systems). This
model quantitatively links requirements to risks, and risks to
mitigations. Value is measured in terms of requirements
attainment, while cost is measured in terms of the resources
needed to apply the chosen risk mitigations. Risk is the
connection between the two.

We have constructed custom tool support for applying this model
during group sessions, to gather information on the fly from
experts, and to aid them in decision-making based on the
combination of the information they have provided. The tool
support makes feasible the accommodation of the relatively large
number and wide variety of concerns. In actual applications it has
proven useful in guiding experts to make their most critical early
phase decisions.

Categories and Subject Descriptors
B.m [Miscellaneous]: Design management. C.4 [Performance of
Systems]: Design studies, Modeling techniques. D.2.1 [Software
Engineering]: Requirements/Specifications - Elicitation methods.
D.2.9 [Software Engineering]: Management - Cost estimation,
life cycle, Software process models, Software quality assurance.

General Terms
Management, Measurement, Performance, Design, Economics.

Keywords
Risk, risk management, risk mitigation, risk assessment, cost-
benefit analysis, requirements, software assurance.

1. INTRODUCTION: A QUANTITATIVE

VALUE
RISK-CENTRIC MODEL OF COST AND

At NASA we have been developing and applying our risk
management framework, “Defect Detection and Prevention”
(DDP), for several years. DDP is a process for which we have
custom-built software support. We have reported on DDP in other
forums - for an overview see [11.

DDP is intended for use in the early phases of system
development. The motivation is that these early phases have the
maximum opportunity to influence the development to follow.
They are characterized by numerous concerns that span both
product and process, involve multiple stakeholders (customers,
developers, maintainers and users), but are lacking in well-worked
out designs. Our approach is to convene experts who represent all
the stakeholder positions, elicit from them the knowledge that is
crucial to planning the subsequent development, and aid them in
identifying and making critical decisions based on this
knowledge. Note that our aim is to support experts in their
decision making, not to replace them. The involvement of those
experts is retained throughout the process.

DDP deals with three key concepts: requirements, risks and risk
mitigations (in some of the papers we have published, risks are
referred to as “failure modes”, and mitigations as “PACTS”).
Risks are quantitatively related to requirements, to indicate how
much each risk, should it occur, impacts each requirement.
Mitigations are quantitatively related to risks, to indicate how
much of a risk-reducing effect the mitigation, should it be applied,
has on the risk.

The value of a DDP model is measured in terms of requirements
attainment. Requirements are individually “weighted”, to reflect
their relative importance. Risks adversely impact requirements
attainment. The cost of a DDP model is measured in terms of the
resource costs of the mitigations selected. Mitigations reduce
risks, and so lead to increased attainment of requirements, but
incur costs. The primary purpose of DDP is to facilitate judicious
selection of a set of mitigations, thus attaining requirements in a
value-maximizing manner. If requirements are valued in the same

mailto:Martin.S.Feather@Jpl.Nasa.Gov
mailto:Steven.L.Cornford@Jpi.Nasa.Gov
mailto:Julia.Dunphy@Jpl.Nasa.Gov

units as the resource costs of mitigations, then it is possible to
directly trade requirements for cost.

2. DDPINUSE
In our NASA applications of DDP, the systems being developed
are spacecraft, or components of spacecraft. Hence the
stakeholders include the mission scientists whose science needs
become requirements, the spacecraft experts who understand the
different disciplines involved in the system’s operation (e.g.,
power, navigation, communications), the engineers who
understand the challenges in designing, developing, integrating
and testing the spacecraft’s components, and the mission
operators who will control the spacecraft during through its use.

We use these sessions to (1) gather the requirements, (2) gather
the risks (a.k.a. “failure modes”), and how much they impact the
requirements, (3) gather the mitigations, and how much they
effectively reduce risks, and (4) select mitigations (and sometimes
discard requirements, when it becomes clear that a requirement is
not worth the cost it takes to reduce the risks impacting it).

Underpinning DDP is a simple quantitative model of cost and
value. We use risk as the intermediary between requirements
(whose attainment provides the value) and mitigations (whose
selection incurs cost). In the subsections that follow we describe
this model, emphasizing its quantitative nature and how it is
applied in practice.

2.1 Requirements
We gather the wide range of requirements relevant to the study at
hand. These may include both requirements imposed on the
system to be developed (e.g., memory usage, throughput,
accuracy) and requirements on the development process itself
(e.g., schedule, budget, programming language, programming
development environment). In typical DDP applications experts
have listed 30 - 100 requirements,. These same experts assign
weights to the requirements to indicate their value. Note that these
expert-assigned weights are in units of the experts’ choosing, and
are cardinal (not ordinal) in nature. They are additive, i.e., the
value of a set of requirements is the sum of the values of the
requirements in that set. This quantitative treatment allows us to
compare the value of various combinations of requirements.

2.2 Risks
We treat risk in its most general sense - anything that, should it
occur, will cause loss of requirements. Brainstorming all the ways
that things could go wrong is an important part of DDP sessions.
In DDP applications we have gathered from 30 - 200 risks.

Risks are quantitatively linked to requirements. For each risk x
requirement pair, the experts provide an estimate of the “impact”
of the risk on the requirement, which we define as the proportion
of the requirement that would be lost were that risk to occur. In
order for the overall process to have value, it is not necessary for
these estimates to have great precision. In practice we have found
that the gradations 1, 0.9, 0.3, 0.1, 0 are sufficient for most
situations. 1 means certain loss (i.e., if the risk occurs, the
requirement will be totally lost); 0.9 means high impact -
technically, we interpret the figure to mean the proportion of the
requirement that will be lost should the risk occur; etc. In practice,
many of the risk x requirement pairs have an impact of 0.

Nevertheless, in real applications hundreds, sometimes thousands,
of risk x requirement pairs are assigned non-zero values.

We use disagreement to drive the need for more detail. When two
or more experts disagree about an impact value, it is usually
because they are referring to different circumstances. We
accommodate their respective positions by refining the
requirement and/or the risk into subcases, as appropriate.

Our DDP model assumes that risks combine additively. For
example, if two different risks both impact the same requirement,
then their combined impact is the sum of their individual impacts.
This simplistic model is easy to understand and work with, and
has been used in our DDP applications to date. We are in the
process of introducing logical concepts to the risks, along the
lines of the logical fault trees (e.g., AND and OR nodes) used in
probabilistic risk assessment. These will enable to the model to
accommodate more of the logical structure that emerges as the
early details of a design becomes known.

The total impact that risks have on a given requirement is
computed as:

RiskslmpactOnRequirement(q) s
Weight(q) *
(E (r E risks) : Impact(r, q) * APrioriLikelihood(r))

Weight(q) is the user-assigned weight of requirement q,
Impact@, q) is the proportion of requirement q lost should risk
r occur, and
APrioriLikelihood(r) is the a priori likelihood of risk r.

where

Hence, taking risks into account, the amount of attainment of
requirement r is:

AttainmentOfRequirement(q) =
Weight(q) *
(1 - (C (r E risks) : Impact@, q) APrioriLikelihood(r)))

However, it is possible for the sum of risks’ impacts on a
requirement to exceed 1 , in which case the value computed above
would become negative. So in practice we compute the attainment
of requirement r as the maximum of this and zero, thus:

AttainmentOfRequirement(q) =
Weight(q) *
Max(0, (1 - (C (r E risks) : Impact@, q)
APrioriLikelihood(r))))

2.3 Mitigations
We treat mitigation in its most general sense - anything that,
should we choose to do it, will decrease the likelihood of risks
and/or their severity on requirements. Once again, they are
numerous; we have seen 30 - 170 in applications to date.

Mitigations are quantitatively linked to risks. For each risk x
mitigation pair, the experts provide an estimate of the proportion
by which the risk would be reduced were that mitigation to be
applied. Again, coarse estimates of effectiveness suffice for our
purposes. The same gradations as for risk impacts, but with 0.9 in
place of the 1 (Le., 0.99, 0.9, 0.3, 0.1, 0) are sufficient for most
situations. We prefer 0.99 in place of 1 on the grounds that there
is very rarely a “perfect” mitigation.

Our DDP model assumes that mitigations combine as follows:
suppose one mitigation has effectiveness E l on a risk (Le.,

removes proportion E l of that risk), and another
mitigation has effectiveness E2 on that same risk,
then together they have a combined effectiveness
of (1 - (1 - El)*(1 - E2)). Roughly speaking, they
act like filters in series: proportion (1 - E l) of
risks make it through the first filter, and of these,
(1 - E2) of them will make it through the second
filter. Again, this is a simple model that is easy to
understand and work with, and that appears to
match our experts’ intuition of how various risk
mitigation techniques combine.

The total effectiveness that mitigations have on a
given risk is computed as:

MitigationOfRisk(r) =
1 - (l7 (m E mitigations) : (1 - Effect@, r)))

Effect(m, r) is the effect of mitigation m at
reducing risk r.

where

Thus taking mitigations into account,
MitigatedRiskslmpactOnRequirement(q) =
Weinht(u1 *

One bar per requirement, here sorted in ~~~~ 0 - A ;
a IlKnr-

Blue segments = user-assigned weights

Green = risk reduction due to mitigations

Red = remaining risk

Figure 1. A DDP visualization of requirements status
effective solutions are. There are also several ways to view th

- . ..
(X (r E risks) : Impact@, q) * APrioriLikelihood(r)

* (1 - MitigationOfRisk(r)))

Performing a mitigation incurs the resource costs associated with
that mitigation, which could be measured in dollars, schedule,
availability of test harnesses, etc. Mitigations can be associated
with major development times or phases at which they are
performed, allowing the costing to be tracked with respect to
those phases.

2.4 Decision-Making
In the final step of a DDP application, the experts scrutinize the
combination of the information they have provided, and use it to
guide their decision-making.

2.4. I Support for Users ’ Decision Making
Although DDP’s models are relatively simplistic, their scale
justifies the need for DDP’s automated calculations. DDP is able
to compute the value (requirements attainment) and cost
(mitigations and repairs) for a given selection of mitigations. DDP
uses cogent visualizations to present different views of the risk
model, and its consequences, to those experts.

An example such visualization is shown in Fig. 1. This is data
taken from an actual DDP application. It shows a bar chart of
requirements, where a separate bar represents each requirement.
The color-coded information conveys the current status of
requirements attainment, including for each requirement the user-
assigned weight (indicated by the blue line segments), the extent
to which it is currently at risk (indicated by the red portion of
bars) and the extent to which the currently selected mitigations
have reduced risk (indicated by the green portion of bars). Bars
can be sorted in various ways. The figure shows them sorted in
descending order of the user-assigned weights. Another useful
way to sort them is in descending order of remaining risk.

Similar DDP generated charts give experts insight into the risks,
allowing them to see what their most pressing problems are, and
into the mitigations, allowing them to see what their most

impact relationships (between risks and requirements) and the
effect relationships (between mitigations and risks).

2.4.2 Range of Decisions
In applications to date, the experts themselves have been able to
use DDP to help them make a range of decisions. We have seen
cases of using DDP to:

Value maximization: selection of the mitigations that minimize
the cost needed to achieve the desired value (requirements
attainment), or, for a given cost, achieve the maximum possible
value. This has the obvious benefit of cost-effectiveness. It has the
additional benefit of making clear the contribution@) of the
mitigations at reducing risk. This increases the motivation for
performing mitigations - they become seen as beneficial, rather
than simply hurdles to overcome. Finally, it gives an indication as
to which kinds of risks the mitigations are being relied upon to
prevent, which can be useful guidance to the people performing
the mitigations.

Requirements triage: identification requirements proving to be the
most problematic (costly) to attain. In one application, the focus
upon one such requirement led to its clarification, the net result of
which was considerable savings in work not required.

Assessment and planning: make a thorough assessment of the
viability of novel advanced technology, and emerge with a well-
structured plan for maturing that technology towards use.

3. SOFTWARE ASSURANCE PLANNING
Most of our experience with the use of DDP has been on
assessment and planning of advanced spacecraft technologies with
a significant hardware component. Relatively fewer DDP studies
have had software as their primary concern. Nevertheless, we are
confident that DDP has applicability to hardware, software and
hardware-software combinations, since requirements, risks and
mitigations are fundamental to all three areas. In this section we
focus on the work we have been doing to make DDP applicable
to, specifically, software assurance planning.

3.1 Refinements of DDP’s Model
We have refined DDP’s cost-benefit model to encompass some of
the phenomena that arise in costing of, especially, software
assurance activities.

3. I . I Risk Likelihood vs. Risk Severity
It is common practice to distinguish between likelihood and
severity in the calculation of risk. DDP already had in place the
means to assess the (unmitigated) severity of risks, as the sum of
impacts on weighted requirements. By refining mitigations into
those that reduce likelihood vs. those that decrease severity, we
are able to continue to distinguish between likelihood and severity
throughout the calculations. Examples of risk likelihood
reductions include training, following coding standards, use of
design patterns. Also, analysis, testing, etc., falls into this
category, as we explain in the next subsection. Examples of risk
severity reductions include use of bounds checking on inputs, and
error handling schemes (fault protection for software).Fig. 2
shows DDP’s “risk region” visualization that makes use of this
distinction. It plots risks (one small black square for each risk) in
two dimensions, likelihood and severity. The axes of the chart are
log scale, so the diagonal boundaries between the three colored
regions are in fact lines of constant risk. The three regions

subdivide risks
in to “h igh -
top-right corner,
“medium”
center region,

bottom left
comer. In fact,
there is a fourth
category, “tiny”,
risks that are so
small they do not
appear on the
chart at all
(because the
chart axes are log
scales, zero risk
would be a point

and “Iow” -

Figure 2. Risk region

at minus infinity).

3.1.2 Risk Prevention vs. Detection (and Repair)
We further subdivide the risk likelihood reducing mitigations into
those that prevent risks from arising in the first place, and those
that detect the presence of risks. The latter are assumed to be
coupled with the appropriate action to repair the defects so
detected. For example, unit testing is applied to detect coding
problems, the assumption being that bugs uncovered during unit
testing will be fixed. The net result is a reduction in the likelihood
of risks remaining in the product through to the next phase of
development (and ultimately through to release).
Having made this distinction, we can now subdivide the
associated costs between the cost of detection and the cost of
repair. The latter is especially important, since it escalates
dramatically the later in the lifecycle a problem is detected. For
example, the often-quoted statistics on how the cost of correcting
a requirements problem escalates through design, coding, testing
and release. In the DDP model we associate a cost with the

detection-style mitigation (whatever resources are needed to
perform that mitigation), and a separate cost with the risk
(whatever resources are needed to repair that risk should it be
detected). The latter is time-dependant, through which we can
incorporate the escalation of costs in later development phases.
We can use DDP to demonstrate quantitatively the net benefits of
early-phase mitigations, because they prevent or detect problems
early, thus saving the much greater costs associated with repairing
them late. For more on this, see [2].

3.1.3 Risk Introduction
We allow for the possibility that the use of a mitigation can
introduce risk. For example, code added to enhance testability
might introduce new bugs (or its removal might change the real-
time behavior). The motivation for this derives more from the
application of DDP to hardware studies, where tests have a
physical manifestation.
In the software arena, a related phenomenon is that of code added
to correct one problem introducing new problems. This possibility
of repairs introducing risk (rather than mitigations) is not yet in
our model, but it something we plan to add given its relevance to
software development.

3.2 Software Assurance Specific Information
We have worked on pre-populating DDP with information
specific to software assurance planning. Known software
development risks become DDP risks, and known software
assurance practices become DDP mitigations.

A taxonomy prepared by the SEI serves as our source of
candidate software development risks. DDP users can remove
risks that are irrelevant (e.g., if a risk concerns subcontracting,
and the project under scrutiny has no subcontracting, then it
would be appropriate to remove that risk).

A listing of software assurance activities that are part of
another NASA tool, Ask Pete (see section 3.3.1), serves as our
source of candidate mitigations. Again, DDP users can remove
mitigations that are impractical (e.g., because the personnel with
the skills to apply them are unavailable).

We made estimates of the effectiveness of each of the
mitigations are reducing each of the risks. While we would
prefer to use known effectiveness figures based on experience,
this data is generally lacking. In its absence, we work with
estimates. In the software realm, we look to groups such as the
CeBASE consortium http:Nwww.cebase.org to gather such data.

Users can add to, remove and/or refine any of this information.
Note that we do not pre-populate DDP with requirements.
Generally, these are highly application specific. Hence, we leave it
to users to provide the requirements, and to provide the estimates
of how much each risk impacts each requirement (the “impact”
values in DDP).
As an alternative to introducing requirements and impacts, users
may instead directly assess the severity of each risk. The
advantage of this direct approach is that it is a lot less effort. The
disadvantages are that it precludes the option to trade
requirements, and it is a more prone to flaws of subjectivity than
going through the more disciplined process of linking risks to
requirements.

http:Nwww.cebase.org

3.3 Connections to other tools and approaches
3.3. I Estimation and Planning - Ask Pete
Ask Pete is a NASA developed tool to do estimation and planning
of software assurance activities. It uses COCOMO I1 to help in its
estimation of cost and schedule of the development project at
hand, and combines this with information of NASA Glenn
policies for software assurance, and NASA IV&V criteria for
rating the criticality of projects. Ask Pete generates project plans
for the software assurance activities appropriate for the project.

Ask Pete and ARRT have been made to communicate information
back and forth [4]. Briefly, Ask Pete is run to generate a
recommended set of assurance activities. These are then
transferred into ARRT where they can be scrutinized, and tailored
if so desired. The results of tailoring are then transferred back to
Ask Pete for inclusion in the project plans it generates. In essence,
this combination blends the strengths of Ask Pete at estimation,
planning and documentation generation with the strengths of DDP
at value maximization by balancing the costs (of assurance
activities) against their values (of risk reduction, and therefore
increased requirements attainment).

3.3.2 Optimization - TAR2
Value maximization in DDP is attained by judicious choice of the
mitigations to perform. In DDP applications to date we have
relied upon the experts to make this choice, guided by DDP’s
automatic calculations and cogent visualizations. A more
automated approach to value maximization is desirable. Value
maximization in DDP is, in essence, a traditional optimization
problem in a domain where choices are binary (whether or not to
perform a mitigation).

To solve this problem, we have explored the use of the machine-
learning based approach of Tim Menzies [5], in the form of his
TAR2 “treatment learner”. Briefly, TAR2 is able to identify the
key decisions - which mitigations to perform, and which
mitigations to not perform - so as to converge upon a value
maximizing solution. TAR2 thus has the desirable characteristic
of locating near-optimal solutions, and doing so in such a way that
identifies the most critical decisions to make to move towards
those solutions. TAR2’s identification of which decisions are the
most critical is of especial value. It focuses the human experts on
the decisions that matter the most, out of an otherwise dauntingly
large number of alternatives. Furthermore, it offers them the
opportunity to inject additional knowledge into the value
maximization process. For example, once prompted by TAR2
with a candidate solution, the experts can indicate that some of the
combinations of mitigations are infeasible and have TAR2 then
search for alternative solutions that avoid these infeasible
combinations. For more details, see [3].

We have also done some experiments using genetic algorithms to
automate the value maximization process, yielding promising
results. They tend to be faster than using Menzies’ TAR2
(because TAR2 requires the generation of a large number of
samples), but lack the ability to identify which of the decisions in
a recommended solution are the most crucial. Overall, we think
that a blend of automation and expert involvement will continue
to be needed in value maximization, and believe this area to be
worthy of further attention.

3.3.3 Further anaIysis
We are interested in building links between DDP and other
analysis models. We believe DDP’s strength is in the early phases
of developments, when detailed designs are lacking. The use of
DDP allows experts to home in on the major problem areas of
their development, and suggest what to do about them (which
mitigations to apply and/or which requirements to discard). As
these decisions are made, the design begins to emerge. This is the
point at which other analysis models (e.g., sophisticated cost
estimation models, probabilistic assessment tools) can and should
be brought to bear on what are now known to be the most critical
aspects of the overall problem. At the very least, we would like to
be able to transfer knowledge from DDP to these tools, giving
them a head start on building their more detailed models. More
ambitiously, we think there will be more synergistic
combinations, in which information flows back and forth to allow
detailed analysis results to return to DDP, guide the exploration of
alternatives, lead to further detailed analyses, etc. We have only
just started to pursue connections such as these.

4. ACKNOWLEDGEMENTS
The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space
Administration. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet
Propulsion Laboratory, California Institute of Technology.
Contributions from, and discussions with, Burton Sigal (JPL),
Patrick Hutchinson (Wofford College, Spartanburg SC), Peter In
(Texas A&M), John Kelly (JPL), Tim Kurtz (NASA Glenn),
James Kiper (Miami Univ., Ohio) and Tim Menzies (U. British
Columbia) have been most useful.

5. REFERENCES
[I] S.L. Cornford, M.S. Feather & K.A. Hicks. “DDP - A tool

for life-cycle risk management”, IEEE Aerospace
Conference, Big Sky, Montana, Mar 2001, pp. 441-45 1.

[2] M.S. Feather, B. Sigal, S.L. Cornford & P. Hutchinson.
“Incorporating Cost-Benefit Analyses into Software
Assurance Planning”, to appear in Proceedings, 26‘h
IEEE/NASA Software Engineering Workshop, Greenbelt,
Maryland November 27-29 2001.

[3] M.S. Feather & T. Menzies. “Converging on the Optimal
Attainment of Requirements”, in submission.

[4] M.S. Feather & T. Kurtz. “Putting it All Together: Software
Planning, Estimating and Assessment for a Successful
Project”, in Proc. of 4th International Software & Internet
Quality Week Conference, Brussels, Belgium, Nov 2000.

Requirements Engineering via Models”, I” International
Workshop on Model Based Requirements Engineering, San
Diego, California, Dec 2

[5] T. Menzies & Y. Hu. “Constraining Discussions in

