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ABSTRACT 
We describe an approach that makes value maximization possible 
during the earliest phases of software development. In this 
context it is challenging to determine which of many possible 
concerns are most critical, and therefore the basis for decision- 
making. Yet, decisions made in these early stages have the 
greatest opportunity to influence the future course of 
development. 

Our approach is based on the use of a risk-centric model that we 
have been developing and applying to assessment and planning of 
systems development (not necessarily software systems). This 
model quantitatively links requirements to risks, and risks to 
mitigations. Value is measured in terms of requirements 
attainment, while cost is measured in terms of the resources 
needed to apply the chosen risk mitigations. Risk is the 
connection between the two. 

We have constructed custom tool support for applying this model 
during group sessions, to gather information on the fly from 
experts, and to aid them in decision-making based on the 
combination of the information they have provided. The tool 
support makes feasible the accommodation of the relatively large 
number and wide variety of concerns. In actual applications it has 
proven useful in guiding experts to make their most critical early 
phase decisions. 

Categories and Subject Descriptors 
B.m [Miscellaneous]: Design management. C.4 [Performance of 
Systems]: Design studies, Modeling techniques. D.2.1 [Software 
Engineering]: Requirements/Specifications - Elicitation methods. 
D.2.9 [Software Engineering]: Management - Cost estimation, 
life cycle, Software process models, Software quality assurance. 

General Terms 
Management, Measurement, Performance, Design, Economics. 

Keywords 
Risk, risk management, risk mitigation, risk assessment, cost- 
benefit analysis, requirements, software assurance. 

1. INTRODUCTION: A QUANTITATIVE 

VALUE 
RISK-CENTRIC MODEL OF COST AND 

At NASA we have been developing and applying our risk 
management framework, “Defect Detection and Prevention” 
(DDP), for several years. DDP is a process for which we have 
custom-built software support. We have reported on DDP in other 
forums - for an overview see [ 11. 

DDP is intended for use in the early phases of system 
development. The motivation is that these early phases have the 
maximum opportunity to influence the development to follow. 
They are characterized by numerous concerns that span both 
product and process, involve multiple stakeholders (customers, 
developers, maintainers and users), but are lacking in well-worked 
out designs. Our approach is to convene experts who represent all 
the stakeholder positions, elicit from them the knowledge that is 
crucial to planning the subsequent development, and aid them in 
identifying and making critical decisions based on this 
knowledge. Note that our aim is to support experts in their 
decision making, not to replace them. The involvement of those 
experts is retained throughout the process. 

DDP deals with three key concepts: requirements, risks and risk 
mitigations (in some of the papers we have published, risks are 
referred to as “failure modes”, and mitigations as “PACTS”). 
Risks are quantitatively related to requirements, to indicate how 
much each risk, should it occur, impacts each requirement. 
Mitigations are quantitatively related to risks, to indicate how 
much of a risk-reducing effect the mitigation, should it be applied, 
has on the risk. 

The value of a DDP model is measured in terms of requirements 
attainment. Requirements are individually “weighted”, to reflect 
their relative importance. Risks adversely impact requirements 
attainment. The cost of a DDP model is measured in terms of the 
resource costs of the mitigations selected. Mitigations reduce 
risks, and so lead to increased attainment of requirements, but 
incur costs. The primary purpose of DDP is to facilitate judicious 
selection of a set of mitigations, thus attaining requirements in a 
value-maximizing manner. If requirements are valued in the same 
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units as the resource costs of mitigations, then it is possible to 
directly trade requirements for cost. 

2. DDPINUSE 
In our NASA applications of DDP, the systems being developed 
are spacecraft, or components of spacecraft. Hence the 
stakeholders include the mission scientists whose science needs 
become requirements, the spacecraft experts who understand the 
different disciplines involved in the system’s operation (e.g., 
power, navigation, communications), the engineers who 
understand the challenges in designing, developing, integrating 
and testing the spacecraft’s components, and the mission 
operators who will control the spacecraft during through its use. 

We use these sessions to (1) gather the requirements, (2) gather 
the risks (a.k.a. “failure modes”), and how much they impact the 
requirements, (3) gather the mitigations, and how much they 
effectively reduce risks, and (4) select mitigations (and sometimes 
discard requirements, when it becomes clear that a requirement is 
not worth the cost it takes to reduce the risks impacting it). 

Underpinning DDP is a simple quantitative model of cost and 
value. We use risk as the intermediary between requirements 
(whose attainment provides the value) and mitigations (whose 
selection incurs cost). In the subsections that follow we describe 
this model, emphasizing its quantitative nature and how it is 
applied in practice. 

2.1 Requirements 
We gather the wide range of requirements relevant to the study at 
hand. These may include both requirements imposed on the 
system to be developed (e.g., memory usage, throughput, 
accuracy) and requirements on the development process itself 
(e.g., schedule, budget, programming language, programming 
development environment). In typical DDP applications experts 
have listed 30 - 100 requirements,. These same experts assign 
weights to the requirements to indicate their value. Note that these 
expert-assigned weights are in units of the experts’ choosing, and 
are cardinal (not ordinal) in nature. They are additive, i.e., the 
value of a set of requirements is the sum of the values of the 
requirements in that set. This quantitative treatment allows us to 
compare the value of various combinations of requirements. 

2.2 Risks 
We treat risk in its most general sense - anything that, should it 
occur, will cause loss of requirements. Brainstorming all the ways 
that things could go wrong is an important part of DDP sessions. 
In DDP applications we have gathered from 30 - 200 risks. 

Risks are quantitatively linked to requirements. For each risk x 
requirement pair, the experts provide an estimate of the “impact” 
of the risk on the requirement, which we define as the proportion 
of the requirement that would be lost were that risk to occur. In 
order for the overall process to have value, it is not necessary for 
these estimates to have great precision. In practice we have found 
that the gradations 1, 0.9, 0.3, 0.1, 0 are sufficient for most 
situations. 1 means certain loss (i.e., if the risk occurs, the 
requirement will be totally lost); 0.9 means high impact - 
technically, we interpret the figure to mean the proportion of the 
requirement that will be lost should the risk occur; etc. In practice, 
many of the risk x requirement pairs have an impact of 0. 

Nevertheless, in real applications hundreds, sometimes thousands, 
of risk x requirement pairs are assigned non-zero values. 

We use disagreement to drive the need for more detail. When two 
or more experts disagree about an impact value, it is usually 
because they are referring to different circumstances. We 
accommodate their respective positions by refining the 
requirement and/or the risk into subcases, as appropriate. 

Our DDP model assumes that risks combine additively. For 
example, if two different risks both impact the same requirement, 
then their combined impact is the sum of their individual impacts. 
This simplistic model is easy to understand and work with, and 
has been used in our DDP applications to date. We are in the 
process of introducing logical concepts to the risks, along the 
lines of the logical fault trees (e.g., AND and OR nodes) used in 
probabilistic risk assessment. These will enable to the model to 
accommodate more of the logical structure that emerges as the 
early details of a design becomes known. 

The total impact that risks have on a given requirement is 
computed as: 

RiskslmpactOnRequirement(q) s 
Weight(q) * 
(E (r E risks) : Impact(r, q) * APrioriLikelihood(r)) 

Weight(q) is the user-assigned weight of requirement q, 
Impact@, q) is the proportion of requirement q lost should risk 
r occur, and 
APrioriLikelihood(r) is the a priori likelihood of risk r. 

where 

Hence, taking risks into account, the amount of attainment of 
requirement r is: 

AttainmentOfRequirement(q) = 
Weight(q) * 
(1 - (C (r E risks) : Impact@, q) APrioriLikelihood(r))) 

However, it is possible for the sum of risks’ impacts on a 
requirement to exceed 1 ,  in which case the value computed above 
would become negative. So in practice we compute the attainment 
of requirement r as the maximum of this and zero, thus: 

AttainmentOfRequirement(q) = 
Weight(q) * 
Max(0, (1 - (C (r E risks) : Impact@, q) 
APrioriLikelihood(r)))) 

2.3 Mitigations 
We treat mitigation in its most general sense - anything that, 
should we choose to do it, will decrease the likelihood of risks 
and/or their severity on requirements. Once again, they are 
numerous; we have seen 30 - 170 in applications to date. 

Mitigations are quantitatively linked to risks. For each risk x 
mitigation pair, the experts provide an estimate of the proportion 
by which the risk would be reduced were that mitigation to be 
applied. Again, coarse estimates of effectiveness suffice for our 
purposes. The same gradations as for risk impacts, but with 0.9 in 
place of the 1 (Le., 0.99, 0.9, 0.3, 0.1, 0) are sufficient for most 
situations. We prefer 0.99 in place of 1 on the grounds that there 
is very rarely a “perfect” mitigation. 

Our DDP model assumes that mitigations combine as follows: 
suppose one mitigation has effectiveness E l  on a risk (Le., 



removes proportion E l  of that risk), and another 
mitigation has effectiveness E2 on that same risk, 
then together they have a combined effectiveness 
of (1  - (1 - El)*( 1 - E2)). Roughly speaking, they 
act like filters in series: proportion (1 - E l )  of 
risks make it through the first filter, and of these, 
(1 - E2) of them will make it through the second 
filter. Again, this is a simple model that is easy to 
understand and work with, and that appears to 
match our experts’ intuition of how various risk 
mitigation techniques combine. 

The total effectiveness that mitigations have on a 
given risk is computed as: 

MitigationOfRisk(r) = 
1 - (l7 (m E mitigations) : (1 - Effect@, r))) 

Effect(m, r) is the effect of mitigation m at 
reducing risk r. 

where 

Thus taking mitigations into account, 
MitigatedRiskslmpactOnRequirement(q) = 
Weinht(u1 * 

One bar per requirement, here sorted in ~~~~ 0 - A ;  
a IlKnr- 

Blue segments = user-assigned weights 

Green = risk reduction due to mitigations 

Red = remaining risk 

Figure 1. A DDP visualization of requirements status 
effective solutions are. There are also several ways to view th 

- . .. 
(X (r E risks) : Impact@, q) * APrioriLikelihood(r) 

* (1 - MitigationOfRisk(r))) 

Performing a mitigation incurs the resource costs associated with 
that mitigation, which could be measured in dollars, schedule, 
availability of test harnesses, etc. Mitigations can be associated 
with major development times or phases at which they are 
performed, allowing the costing to be tracked with respect to 
those phases. 

2.4 Decision-Making 
In the final step of a DDP application, the experts scrutinize the 
combination of the information they have provided, and use it to 
guide their decision-making. 

2.4. I Support for Users ’ Decision Making 
Although DDP’s models are relatively simplistic, their scale 
justifies the need for DDP’s automated calculations. DDP is able 
to compute the value (requirements attainment) and cost 
(mitigations and repairs) for a given selection of mitigations. DDP 
uses cogent visualizations to present different views of the risk 
model, and its consequences, to those experts. 

An example such visualization is shown in Fig. 1. This is data 
taken from an actual DDP application. It shows a bar chart of 
requirements, where a separate bar represents each requirement. 
The color-coded information conveys the current status of 
requirements attainment, including for each requirement the user- 
assigned weight (indicated by the blue line segments), the extent 
to which it is currently at risk (indicated by the red portion of 
bars) and the extent to which the currently selected mitigations 
have reduced risk (indicated by the green portion of bars). Bars 
can be sorted in various ways. The figure shows them sorted in 
descending order of the user-assigned weights. Another useful 
way to sort them is in descending order of remaining risk. 

Similar DDP generated charts give experts insight into the risks, 
allowing them to see what their most pressing problems are, and 
into the mitigations, allowing them to see what their most 

impact relationships (between risks and requirements) and the 
effect relationships (between mitigations and risks). 

2.4.2 Range of Decisions 
In applications to date, the experts themselves have been able to 
use DDP to help them make a range of decisions. We have seen 
cases of using DDP to: 

Value maximization: selection of the mitigations that minimize 
the cost needed to achieve the desired value (requirements 
attainment), or, for a given cost, achieve the maximum possible 
value. This has the obvious benefit of cost-effectiveness. It has the 
additional benefit of making clear the contribution@) of the 
mitigations at reducing risk. This increases the motivation for 
performing mitigations - they become seen as beneficial, rather 
than simply hurdles to overcome. Finally, it gives an indication as 
to which kinds of risks the mitigations are being relied upon to 
prevent, which can be useful guidance to the people performing 
the mitigations. 

Requirements triage: identification requirements proving to be the 
most problematic (costly) to attain. In one application, the focus 
upon one such requirement led to its clarification, the net result of 
which was considerable savings in work not required. 

Assessment and planning: make a thorough assessment of the 
viability of novel advanced technology, and emerge with a well- 
structured plan for maturing that technology towards use. 

3. SOFTWARE ASSURANCE PLANNING 
Most of our experience with the use of DDP has been on 
assessment and planning of advanced spacecraft technologies with 
a significant hardware component. Relatively fewer DDP studies 
have had software as their primary concern. Nevertheless, we are 
confident that DDP has applicability to hardware, software and 
hardware-software combinations, since requirements, risks and 
mitigations are fundamental to all three areas. In this section we 
focus on the work we have been doing to make DDP applicable 
to, specifically, software assurance planning. 



3.1 Refinements of DDP’s Model 
We have refined DDP’s cost-benefit model to encompass some of 
the phenomena that arise in costing of, especially, software 
assurance activities. 

3. I .  I Risk Likelihood vs. Risk Severity 
It is common practice to distinguish between likelihood and 
severity in the calculation of risk. DDP already had in place the 
means to assess the (unmitigated) severity of risks, as the sum of 
impacts on weighted requirements. By refining mitigations into 
those that reduce likelihood vs. those that decrease severity, we 
are able to continue to distinguish between likelihood and severity 
throughout the calculations. Examples of risk likelihood 
reductions include training, following coding standards, use of 
design patterns. Also, analysis, testing, etc., falls into this 
category, as we explain in the next subsection. Examples of risk 
severity reductions include use of bounds checking on inputs, and 
error handling schemes (fault protection for software).Fig. 2 
shows DDP’s “risk region” visualization that makes use of this 
distinction. It plots risks (one small black square for each risk) in 
two dimensions, likelihood and severity. The axes of the chart are 
log scale, so the diagonal boundaries between the three colored 
regions are in fact lines of constant risk. The three regions 

subdivide risks 
in to “h igh  - 
top-right corner, 
“medium” 
center region, 

bottom left 
comer. In fact, 
there is a fourth 
category, “tiny”, 
risks that are so 
small they do not 
appear on the 
chart at all 
(because the 
chart axes are log 
scales, zero risk 
would be a point 

and “Iow” - 

Figure 2. Risk region 

at minus infinity). 

3.1.2 Risk Prevention vs. Detection (and Repair) 
We further subdivide the risk likelihood reducing mitigations into 
those that prevent risks from arising in the first place, and those 
that detect the presence of risks. The latter are assumed to be 
coupled with the appropriate action to repair the defects so 
detected. For example, unit testing is applied to detect coding 
problems, the assumption being that bugs uncovered during unit 
testing will be fixed. The net result is a reduction in the likelihood 
of risks remaining in the product through to the next phase of 
development (and ultimately through to release). 
Having made this distinction, we can now subdivide the 
associated costs between the cost of detection and the cost of 
repair. The latter is especially important, since it escalates 
dramatically the later in the lifecycle a problem is detected. For 
example, the often-quoted statistics on how the cost of correcting 
a requirements problem escalates through design, coding, testing 
and release. In the DDP model we associate a cost with the 

detection-style mitigation (whatever resources are needed to 
perform that mitigation), and a separate cost with the risk 
(whatever resources are needed to repair that risk should it be 
detected). The latter is time-dependant, through which we can 
incorporate the escalation of costs in later development phases. 
We can use DDP to demonstrate quantitatively the net benefits of 
early-phase mitigations, because they prevent or detect problems 
early, thus saving the much greater costs associated with repairing 
them late. For more on this, see [2]. 

3.1.3 Risk Introduction 
We allow for the possibility that the use of a mitigation can 
introduce risk. For example, code added to enhance testability 
might introduce new bugs (or its removal might change the real- 
time behavior). The motivation for this derives more from the 
application of DDP to hardware studies, where tests have a 
physical manifestation. 
In the software arena, a related phenomenon is that of code added 
to correct one problem introducing new problems. This possibility 
of repairs introducing risk (rather than mitigations) is not yet in 
our model, but it something we plan to add given its relevance to 
software development. 

3.2 Software Assurance Specific Information 
We have worked on pre-populating DDP with information 
specific to software assurance planning. Known software 
development risks become DDP risks, and known software 
assurance practices become DDP mitigations. 

A taxonomy prepared by the SEI serves as our source of 
candidate software development risks. DDP users can remove 
risks that are irrelevant (e.g., if a risk concerns subcontracting, 
and the project under scrutiny has no subcontracting, then it 
would be appropriate to remove that risk). 

A listing of software assurance activities that are part of 
another NASA tool, Ask Pete (see section 3.3.1), serves as our 
source of candidate mitigations. Again, DDP users can remove 
mitigations that are impractical (e.g., because the personnel with 
the skills to apply them are unavailable). 

We made estimates of the effectiveness of each of the 
mitigations are reducing each of the risks. While we would 
prefer to use known effectiveness figures based on experience, 
this data is generally lacking. In its absence, we work with 
estimates. In the software realm, we look to groups such as the 
CeBASE consortium http:Nwww.cebase.org to gather such data. 

Users can add to, remove and/or refine any of this information. 
Note that we do not pre-populate DDP with requirements. 
Generally, these are highly application specific. Hence, we leave it 
to users to provide the requirements, and to provide the estimates 
of how much each risk impacts each requirement (the “impact” 
values in DDP). 
As an alternative to introducing requirements and impacts, users 
may instead directly assess the severity of each risk. The 
advantage of this direct approach is that it is a lot less effort. The 
disadvantages are that it precludes the option to trade 
requirements, and it is a more prone to flaws of subjectivity than 
going through the more disciplined process of linking risks to 
requirements. 

http:Nwww.cebase.org


3.3 Connections to other tools and approaches 
3.3. I Estimation and Planning - Ask Pete 
Ask Pete is a NASA developed tool to do estimation and planning 
of software assurance activities. It uses COCOMO I1 to help in its 
estimation of cost and schedule of the development project at 
hand, and combines this with information of NASA Glenn 
policies for software assurance, and NASA IV&V criteria for 
rating the criticality of projects. Ask Pete generates project plans 
for the software assurance activities appropriate for the project. 

Ask Pete and ARRT have been made to communicate information 
back and forth [4]. Briefly, Ask Pete is run to generate a 
recommended set of assurance activities. These are then 
transferred into ARRT where they can be scrutinized, and tailored 
if so desired. The results of tailoring are then transferred back to 
Ask Pete for inclusion in the project plans it generates. In essence, 
this combination blends the strengths of Ask Pete at estimation, 
planning and documentation generation with the strengths of DDP 
at value maximization by balancing the costs (of assurance 
activities) against their values (of risk reduction, and therefore 
increased requirements attainment). 

3.3.2 Optimization - TAR2 
Value maximization in DDP is attained by judicious choice of the 
mitigations to perform. In DDP applications to date we have 
relied upon the experts to make this choice, guided by DDP’s 
automatic calculations and cogent visualizations. A more 
automated approach to value maximization is desirable. Value 
maximization in DDP is, in essence, a traditional optimization 
problem in a domain where choices are binary (whether or not to 
perform a mitigation). 

To solve this problem, we have explored the use of the machine- 
learning based approach of Tim Menzies [5], in the form of his 
TAR2 “treatment learner”. Briefly, TAR2 is able to identify the 
key decisions - which mitigations to perform, and which 
mitigations to not perform - so as to converge upon a value 
maximizing solution. TAR2 thus has the desirable characteristic 
of locating near-optimal solutions, and doing so in such a way that 
identifies the most critical decisions to make to move towards 
those solutions. TAR2’s identification of which decisions are the 
most critical is of especial value. It focuses the human experts on 
the decisions that matter the most, out of an otherwise dauntingly 
large number of alternatives. Furthermore, it offers them the 
opportunity to inject additional knowledge into the value 
maximization process. For example, once prompted by TAR2 
with a candidate solution, the experts can indicate that some of the 
combinations of mitigations are infeasible and have TAR2 then 
search for alternative solutions that avoid these infeasible 
combinations. For more details, see [3]. 

We have also done some experiments using genetic algorithms to 
automate the value maximization process, yielding promising 
results. They tend to be faster than using Menzies’ TAR2 
(because TAR2 requires the generation of a large number of 
samples), but lack the ability to identify which of the decisions in 
a recommended solution are the most crucial. Overall, we think 
that a blend of automation and expert involvement will continue 
to be needed in value maximization, and believe this area to be 
worthy of further attention. 

3.3.3 Further anaIysis 
We are interested in building links between DDP and other 
analysis models. We believe DDP’s strength is in the early phases 
of developments, when detailed designs are lacking. The use of 
DDP allows experts to home in on the major problem areas of 
their development, and suggest what to do about them (which 
mitigations to apply and/or which requirements to discard). As 
these decisions are made, the design begins to emerge. This is the 
point at which other analysis models (e.g., sophisticated cost 
estimation models, probabilistic assessment tools) can and should 
be brought to bear on what are now known to be the most critical 
aspects of the overall problem. At the very least, we would like to 
be able to transfer knowledge from DDP to these tools, giving 
them a head start on building their more detailed models. More 
ambitiously, we think there will be more synergistic 
combinations, in which information flows back and forth to allow 
detailed analysis results to return to DDP, guide the exploration of 
alternatives, lead to further detailed analyses, etc. We have only 
just started to pursue connections such as these. 
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