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ABSTRACT 
The present article reports on numerical studies of phase front propagation for the Laser Interferometer 
Space Antenna (LISA). The main objective is to determine the sensitivity of the average phase of the 
metrology beam with respect to fluctuations of the pointing of the beam. For this purpose, the metrology 
beam is propagated numerically along the interferometric arm of the instrument. The effects of the ob- 
scurations from the secondary mirror and its supporting struts are studied in detail. Further, the effects 
of random wavefront distortions that occur due to imperfections of the optical elements are estimated 
through a series of Monte Carlo simulations. The results of this study can be used to determine design 
requirements for the instrument. 
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1. INTRODUCTION 
The Laser Interferomenter Space Antenna (LISA) [l], [2], is a long-baseline, Michelson-type interferometer, 
currently under development, for the detection of gravitational waves. The instrument will consist of 
three sun-orbiting spacecraft distanced 5 million kilometers from each other, see Fig. 1. Inside each 
spacecraft there are two proof masses, carefully insulated so that they are subject to gravitational forces 
only, thus forming three very long arms with end points the flat front face of the proof masses. Detection of 
gravitational waves will be performed by precise measurements of the length variations of the three arms. 
These length variations are calculated by measuring the phase delays for laser beams that have traversed 
these arms. For this purpose, each spacecraft is equipped with two telescopes pointing at  the other two 
spaceraft. 
The present article reports on the results of detailed numerical computations of the phase of the optical 
beam propagated along the interferometric arm of LISA. The proposed methodology for numerical phase 
front propagation consists of three steps. The first step is the verification of the accuracy of the available 
algorithms. The second one is the numerical propagation of a truncated Gaussian beam over large distances. 
The third step is the computation of the average phase of the propagated field over the receiving aperture. 
The primary objective of this study is the calculation of the sensitivity of the average phase of the metrology 
beam with respect to jitter or off-axis pointing of the beam. In particular, we are concerned with the 
estimation of the effects of obscurations and random wavefront distortion in the exit pupil. The results 
obtained from the numerical simulations can be employed to determine various design parameters for the 
instrument, such as pointing stability requirement, etc. 



Figure 1. Schematic of the Laser Interferometer Space Antenna. 

2. DESCRIPTION OF THE NUMERICAL METHOD 
Consider an isotropic, homogeneous, non-dispersive and non-magnetic medium covering the half space 
52 = (x ,y ,z  2 0). Further, consider an aperture, denoted by I?, at the plane z = 0. The aperture is 
illuminated by a normally incident plane wave of wavelength A. According to the paraxial approximation, 
the electromagnetic field U ( x ,  y, z )  can be written as 

W x ,  Y, 4 = exp(jIC4 x 4x7 Y, 4 7 (1) 

where IC = 27r/A, and u(x,y,z)  is slowly varying with respect to z. Then, the field satisfies the paraxial 
equation 

( dx2 dy2 dZ 7 d2 a2 
-+-+j2k -  u(x,y,z) = 0 ,  (x ,y ,z)  € Q .  

The boundary condition at the plane of the emitting aperture is given by the Kirchoff approximation 

4 & Y ,  011 if ( X , Y )  E r 
otherwise. 

U(Z,Y,O) = (3) 

The boundary condition at infinity is given by the Sommerfeld radiation condition which states that at 
large distances the field should consist of simple waves propagating away from the emitting aperture. 
Applying standard techniques, i. e., Green’s theorem, the following integral representation of the field can 
be obtained, [3], 



We observe that this representation is a Fourier-type integral and therefore, it can be evaluated numerically 
via a Discrete Fourier Transform (DFT). In the present study we employed the DFT that is based on the 
Goertzel-Reinsch algorithm, see Papalexandris & Redding [4]. This algorithm performs summation of 
finite trigonometric series by employing the Clenshaw’s recurrence formulae that hold for trigonometric 
functions, Stoer & Bulirsch [5].  This method provides speed and accuracy and works well in equispaced 
grids. The summation of the series is performed in a way that prevents round-off errors from growing, 
thus ensuring stability of the computations. Another advantage of this method is the freedom in the 
choice of the sampling intervals at the (z,y) plane where the field is computed. It is worth mentioning 
that application of Fast Fourier Transforms (FFTs) for the numerical evaluation of the above integral is 
not advantageous because these algorithms do not allow scaling of the grid at  the plane of the receiving 
aperture; see also the discussion in [4]. 
An alternative way to solve the paraxial equation (2) is the angular spectrum method, 
a different but completely equivalent Fourier-integral representation of the field. The 
the field is 

[2], which results in 
final expression for 

where F(.) denotes the Fourier transform of a fucntion. 
This integral representation is also a Fourier integral. We observe, however, that the Fourier kernel becomes 
highly oscillatory as the propagation distance z increases. Therefore, this method can not give accurate 
results for large values of z unless the numerical resolution is increased significantly. Typically, the required 
resolution far exceeds current computational resources. For this reason, the angular spectrum method has 
not been employed in the present study. 
The quantity of interest is ‘p, the average phase of the beam over the area of the receiving aperture, denoted 
by A.  It is defined as the phase of the integral of the field, I ( z ) ,  over A,  

where 

I ( z )  s U ( X ,  y, z )  dz dy . (7) 
A s 

The average phase cp is evaluated directly from (6). The integral of the optical I is computed via the 
two-dimensional extension of Simpson’s rule, once the field U ( Z ,  y, z )  has been evaluated numerically with 
the algorithm outlined above. More involved quadrature algorithms, such as Gauss integration, have not 
been employed because they require non-equispaced abscissas. Furthermore, grid-convergence studies have 
shown that Simpson’s rule provides accuracy at the order of 10T6X, [4]. 

3. NUMERICAL RESULTS 
In this section we present results for the numerically propagated phase front. In particular, we are interested 
in the sensitivity to tilt of the average phase of the beam. By the term “sensitivity” we mean the difference 
between average phase when the emitting aperture is tilted and the average phase when the aperture has 
the nominal no-tilt position. In general, sensitivity values above 10-5X are not considered acceptable. 
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Figure 2. Intensity plot of the emitted wavefront subject to obscurations from the secondary mirror and 
its supporting struts. 

There are two main sources of aberrations for the emitted wavefront. These are distortions due to optical 
imperfections and obscurations from the secondary mirror and its 4 supporting struts. The distorions 
on the optical beam are random, in the sense that their functional form can not be known precisely. 
However, it is assumed that statistical information about them is available. Such distortions are due to 
various imperfections that occur during the fabrication and assembly phase, such as surface figure errors, 
inhomogeneity of the refractive index, polarization effects on the beam splitters, and others. 
In the numerical tests conducted, both the emitting and the receiving apertures are circular with diameter 
d = 30 cm. In the current design of LISA, the emitting aperture is the primary mirror of one of the 
two telescopes of a spacecraft. It also coincides with the exit pupil of the optical system. The receiving 
aperture is the primary mirror of a telescope of another spacecraft. The emitting and receiving apertures 
are at a distance z = 5 x lo9 m from each other and their centers lie on the optical axis. 
The optical beam is Gaussian with waist M O  = 8 e m  at the emitting aperture [6], ie., 

The wavelength is X = 1.064 pm. Therefore, the acceptable level of sensitivity is, approximately, 10-5X 21 

1 0 p m .  It  is worth mentioning that the beam's diameter at  the plane of the receiving aperture is more than 
42 Icm, while the peak intensity of the electromagnetic field has been reduced by 5 orders of magnitude. 
As a first step, we studied the effect of the obscuring elements in the absense of random distortions. Plot 
of the normalized intensity of the field at the emitting aperture is shown in Fig. 2. The aperture is first 
tilted at an angle 0 with respect to the 5- axis. Subsequently the average phase at the receiving aperture 
is computing numerically with the procedure outlined in the previous section and compared with the 
corresponding value at the nominal (no tilt) position. 
The numerical results clearly show that the sensitivity of the average phase is very small (less than l p m  at 
tilt angle 0 = 3pur~d.s~ see Fig. 3. It is important to mention that negligible sensitivity was also observed 
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Figure 3. Average phase sensitivity to tilt for an obscured emitted wavefront. 

when the aperture was unobscured. The reason for such small average-phase sensitivity is that in both 
cases (obscured and unobscured) the field at the emitting aperture remains symmetric with respect to the 
z- and y- axes. In the case of obscured emitting aperture, this symmetry results in cancellations of the 
diffraction effects due to the supporting struts. When the secondary mirror was considered to be supported 
by 3 struts instead of 4, a dramatic increase in the average-phase sensitivity to tilt was observed due to 
loss of symmetry. In particular, the sensitivity at 8 = 3prads  was 1442pm. 
Next, the effects of the addition of random distortions were studied. These distortions have the form 
exp(jlcg(z, y)) .  The aberration function g(z, y) can be discontinuous across the apertureand its spectral 
content might extend to considerably high frequencies. Therefore, the aberration function can not be 
efficiently modeled by Zernicke polynomials. The spectrum of g(z,  y)  is assumed to obey a (known) Power 
Spectral Density (PSD) law. In general, g(z ,y)  is given by 

where f(z, y) is the “normalized aberration function”, f and af are the mean value and standard deviation 
of f respectively, and a is the amplitude parameter. The normalized aberration function f ( z , y )  is given 
as a convolution over the emitting aperture, 

f ( z , y )  = s, . ( ~ , ‘ I ) h ( a : - J , Y - r l ) d J d r l ,  (10) 

with v(J,q)  being a random matrix of zero mean and variance equal to 1, and h(J ,q )  being the PSD 
function. 
It is further assumed that the Fourier transform of the PSD function, 3 ( h ) ,  obeys a power law. In other 



words, 

where (fZ, f y )  is the spatial frequency pair, a is the (dimensionless) half-power point, and p is the exponent 
of the power law. The values of a and p can be estimated from previously fabricated mirrors. In the present 
study, we set a = 0.15 and p = 3. It should be mentioned that the PSD function does not have to be 
monotonic; in principle, any function whose Fourier transform exists could be used. In the present study, 
the choice of PSD function and its parameters was based on data fitting with images from the Hubble 
Space Telescope. 
Using a random number generator, values of v(z ,y)  can be taken at  discrete points inside the emitting 
aperture. By virtue of the convolution theorem, the Fourier transform of f ( z , y )  is written as F ( f )  = 
F ( v )  F(h) ,  with F(h)  given by (11). Applying a discrete inverse Fourier transform on 3(f), we can 
obtain values of f(z, y) at discrete locations inside the emitting aperture. Then, we can directly generate 
realizations of wavefront aberrations g(z, y) by employing relation (9). Such a representative realization 
is plotted in Fig. 4a. Results for the average-phase sensitivity to tilt for different realization of g(z, y) are 
shown in Fig. 4b. It can be observed that the effect of such aberrations can be quite large, up to 12 nm 
for 8 = 3 p a d s  tilt angle. 
Fig. 4 also shows that the sensitivity to tilt can vary widely from one realization to another. Therefore, 
the derivation of design requirements must rely upon statistical analysis of the effects of such wavefront 
distortions. The proposed methodology consists of the following steps. 

i) We select values of rms distortion, that is values of the amplitude parameter a. The range of rms values 
is chosen so that it covers the rms values that we expect to have given the current fabrication capabilities 
and cost estimates for the optical system. For each rms value, a set of 1000 Monte Carlo simulations is 
conducted to produce curves of phase sensitivity to tilt. 
More specifically, for each rms value, realizations of v(<, 7) are produced with a random number generator. 
For each realization the corresponding wavefront distortion is calculated via (9) (11). This distortion is 
added to the wavefront of the emitting aperture and the electromagnetic field is calculated for various tilt 
angles, up to 8 = 3 prads .  Then, we can plot the curve of the average phase sensitivity to tilt under this 
particular random distortion, similar to the curves plotted in Fig. 4. This procedure is repeated for 1000 
random wavefront realizations for each rms value a.  

ii) The maximum acceptable average-phase error for tilt around the y-axis is set at  10 p m .  Then the 
tilt angle that yields this maximum acceptable error is computed for each phase sensitivity curve that was 
produced from the Monte Carlo simulations. This way we can generate, for each rms value a ,  a distribution 
of tilt angles that yield this error. Histogram of the distribution for a = X/20 is plotted in Fig. 5a. Nor- 
malizing the bin counts of each histogram yields discrete values of the corresponding probability density 
function, p(8; u )  of the tilt-angle distribution. 

iii) The mean value 6 and the standard deviation CTg of each distribution are evaluated via numerical 
quadrature with Simpson’s rule. 
The functional dependence of the mean 6 on a is plotted in Fig. 6 .  The curves 6 4 a g  are also plotted. 
These two curves define a “band” of expected tilt angles that yield a 10 p m  average-phase error for a given 
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Figure 4. a: Plot of a realization of a random wavefront distorti0n.b: Average phase sensitivity to tilt 
for different realizations of g(z, y). 
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Figure 5. a) Monte-Carlo simulations: histogram of tilt angles that produce 10 p m  average-phase error. 
rms value of wave-front distortion, a = X/20. b )  Probability density function resulting from normalization 
of the values of the above histogram. 
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Figure 6.  Pointing requirement as a function of rms value of wavefront distorion. The 
plot is defined by the curves 6 - 0 0  and 6 - 0 0 .  

band shown in the 

rms value of the wavefront distortion a. The lower boundary of this band, ie., the points on the curve 
6 - 00, define the pointing requirement of the emitting aperture for a particular wavefront distortion. For 
example, if assuming that the fabrication of the optical elements will be such that the distortion will have 
an rms value a = 25% A ,  then the pointing requirement is 70 nrads.  The plot of Fig. 6 indicates that for 
large a the pointing requirement grows almost logarithmically. As a gets small, however, the lower bound 
remains almost constant at 70 nrads.  

4. CONCLUSIONS 
In this paper, a procedure for numerical propagation of the metrology beam of a Large-Baseline Space 
Interferometer was presented. The proposed procedure relies on highly accurate physical optics algorithms 
and a probabilistic approach for modeling of wavefront distortions due to optical imperfections. Numerical 
tests showed that this procedure is accurate and robust. Therefore, it can be employed as a reliable 
simulation tool for the study of the optical performance of the system and the derivation of various design 
requirements such as pointing stability, defocus, and other effects. 
A detailed study of pointing stability of the metrology beam was also conducted. First, the effects of 
obscurations on the average phase were computed. It was observed that the obscurations can increase the 
sensitivity to tilt dramatically if they destroy the symmetry of the field even when the amount of energy 
lost to obscurations is small. On the contrary, when the obscurations are symmetric, their effect is minimal 
even when they absorb a lot of energy from the electromagnetic field. Subsequently, the effects of random 
wavefront distortions were studied. It was observed that these effects are in general more important than 
those apising from aperture obscurations. For rms distortion values a > 2% A, the pointing requirement 
grows almost logarithmically, but at smaller values of a it becomes almost constant. 
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