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I. INTRODUCTION 

Software costs are a growing concern for many firms. As more and more software is being developed - 

in-house or contracted out - the proportion of software costs to other costs is growing. Software is a peculiar 

product with many different characteristics than traditional goods discussed in various economic analyses. An 

important characteristic of software is that it is primarily labor intensive. Also, because software is an intangible 

product i t  is difficult to determine how to measure output. Traditionally, in industry, the output of software is 

measured by size of the software product - either in quantity of source lines of code or function points. Due to the 

nature of the Jet Propulsion Laboratory's environment, function point data is not readily available. 

Software at NASA and the Jet Propulsion Laboratory can be divided into two main categories, ground 

systems software and flight systems software. The data being analyzed is mainly ground software. Ground software 

tends to be evolutionary with updates on older systems, while flight software needs to be more reliable and tends to 

be highly embedded and more real time than ground software, implying that more experienced programmers are 

needed. However, these characteristic differences only affect the environmental parameter values. The theoretical 

structure of the cost model should be applicable for any software with only different slopes and intercepts for each 

type of software. 

From an economic viewpoint, a proper cost function should have the following form: 

C(w, r, S )  = w * L(w, r, S )  + r * K(w, r, S) (Eq. 1) 

where C is cost, w and r are prices of inputs L and K respectively, and S is the output quantity. The cost and inputs 

are functions of the input prices and output. By the principle of duality, a proper cost function can be derived from a 

production function in the form: S = f(L, K). 

' This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the 
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where S is the output quantity imd L and K are the inputs to production. Theory suggests that the wage rate should 

be in the cost function. However, many cost estimating relationships (CERs) of commercial cost models do not 

follow the functional form of Equation 1, suggesting that there may be a fundamental flaw in such models. 

There is much literature about software costs, but most use an improper functional form for cost. There has 

been work to determine whether there are scale economies in software development by Banker and Kemerer (1989). 

Thibodeau and Dodson (pp.70-78) look at the interrelationships of the software life cycle phases in estimating 

software costs but from a production theory perspective. Banker, Datar, and Kemerer (1991) have developed an 

estimable production frontier model of software maintenance. Putnam (pp. 167-176, pp.345-61) has done work i n  

analyzing the software equation. But all these past works have focused on the production-side of software 

development. Those works that have focused on costs use a rearranged production function. 

Therefore it is the purpose of this paper to analyze the structure of the CERS that commercial cost models 

use and to test whether they are viable cost functions. In addition, it is the purpose of this paper to derive the 

structure of a software cost function from a theoretical production function and to test the significance of such a 

function against NASA’s ground software projects. This work is of greater importance, as software costs are 

absorbing larger portions of organizations’ budgets. It is imperative that the correct structure of the software cost 

function is known before costs can be estimated. 

11. TIIEOIETICAL MODEL 

Although there are a variety of cost models available commercially, some well known ones are Boehm’s 

Constructive Cost Model (COCOMO), Putnam’s Software Life Cycle Management (SLIM), Price-S, and SEER 

(For further discussion on these models, refer to Ferens and Daly). Many commercial software cost models’ 

algorithms do not take the form of equation 1. 

For example, COCOMO 11’s (Boehm et al.) cost function takes the form: 

L = APE (Eq. 2) 

where L is the level of effort, A is a constant, B is some scaling factor, and E is a group of weighted environmental 

factors (cost drivers) whose products are used to adjust effort. This equation says that the input L is a function of 

output and some environmental factors. Equation 2 is merely a rearrangement of some production function. When 

E is multiplied by the average wage rate, the cost of a software project is obtained in dollars: 
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Although the functional form of the COCOMO cost function has the wage rate, it is simply multiplied against labor. 

The relationship between the wage rate and labor is not being reflected in commercial cost models. A proper 

econometric cost function should not contain inputs; rather i t  should contain the prices of inputs. Production 

functions should contain inputs but not prices of inputs. 

The principles of duality can be used to derive the production function implied by the cost function in 

Equation 2. Based on the structure of the commercial cost model, the production function should be structured as 

f o  1 lows : 

s = (L/AE)'/'. (Eq. 4) 

Equation 4 suggests that commercial cost functions should have the same exponent on all independent variables 

The analysis on the implied production function by commercial cost models will be referred to as Model 1. 

A cost function can be derived from the production function assuming a Cobb-Douglas format: 

s = AL~K% 0%. 5 )  

where S is the size of software in source lines o f  code (SLOC), A is a constant, L is labor in effort-months, K is 

capital, and is a set of environmental factors. a and b are elasticity measures. Intuitively, the lines of code should 

be the output of production. Also, since software is a labor-intensive product, the main input is intuitively labor, 

which is affected by some environmental factors. Environmental factors may include the capability and knowledge 

of the development team, required reliability of the software, where the software is being developed, etc. (See 

Appendix). The constant A is a technology coefficient related to fixed cost. 

Assuming that software costs are minimized during production, minimizing 

C = wd'L + r*K (Eq. 6) 

where C is cost, w is wage rate, L is labor in effort-months, r is cost of capital, and K is capital and constraining it 

against the production function (Eq. 5 )  gives the following empirical cost equation: 

c = ( s / ~ ~ l / ( a + b )  a/(a+b) r b/(a+b) [(a/b)b + (a/b)-a]'/(a+b). (Eq. 7) W 

Assuming a Cobb-Douglas production function leads us to a Cobb-Douglas cost function. 

There is no data on price of capital. r. However, it can be assumed that r =1 because as technology 

With Cobb-Douglas functions, units are usually increases, the cost of technology remains relatively constant. 



I/(”+b) measured so that A = 1 (Varian, 13.65). We can simplify Equation 7 by calling the term [(a/b)b + (db).‘’] as 

A’: 

The structure of Equation 8 suggests that labor needs to be a function of the wage rate, which many commercial cost 

models fail to consider. Since the wage rate did not cancel out or could not be isolated while it was being derived 

from the production function, it has some significance in estimating labor effort. This model allows for both 

increasing and decreasing returns to scale by not restricting a + b to equal 1, as Banker and Kemerer (1989) have 

stated that the existence of local scale economies or diseconomies depends on the size of software development 

projects. The analysis on the derived cost function will be called Model 2. 

111. DATA 

This study uses data from NASA’s historical database 1986-1990 and from the Jet Propulsion Laboratory 

1988-1990. There are 60 ground software projects with data on labor, size of code, and environmental drivers. This 

data can be used to test the significance of a suggested production function. Cost and wage data was not available 

for all 60 observations. Therefore, the sample has been reduced to 43 data points for estimating the cost function. 

Table 1 and Table 2 summarize the data. 

Data for environmental factors was collected using COCOMO 8 1’s fifteen cost drivers (See Appendix). 

These fifteen environmental factors were determined by Boehm as significant and independent (Boehm, 198 1). 

Interviewees from the 60 ground software projects were asked to rate the fifteen environmental drivers on a scale of 

very low to high. Each environmental factor can affect costs by driving it up or down from the nominal, where 

nominal ratings have the value of 1. These qualitative ratings have assigned values, which are multiplied against 

each other to determine how labor should be adjusted: 

E = nEMi = EMI‘’’EM2*EM?” ’ ’ ’ *EMIS (Eq. 9) 
i 

where i = 1 through 15. 

Although the inputs into software include labor and capital as well as some environmental factors, basic 

capital costs were grouped with the labor factors. Part of the cost of capital is embedded in the wage rate in the way 

NASA performs its bookkeeping. Labor or effort is measured in number of person months - the amount of time a 
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person spends working on the software development project for one month excluding time for holidays, vacations, 

and weekends. The price of labor or the wage rate includes burden for basic capital that 21 programmer would 

require as part of hidher task. Therefore the labor term includes basic capital (desktop computer, telephone and 

electronic mail services, etc.) and will be referred to as the Labor Set, L, with the price of the Labor Set, w. There 

exists other capital such as special development tools that would be priced separately, but since data for this type of 

capital cannot easily be obtained, it will be assumed that the costs of these tools are insignificant to the overall cost 

of software production. To better understand the impact of tools on software production, future work in this area 

will be considered. Data on other costs of non-basic capital was not readily available, but it can be assumed that as 

time passes, the cost of capital is constant because as technology becomes faster in terms of processing speed and 

memory, the costs of this capital for producing software drops. Therefore the other part of capital will be assumed 

away because it can be understood that the price of capital, r, equals 1. A disturbance term E should capture any 

error effects from the assumption that r = 1 

ean 
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Range 

inimum 
aximum 

406.41 
84.81 
118.8 

60 
656.97 

431 603.9 
3231.6 

8.4 
3240 

24384.8 

0.94 
0.04 
0.88 
0.88 
0.30 
0.09 
1.49 
0.38 
1.87 

56.59 

74.59 
12.54 

97.1721 
9442.41 5 

420.8 

423 
4475.3 

TABLE 1. SUMMARY STATISTICS FOR DATASET 1 
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S (KSLOC) COST ($1 W E L 

Mean 53.21 1217461.43 4551.07 0.88 237.39 
Standard Error 9.79 251 391.93 84.86 0.04 50.43 
Median 24.6 420906 4483 0.88 82 
Mode 100 241 332 4483 0.88 60 
Standard 
Deviation 64.22 1648487.1 12 556.49 0.25 330.67 
Sample Variance 41 24.22 271 751 0000000 309678.34 0.06 109341.46 
Range 279.9 7175291.74 2072.20 0.94 1359.60 
Mi nil nu in 2.2 37786.87 341 1.31 0.38 8.4 
Maximum 282.1 721 3078.608 5483.5 1 1.32 1368 
Sum 2287.9 52350841.31 195695.9 37.96 10207.6 
Count 43 43 43 43 43 

TABLE 2. StJNfNlAliY STA’I’ISTICS FOR DATASET 2 

The software project cost data does not include the cost of large capital expenditures for tools and other 

materials. The size of software is measured in thousands of source lines of code (KSLOC).’ The wage rate is the 

average monthly wage rate of a senior engineer in real year dollars. Historical data on wage rates was not available. 

The wage rates were derived by taking the average monthly wage rate of a senior engineer in fiscal year 2002 and 

deflating it by the NASA accumulated inflation index for the appropriate year to get monthly wage in real year 

dollars. The wage rates were then averaged over the life of specific projects. 

IV. EMPIRICAL STRATEGY 

To analyze Model 1, Equation 4 can be linearized by taking the logarithms of both sides: 

In S = - (l/B)(ln A) + (l/B)(ln L - In E) + E .  (Eq. 10) 

The term -(l/B)(ln A) will generate a regression result Po and the coefficient on (In L - In E) will generate a 

regression estimate PI :  

If P I  = 0 then the structure of commercial production functions are unsound. 

To estimate whether wage rate is significant to the cost function for Model 2, the logarithms of both sides 

of equation 8 is taken, and then a linear model is estimated using regression techniques 

Although the actual lines of code can be used instead of thousands of lines of code, it is the industry standard to 
measure lines of code in thousands. It should be noted that this is only a change in scale and should not affect the 
significance of the analysis. The logarithm of KSLOC will generate a regression result with a negative intercept, 
while the logarithm of SLOC will produce a positive intercept. 
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In C = In A’ + [a/(a+b)]ln w + [l/(a+b)](ln S - In E) + E .  (Eq. 12) 

Independent 
variable 

A regression on the dependent variable In C will generate an estimated function: 

~n 6 = 6o-t 611n w + &(In s - In E) (Eq. 13) 

Adj. R2= .9505 Adj. R2 = ,9405 
Coefficient Standard erroi- Coefficient Standard error 

where 6,, is the estimated intercept In A’, 6, is the estimated coefficient [a/(a+b)], and 62 the estimated coefficient 

[ 1 /(a+ b)] . 

If the wage rate is insignificant to the cost function 6, should be 0, indicating that the wage rate does not 

need to be in the cost equation, Equation 13 can be rewritten 

In = 60 + 62(ln s - In E). (Eq. 14) 

constant 
In L - In E 

Taking the inverse log of Equation 14, gives 

c = AysE)? 

-1.0321 69058* 0.1 40668 -1.1 1388* 0.177501 
0.883726955* 0.026235 0.907588* 0.03521 3 

Notice that Equation 15 does not have the wage rate in it. If 61 equals 0, then it means that the commercial cost 

models can develop cost equations by simply rearranging the production function and multiplying it by the wage 

rate to obtain software costs. But if 6, is not equal to 0 then the wage rate in Equation 8 is significant and cannot be 

taken out of consideration when developing cost models. 

v. STATISTICAL ANALYSIS 

Ordinary least squares regressions were run on the datasets. Two regressions were run on Model 1 to test 

the validity of the implied software production function from the functional form of commercial cost models. One 

regression was performed on dataset 1 and another on dataset 2. The results are presented in Table 3. 

TABLE 3. OLS ESTIMATES FOR PRODUCTION FUNCTION PARAMETERS (MODEL 1) DEPENDENT VARIABLE: In s 

I 1 Dataset 1 (n = 60) Dataset 2 (n = 43) 
F-value = 1134.66 F-value = 664.3 I 

The F-values for both Datasets in testing Model 1 are significantly high suggesting that the model is understood. 

The adjusted R2 values are close to 1 for both datasets. The coefficients of Model 1 for both data sets are 
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statistically significant at the 1 % ~  level. The production function implied by inany commercial cost models is 

understood. However, this does not mean that i t  is the best model. Another model may be even more useful in 

terms of providing more reliable estimates and predictions (McClave, et al., p. 558). NASA's estimated production 

function implied from commercial cost functions is 

S = 2.8(L/E)0.884 (Eq. 16) 

Independent variable 
constant 

In E 
In S 
In w 

from dataset 1, and 

S = 3.05(L/E)' 908 

Dataset 2 (n = 43) 
F-value = 270.87 

Adj. R2 = .9507 
Coefficient Independent variable 

3.079367 2.895252 
0.546567* 0.1 36755 
1.029535" 0.036648 

0.81 5328** 0.344801 

from dataset 2. The exponents on equations 16 and 17 represent the l/B in equation 4. 

In addition, Equation 3's functional form was also tested for significance. The regression results are in 

Table 4. 

An estimated exponent value for In S, BI, less than 1 indicates economies of scale, while an exponent greater than 1 

indicates diseconomies of scale. This follows because the returns to scale measure is the reciprocal of p where 

p = (S/L) '' (dL/dS) = BI (Eq. 19) 

That is, marginal productivity (dS/dL) is greater than average productivity (S/Lj if BI is less than 1 (Banker and 

Kemerer, 1989). This cost function suggested by commercial cost models implies that there are diseconomies of 

scale in software development at NASA. 
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One regression was run on Model 2 using data from dataset 2 to test the structure of the Cobb-Douglas 

Independent variable 

software cost function. The results are presented in Table 5. 

Coefficient Standard error 

TABLE 5. OLS ESTIMATES FOR COST FUNCTION PARAMETERS (MODEL 2) DEPENDENT VARIABLE: In C 

constant 

Dataset 2 (n = 43) 
F-value = 5967.84 

Adj. R2=  ,9965 

-20.2041 2871 * I 0.636627 
I n  w 12.9433461 * 0.271 545 

- In S - In E 0.01 9341082 0.020801 

The extremely high F-value of 5967.84 suggests that the model is statistically useful. The adjusted R2 is very close 

to 1, indicating that almost all of the sample variation in cost is explained. t-tests on the independent variables 

suggest that there is sufficient evidence that the wage rate is related to cost. On the other hand, the coefficient on the 

In (S/E) term is not statistically significant suggesting that S and E should not share the same exponent. This 

regression suggests that NASA's software cost equation should be 

C = 0.00000000169~ '~~~(S/  (Eq. 20) 

intercepting near the origin. 

If the coefficient of In \v is equal to 0, then the function suggests that Equation 15 is a proper cost fi.mction. 

However, the test of null that wage is insignificant to cost 

Ho: 61 = 0 

is rejected at the 1% significance level. We accept the alternative hypothesis that wage is significantly related to 

cost. 

VI. CONCLUSION 

Regression results suggest that the cost model derived from the Cobb-Douglas production function in 

Model 2 is understood. The F-test is significant. t-tests on the variable coefficients are also significant suggesting 

that the Cobb-Douglas structure of the cost model is appropriate. 

The wage rate is a necessary variable in a proper software cost function. This can be a result of software 

being a highly labor-intensive product. Also, labor is a function of the wage rate, suggesting that the level of 

productivity or lines of code produced per person-month (S/L) is related to how much they get paid. 
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There is insufficient evidence to disprove the functional form of commercial cost models. Yet, theory 

implies that the wage rate is endogenous to labor, and commercial cost functions do not capture this feature. A 

problem lies in the structural form of commercial cost models. They do not take into account that labor can be 

affected by wage. Therefore Equation 2 should look more like the following: 

B I  132 L = A S  w E 

and a cost function should have the following structure 

131 82+1 C = w * L = A S  w E (Eq. 22). 

The production function tested in  Model 1 suggests that commercial cost functions are adequate for predicting and 

estimating costs, although they are not as strongly significant as other cost function structures that inherently include 

the w' d g e rate. 

Although the two different models produced mixed results, this study implies that the functional form of 

the software cost equation ccziz be different. A concern in this analysis is the lack of data on capital prices and 

inputs. Although it was the assumption of this work that technology prices remain relatively constant over time and 

that r = 1, this may not be the case. While only a Cobb-Douglas production and cost function were analyzed in this 

study, i t  is worthwhile to consider other higher order functional structures in future work. 
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APPENDIX 

Software De 

Drivers 

lopment C 

Symbol 

st Drivers 

--I Extra 
Ratings 

v 

Low Nom i iial High Very 
Low 

Very 
High 

1.40 
RELY 

Required 
Software 

Reliability 
DATA 

Database 
Developinent 

0.75 0.88 1 .oo 1.15 

0.94 1 .oo 1.08 1.16 
Siie  

CPLX 
0.70 0.85 1 .oo 1.15 1.30 1.65 Product 

Complexity 
TIME 

Exccution 
Time 1 .oo 1.11 1.30 1.66 

Constraint 
STOR 

1 .oo 1.06 1.21 1.56 Main Stotage 
Cotlstralllt 

VlRT 
Virtual 

Machine 0.87 1.15 

1.07 

1.30 

1.15 

1 .oo 

1 .oo 

Volatility 
TURN 

Computer 
tllrllarollllcl 

t m c  
ACAP 

Analyst 
Capability 

AEXP 
Applications 

0.87 

1.46 1.19 1 .oo 0.86 0.7 1 

1.29 1.13 1 .oo 0.9 1 0.82 
Experience 

I’CAP 
1.42 1.17 1 .oo 0.86 0.70 Programmer 

Capability 
VEXP 
Virtual 

Machine 1.21 1.10 1 .oo 0.90 

Programming 
Language 

Experience 
MODP 

Use of modern 
programming 

practices 
TOOL 
Use of 

Software Tools 
SCED 

Required 
Development 

Schedule 
Boehm, B.  (1 

1.14 1.07 1 .oo 0.95 

1.24 1.10 1 .oo 0.91 0.82 

1.24 1.10 1 .oo 0.91 0.83 

1.23 1.08 1 .oo 1.04 1.10 

rsey: Pren 1). Sqflwn1-e :e-Hall, Inc. 

11 



R. Bankei and C. Kemerer, “Scale Economies in New Software Development,” IEEE Trmsactro/is on Sojtivnre 

Eizgrrzeerrizg, vol 15, no. 10, pp.1199-1205, Oct. 1989. 

R. Banker, S. Datar, and C. Kemerer, “A Model to Evaluate Variables Impacting the Productivity of Software 

Maintenance Projects,” Mmageriieiit Screrice, vol. 37, no. 1, pp. 1-18, Jan. 1991. 

B. Boehm, S O ~ T M “ ~  Eugrrzee/ r i i g  Ecorzoirircy, Englewood Cliffs, New Jersey, Pi.entice-Hall, Inc: 198 I 

B. Boehm, et al., Sojhvarc Cost Esririiafiorz with COCOMO 11, Upper Saddle River, New Jersey, Prentice Hall PTR: 

2000. 

D. Ferens and B. Daly, “A Quantitative Comparison of Popular Software Scheduling Models,” 1991 ISPA 

Coi2fererzce Proceerlr~igs, vol. X, pp. SW43-SW59. 

J. McClave, P. Benson, and T. Sincich, Statistics for Birsiiiess arzd Economics (St” ed.), Upper Saddle River, NJ, 

Pi-entice Hall: 2001. 

L. Putnam, “The Real Economics of Software,” Tlze Economics of Ir$or/iiatiorz Processirig, vol. 2,  pp. 167-176. 

L. Putnam, “A General Empirical Solution to the Macro Softwaie Sizing and Estimating Problem,” IEEE 

Tra/lsact/orzJ 011 S o f i ~ ~ ~ r e  E/tg/rzee///lg, 4(4), 345-61, 1978. 

R. Thibodeau and E. Dodson, “The Implications of Life Cycle Phase Interrelationships for Software Cost 

Estimating,” Geizernl Research Coiporntioiz, Economic Resoiirces arid Planriitzg Operatiom, pp. 70-76. 

H. Varian, Microecorio~iiic Aiinlysis (3Id ed.), New York, W. W. Norton & Company: 1992. 

12 




