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ABSTRACT 

Over the past decade, the number of Earth orbiters and deep space probes has grown dramatically 
and is expected to continue in the future as miniaturization technologies drive spacecraft to become more 
numerous and more complex. This rate of growth has brought a new focus on autonomous and self- 
preserving systems that depend on fault diagnosis. Although diagnosis is needed for any autonomous 
system, current approaches are almost uniformly “ad-hoc,” inefficient, and incomplete. Systematic methods 
of general diagnosis exist in literature, but they all suffer from two major drawbacks that severely limit their 
practical applications. First, they tend to be large and complex and hence difficult to apply. Second and 
more importantly, in order to find the minimal diagnosis set, i.e., the minimal set of faulty components, they 
rely on algorithms with exponential computational cost and hence are highly impractical for application 
to many systems of interest. 

In this paper, we propose a two-fold approach to overcome these two limitations and to develop a 
new and powerful diagnosis engine. First, we propose a novel and compact reconstruction of General 
Diagnosis Engine (GDE), as one of the most fundamental approaches to model-based diagnosis. We then 
present a novel algorithmic approach for calculation of minimal diagnosis set. Using a powerful yet simple 
representation of the calculation of minimal diagnosis set, we map the problem onto two well-known 
problems, that is, the Boolean Satisfiability and 0/1 Integer Programming problems. The mapping onto 
Boolean Satisfiability enables the use of very efficient algorithms with a super-polynomial rather than an 
exponential complexity for the problem. The mapping onto 0/1 Integer Programming problem enables the 
use of variety of algorithms that can efficiently solve the problem for up to several thousand components. 
These new algorithms significantly improve over the existing ones, enabling efficient diagnosis of large 
complex systems. In addition, the latter mapping allows, for the first time, to determine the bound on the 
solution, Le., the minimum number of faulty components, before solving the problem. This is a powerful 
insight that can be exploited to develop yet more efficient algorithms for the problem. 



1. INTRODUCTION 

The diagnosis of a system is the task of identifying faulty components that cause the system not 
function as it was intended. The diagnosis problem arises when some symptoms are observed, that is, 
when the system’s actual behavior is in contradiction with the expected behavior. The solution to the 
diagnosis problem is then determination of the set of faulty components that fully explain all the  observed 
symptoms. Of course, the meaningful solution should be a minimal set of faulty components since the 
trivial solution, that assumes all components are faulty, always explains all inconsistencies. 

The model-based diagnosis, first suggested by Reiter’ and later expanded more by de Kleer, Mackworth 
and Reiter2, is the most disciplined technique for diagnosis of a variety of systems. This technique, which 
reasons from first principle, employs knowledge of how devices work and their connectivity in form of 
models. As an example, Figure 1 illustrates a model of a hydrazine propulsion subsystem - in this case for 

Figure 1: The hydrazine propulsion subsystem for Cassini’s 16 attitude thrusters. 

Cassini’s attitude  thruster^.^ This model consists of a set of connected components, where the connectors 
are pipes. To diagnose this device the pressure sensors are monitored for discrepancies while valves open 
and close during normal operations. 

In the model-based diagnosis the focus is on the logical relations between components of a complex 
system. So the function of each component and the interconnection between components all are represented 
as a logical system, called the system description SD. The expected behavior of the system is then a logical 
consequences of SD. This means that the existence of faulty components leads to inconsistency between 
the observed behavior of the system and SD. Therefore, the determination of the faulty components (or, 
diagnosis) is reduced to finding the components that assumption of their abnormality could explain all 
inconsistencies. 

In summary, the diagnosis process starts with identifying symptoms that represent inconsistencies 
(discrepancies) between the system’s model (description) and the system’s actual behavior. Each symptom 
identifies a set of conflicting components as initial candidates. Minimal diagnoses is the smallest set of 
components that intersects all candidates sets. Therefore, finding the minimal diagnosis set is accomplished 
in two steps: first generating candidates sets from symptoms, and then calculating minimal set of faulty 



components. 

However, there are two major drawbacks in the current model-based diagnosis techniques that severely 
limit their practical applications (see also Section 2). First, current model-based techniques tend to be 
large and complex and hence difficult to apply. Second and more importantly, in order to  find the minimal 
diagnosis set, they rely on algorithms with exponential computational cost and hence are highly impractical 
for application to many systems of interest. 

It should be mentioned that a widely employed approach to overcome limitations of model-based diag- 
nosis techniques is to  develop a set of Fault Protection Modes, that is, a set of Symptoms-to-Cause Rules. 
In this approach, the human experts, by relying on their detailed knowledge of the target system, attempt 
to predict and analyze all possible faults and determine their causes. Obviously, in this approach human 
knowledge is used to  overcome the exponential computational complexity. As a result, this approach is 
time-consuming, costly and prone to human errors (since it is impossible to predict all possible faults in 
advance). As an example, the development of Fault Protection Modes for Cassini took more than 20 work 
years.4 

In this paper, we present a novel and two-fold approach for model-based diagnosis to overcome the 
two above-mentioned limitations and to  achieve a powerful engine which can be used for fast diagnosis 
of large and complex system. This approach starts by a novel and compact reconstruction of General 
Diagnosis Engine (GDE), as one of the most fundamental approaches to model-based diagnosis. More 
importantly, we present a novel algorithmic approach for calculation of minimal diagnosis set. We first 
discuss the relationship between this calculation and solution of the well-known Hitting Set Problem. 
We then discuss a powerful yet simple representation of the calculation of minimal diagnosis set. This 
representation enables the mapping onto two well-known problems, that is, the Boolean Satisfiability and 
0/1 Integer Programming problems. The mapping onto Boolean Satisfiability enables the use of very 
efficient algorithms with a super-polynomial complexity for the problem (see Section 4). The mapping 
onto 0/1 Integer Programming problem enables the use of variety of algorithms that can efficiently solve 
the problem for up to several thousand components. Therefore, these new algorithms significantly improves 
over the existing ones, enabling efficient diagnosis of large complex systems. In addition, the latter mapping 
allows, for the first time, to determine the bound on the solution, i.e., the minimum number of faulty 
components, before solving the problem. This powerful insight can potentially lead to yet more powerful 
algorithms for the problem. 

This paper is organized as follows. In Section 2, we review the main notions and concepts of model-based 
diagnosis by considering GDE, as applied to the hydrazine propulsion subsystem of Cassini spacecraft. We 
also briefly discuss a novel and compact reconstruction of GDE and its advantages. In Section 3, we discuss 
the relationship between the calculation of minimal diagnosis set and a well known problem, the Hitting 
Set Problem. In Section 4, we discuss a simple representation of both the Hitting Set and calculation 
of minimal diagnosis set problems which allows simple mapping onto Boolean Satisfiability and Integer 
Programming, discussed in details in Section 4 and 5. In Section 6, we show that the mapping onto Integer 
Programming can be used for a priori  determination of bound on the solution, i.e., on the number of faulty 
components. Finally, some concluding remarks and discussion of future works are presented in Section 7. 

2. MODEL-BASED DIAGNOSIS: GENERAL DIAGNOSIS ENGINE (GDE) 

The General Diagnostic Engine (GDE)' is one of the most fundamental approaches to  model-based di- 
agnosis. GDE combines a model of a device with observations of its actual behavior to  detect discrepancies 
and diagnose root causes. For instance, consider Figure 1 illustrating a model of a hydrazine propulsion 



subsystem for Cassini’s attitude thrusters. Computationally, each connector corresponds to a set of vari- 
ables, and each component corresponds to a set of rules for computing variable values of incident connectors 
from variable values of other incident connectors. In this propulsion example, each pipe corresponds to 
a pair of variables for pressure and flow. Valve components correspond to  rules that conditionally make 
these variables equivalent depending on whether or not a valve was commanded open or closed, assuming 
that the valve is functioning. 

GDE performs a causal simulation by taking variable observations and using rules to compute the values 
of other variables in the network. Since computations have underlying assumptions, GDE tags each value 
with the assumptions that contribute to its computation. A discrepancy arises when two incompatible 
values are assigned to the same variable. For instance, consider the two open valves between pressure 
sensors PI and P2 in Figure 1. Assuming that both valves work gives us identical pressures at each sensor. 
If the sensors are measuring very different pressures, then at least one sensor or one valve must be faulty. 
In general, whenever GDE computes two incompatible values for the same variable, the union of the two 
supporting assumption sets is incompatible. In this case assumptions that PI and the two valves work 
imply a pressure value that is incompatible with the pressure value supported by the assumption that Pz 
works. Thus, the set of four assumptions leads to contradictory computations. 

Typically in the course of causal simulation, no discrepancies are found, but when failures occur, 
multiple incompatible assumption sets appear. For instance, continuing our causal simulation to the right 
from P2 eventually leads to computing two values at  P3 with different assumption tags. Depending on 
the value measured by P3, P3 combines with one (or both) of these tags to form incompatible assumption 
set(s). This process continues to determine new incompatible sets until the causal simulation completes. 
The next step after causal simulation is to the find minimal set of assumptions that intersects with all 
detected incompatible sets. This set contains the actual diagnoses of the root causes for contradictory 
measurements. However, GDE also suffers from the two main limitations of other model-based diagnosis 
approach; that is, the complexity of software makes its application difficult, and there is an exponential 
computational cost for finding the minimal set. 

In order to overcome the first limitation we have developed a novel and compact reconstruction of 
GDE. Traditionally GDE has been implemented using an inference engine to reason about a device model 
combined with an Assumption-based Truth Maintenance System (ATMS) to keep track of assumptions. 
A surprising result, that arose from our rational reconstruction of GDE, involves merging the ATMS with 
the inference engine. It turns out that the ATMS and the inference engine have many similarities, and 
combining the two dramatically simplifies the algorithm. The resultant system was completely implemented 
in under 150 lines of LISP code! This reconstruction also has some valuable properties for improving 
reasoning performance. Directly linking the reasoning about a device with reasoning about underlying 
assumptions facilitates the use of computation reduction heuristics. For instance, tagging each assumption 
with a probability results in being able to focus the system on making inferences about high probability 
situations that match the current observations. 

The second limitation is, however, by far more challenging. For, while it is easy to state the minimal set 
determination step, the actual computation solves the provably NP-complete prime implicants problem. In 
fact, one of the authors has recently shown, for the first time, that the diagnosis problem is NP-complete.G 
However, in the following we show that, by mapping the diagnosis problem onto Boolean Satisfiability and 
Integer Programming problems, algorithms with much better performance and hence with a much wider 
range of applicability can be devised. 

Our current effort on developing a more powerful and practical model-based diagnosis engine builds 



upon this unique and compact reconstruction of GDE. In addition, the integration of these novel efficient 
algorithms within this reconstruction of GDE results in a new tool that can efficiently diagnose large 
systems. 

3. HITTING SET PROBLEM 

Our primary interest to Hitting Set Problem is due to its connection with the problem of diagnosis. The 
Hitting Set Problem, also known as the Dansversal Problem, is one of key problems in the combinatorics 
of finite sets' and the theory of diagnosis1s2. The problem is simply described as follows. A collection 
S = { a , .  . . , Sm} of nonempty subsets of a set M is given. A hitting set (or transversal) of S is a subset 
H C M that meets every set in the collection S; Le., S, n H # 0, for every j = 1,. . . , m. Of course, there 
are always trivial hitting sets, for example the background set M is always a hitting set. Actually we are 
interested in minimal hitting sets with minimal cardinality: a hitting set H is minimal if no proper subset 
of H is a hitting set. 

Note that for any system S of subsets of the set M = {ml, m2,. . . , mn}, finding one minimd hitting 
set is easy. We define the sequence Mo, MI,. . . , Mn+l recursively as follows: let MO = M ;  suppose that 
the set Mj is defined; let H = Mj \ {mj}, i.e., remove the member mj from M j ;  check whether H is a 
hitting sct, if it is then let Mj+l = H ,  otherwise let Mj+l = M j .  Then it is easy to  see that each set of 
the sequence Mo, Ml, . . . , is a hitting set and the set Mn+l is in fact a minimd hitting set. The 
more challenging, and more interesting both from practical and theoretical point of view, is the problem of 
finding hitting sets of small size. It turns out that this is a hard problem. First let formalize the problem. 

HITTING SET 

INSTANCE: -4 system S = {SI,. . . , Sm} of subsets of the set M and a constant 3 < c < 1. 

QUESTION: Is there a hitting set H E M such that /HI 5 clMI? 

We should mention that it is well-known that the above problem is NP-complete if the condition is 
replaced by IHl 5 K ,  where K 5 IM(.* It is also known that, in this latter form, the problem remains 
NP-complete even if lSjl 5 2, for every 1 5 j 5 m. Utilizing our results on the complexity of the diagnosis 
problem, it is possible to show that this stronger form of the problem is NP-complete. The complexity of 
several other problems related to hitting sets has been investigated in the 1 i te ra t~re . l~  

As mentioned before, we are interested in the Hitsting Set Problem because of its connection with the 
problem of diagnosis. In fact, as it was discussed, each symptom identifies a set of conflicting components 
as initial candidates and minimal diagnoses is then the smallest set of components that intersects all 
candidates sets. The main theorem in the theory of model-based diagnosis'!* also states that the minimal 
diagnoses of the system are exactly the minimal hitting sets of C (see Figure 2). 

The Reiter's hitting set algorithm' is one of the major algorithms for finding minimal hitting sets. 
There is a correction of this algorithmg and a modified and more efficient version". The original algorithm 
and its modifications are based on generating the lattice of the subsets of the background set M and then 
extracting a sublattice of it that provides the minimal hitting sets. If the goal is to find a minimal hitting 
set with minima1 cardinality, then this algorithm is not efficient by any means; because it requires to save 
the whole sublattice which leads (in the worst case) to the need of an exponential size memory to save the 
sublattice. We will show that it is possible to find a minimal hitting set with minimal cardinality with an 
algorithm that requires a linear size memory (while it still may needs an exponential time to  complete the 
computation). 



Figure 2: Diagnosis as the hitting set of the conflicts. 

Our approach for solving the Hitting Set Problem and thus calculation of minimal diagnosis set is 
two-folded. On one hand, we map the problem onto the Monotone Boolean Satisfiability Problem. This 
provides the opportunity of utilizing the super-polynomial algorithms for finding the prime implicants of 
monotone and thus minimal diagnosis set. Also, this mapping makes it possible to better 
understand the complexity of the Hitting Set Problem, by comparing it with the well-studied Boolean 
function problems. On the other hand, we map the problem onto an Integer Programming Optimization 
Problem. This simple mapping gives us access to  vast repertoire of Integer Programming techniques that 
in some cases can effectively solve problems with several thousands variables. We would like to mention 
that mapping of the problem of finding prime implicants (not necessarily prime implicants of monotone 
formulas) onto the Integer Programming has already been i n t r o d ~ c e d . ' ~ . ~ ~  The mappings of the hitting 
set problem onto monotone satisfiability and Integer Programming, which is introduced in this paper, 
provides a new mapping of the problem of finding prime implicants of monotone formulas onto the Integer 
Programming. 

4. MAPPING ONTO BOOLEAN SATISFIABILITY PROBLEM 

In order to describe mapping of the Hitting Set Problem onto Boolean Satisfiability and 0/1 Integer 
Programming problems, consider a different representation of the problem by describing the attribution of 
the members (or, components) to subsets (or, initial candidate sets) as given by the following table: 

where S = {Sl, S2,. . . ,S,,,} and M = {ml,m2,. . . ,m,} denote the set of nonempty subsets and the set 
of members (elements), respectively. The (i ,j)th entry in this table is denoted as aij and we have aij = 1 
if m, belongs to Si otherwise aij = 0. To map the problem onto Boolean Satisfiability, we introduce the 
Boolean variables x l r  x2 . . . , x,, where each variable xj  represents the member mj. Then to each subset 
Si = {mil, mi2,. . . ,mini} (i.e., each row of the table (1)) we correspond the disjunction 

Fi = xi1 V xi2 V . . . V xini ; (2) 



i.e., for each “1” in the ith row of table (1) the corresponding Boolean variable appears in the disjunction (2). 
For example, if the ith row of the matrix (1) is (0,1,1,0,0,1,0) then Fi = 2 2  V 2 3  V 26. Then the formula 

Fs = Fi A F2 A .  .. A F, 

represents the mapping of the Hitting Set Problem associated with the system S onto the Boolean Satis- 
fiability Problem in the sense that every hitting set of the system 5, in a natural way, corresponds with 
a satisfying truth-assignment for the formula Fs,  and vice versa. Let (SI, sg, . . . , s,) be a Boolean vector 
that satisfies the formula Fs,  and let S M be the corresponding set. Then the formula (2) guarantees 
that S intersects the set Si, and (3) guarantees that S intersects all sets 5’1, S2, . . . , S,. Thus S is a hitting 
set. 

(3) 

We should notice that the formula (3) is in fact monotone. In the case of monotone formulas, the 
standard form of the Satisfiability Problem should slightly be modified to  avoid the trivial cases. Note 
that, in the case of the monotone formulas, the all-one vector (1,1,. . . , l) is always a satisfying truth- 
assignment (equivalently, the background set M is always a hitting set). Here, the correct formulation 
of the problem is to find the assignments with bounded weight, or in the hitting set setting, the problem 
is to find hitting sets with bounded number of members. We have shown that the problem of finding 
truth-assignments for monotone formulas with weight 5 cn ,  for 3 5 c < 1, is NP-complete. Also, the 
problem of finding minimal hitting sets of the system S reduces to the problem of finding prime implicants 
of the monotone function Fs. 

We should mention here a new re~ultl’.’~ which suggests a major breakthrough regarding finding hitting 
sets in the most general case of the problem. They show that there is an algorithm that produces the list of 
prime implicants of a monotone Boolean function such that each prime implicant is produced in a time of 
O(nt + n 0 ( l o g n ) ) ,  where t is the time needed to determine the value of the Boolean function at any point. 
Also the list that produced by this algorithm has no repetitions. Practical implication of this result for 
hitting set problem is that for the systems that do not have large number of minimal hitting sets (i.e., there 
are at most superpolinomailly many minimal hitting sets), it is possible to solve the hitting set problem in 
superpolynomial time, instead of exponential time of a typical NP-complete problem. 

5. MAPPING ONTO 0/1 INTEGER PROGRAMMING PROBLEM 

In order to describe the mapping onto 0/1 Integer Programming Problem, define the n x m matrix 
A = ( a i j ) ~ < i < ~ ,  l<jsn associated with the system S, as defined in table (1). Note that, by this definition, 
each row o? 2 corresponds to  a subset and each column to a member. The mapping onto 0/1 Integer Pro- 
gramming Problem is simply obtained by considering an operator application of A as follows. Identification 
of a minimal subset of members, representing a minimal hitting set, is equivalent to  finding a minimal sub- 
set of columns of the matrix A whose summation results in a vector with elements equal to  or greater 
than 1. This can be better described in terms of matrix-vector operation as follows. Let the vector Ai, for 
i = 1,. . . , m, denotes the ith row of the matrix A. Also, define a binary vector x = (21,52,. . . ,z,) E Rn, 
wherein xj = 1 if the member mj belongs to the minimal hitting set, otherwise zj  = 0. Since a t  least one 
member should belong to every Si, for every i = 1,. . . , m, we then have 

A ; . x  2 1. 

Since, by the definition of the minimal subset, the above equation should be simultaneously satisfied for 
all i = 1,. . . ,m, we then have the following formulation of the problem as an 0/1 integer programming 



problem 
minimize ut (z) 
subject to A z T  2 bT (4) 

where b = (1,1,. . . , 1) E LRm is the all-one vector, and we denote the Hamming weight, i.e., the number of 
one-components of the binary vector 2, by v t  (z). With this setting, identification of the minimal hitting 
set is then equivalent to solution for the binary vector x from (4), which corresponds to the solution of the 
0/1 Integer Programming Problem. 

Note that (4) represents a rather special case of the 0/1 Integer Programming Problem since the matrix 
A is a binary matrix, i.e., with 1 or 0 elements only. Interestingly, our above derivation also establishes a 
mapping of the Monotone Boolean Satisfiability Problem onto this special case of 0/1 Integer Programming 
Problem. To see this, note that any Monotone Boolean Satisfiability Problem, given by the formula (3), 
can be equivalently represented by a matrix similar to (l), from which the mapping onto this special case 
of O /  1 Integer Programming Problem follows immediately. 

Example. As an example we consider the small problem considered in the l i t e r a t ~ r e ~ ~ ' ~ .  Here M = 
{a, b, c,d}  and S = {{a, b } ,  { b , c } ,  {a,  c } ,  { b , d } ,  {b}} .  In the case the incidence matrix (1) is of the following 
form: 

a b c d  

The corresponding 0/1 optimization problem is then formulated as: 

minimize 2 1  + z2 + 23 + 24, 
subject to z1 + 2 2  2 1, z2 +zs 2 1, z1 +xd 1 1, x2 +xd 2 1, x2 1 1. 

This problem has two solutions 

(21 = 22 = 1, 23 = x4 = o}, (22 = 24 = 1, 2 1  = 2 8  = o}, 
which correspond to the minimal hitting sets {a, b} and {b, d} .  

6. LOWER BOUNDS ON CALCULATION OF MINIMAL DIAGNOSIS 

As stated before, the Integer Programming is known to be an intractable problem', though there are 
several reasonably good algorithms that can solve the problem either exactly for certain size or approxi- 
mately for any size. However, our recent discoveries of the bounds on the size of the solution of (4) opens 
a new direction for improving the efficiency of existing algorithms and/or devising new and more efficient 
algorithms. Here, we briefly describe these new results. 

For two vectors z = (Q,x~,. . . ,xn) and 21 = (y1 ,y2,. . . , yn) in R", we write T/ 2 2 if and only if 
yj 1 xj, for every j = 1,. . . , n. Also, we consider the 1-norm and 2-norm of vectors defined as 

n I n  



For the vector b in (4), we then have llblll = n and llbll2 = fi. Since the elements of both vectors AxT 
and b in (4) are positive, we can then drive the following two inequalities from (4) as 

Since x is a binary vector, then both norms in ( 5 )  give the bound on the size of the solution, that is, 
the number of nonzero elements of vector x which, indeed, corresponds to the minimal diagnosis set. Note 
that, depending on the structure of the problem, Le., the 1- and 2-norm of the matrix A and n, a sharper 
bound can be derived from either of (5 ) .  To our knowledge, this is the first time that such bounds on 
the solution of the problem have been derived without any need to explicitly solve the problem. Such a 
priori knowledge on the size of solution will be used for developing much more efficient algorithms for the 
problem. 

7. SUMMARY AND CONCLUSIONS 

We proposed a two-folded approach to overcome the two major limitations of the current model-based 
diagnosis techniques, that is, the complexity of the tools and the exponential complexity of calculation 
of minimal diagnosis set. To overcome the first limitation, we have developed a novel and compact re- 
construction of GDE. To overcome the second and more challenging limitation, we have proposed a novel 
algorit,hmic approach for calculation of minimal diagnosis set. Starting with the relationship between 
the calculation of minimal diagnosis set and the celebrated Hitting Set problem, we have proposed a new 
method for solving the Hitting Set Problem, and consequently the diagnosis problem. This method is based 
on a powerful yet simple representation of the problem that enables its mapping onto two other well-known 
problems, that is, the Boolean Satisfiability and 0/1 Integer Programming problems. The mapping onto 
Boolean Satisfiability enables the use of very efficient algorithms with a super-polynomial rather than an 
exponential complexity for the problem. 

The mapping onto 0 /1  Integer Programming problem enables the use of variety of algorithms that can 
efficiently solve the problem for up to several thousand components. These new algorithms significantly 
improve over the existing ones, enabling efficient diagnosis of large complex systems. In addition, this 
mapping allows, for the first time, a priori  determination of the bound on the solution, i.e., the minimum 
number of faulty components, before solving the problem. This is a powerful insight that can potentially 
lead to yet more powerful algorithms for the problem. It should be mentioned, however, that (4) represents 
a rather special case of the 0/1 Integer Programming Problem, by being specific to the calculation of 
minimal diagnosis set, since the matrix A is a binary matrix, i.e., with 1 or 0 elements only, and the vector 
b is the all-one vector. We are currently devising new techniques to exploit this special structure of this 
mapping to develop yet more efficient algorithms, optimized for calculation of the minimal diagnosis set. 

Our current effort on developing a more powerful and practical model-based diagnosis engine builds 
upon the unique and compact reconstruction of GDE. In addition, the integration of these novel efficient 
algorithms within this reconstruction of GDE enable the development. of new tools that can efficiently 
diagnose large systems. 
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