
Visible Scalable Terrain (ViSTa) Format

Marsette Vona, Mark Powell

Version 0.8 March 27, 2002

1 Introduction
Visible Scalable Terrain (ViSTu) is a format for the production, interchange, and
display of 3D terrain data that is specifically suited to stereo vision based robotic
applications. ViSTa is designed specifically to support both data scalability as
well as visualization accuracy, performance, and optimal resource usage.

The geometry of a vista terrain’ consists of a set of zero or more triangles
and a set of zero or more isolated points. The appearance of a vista terrain is
texture-mapped from the images originally acquired by the vision hardware.

1.1 Visibility
A vista terrain specifies an association for each point and triangle to a specific
texture map image, such that

0 the texture map image is the rectified version of an image acquired by the
left camera of the stereo vision hardware

the respective point or triangle is visible in the texture image, where the
definition of visible is that

1. the point or triangle is not occluded in any part in the texture image

2. the geometric back-projection of the point or front face of the triangle
by any triangle in the same LOD in the vista terrain

into the image plane is entirely within the bounds of the image

Different points and triangles in a single ViSTa file may be associated with
different texture images.

‘We are employing the term “vista” a s a name in this usage, not itn acronym, so the phrase
“vista terrain” is not redundant.

1

1.2 Scalability
A single ViSTa file can contain terrains ranging from a fraction of the data from
a single stereo pair to a full panorama of stereo pairs or more.

A vista terrain contains a pool of vertices and a set of texture map refer-
ences. The geometry is specified as a set of Levels Of Detail (LOD) to support
visualization performance and optimal resource usage. Each LOD is defined as
a set of patches. Each patch defines either set of triangles or a set of isolated
points, all of which are associated with a specified texture map image for that
patch.

Practically, systems which read vista terrains may refuse to accept extremely
large ViSTa files. In no event may a single ViSTa file be larger than 231 - 1
bytes (2 GB).

Another practical consideration is that, since ViSTa uses 32-bit floating point
values to represent geometric data, there is a trade-off between the geometric
extent of a vista terrain and the representable resolution (see Section 5 for
details).

1.3 Document Structure
The next two subsections provide some background on the motivations for the
development of ViSTa. Sections 4 through 7 describe semantic details of ViSTa,
and sections 8 and 9 give the syntactic details of ViSTa.

2 Design Goals
The design goals of ViSTa are as follows:

0 data accuracy, especially with respect to the abilities to display and pick
accurate locations on the terrain and to accurately display overlaid repre-
sentations of auxiliary science data

0 minimization of file size

0 platform portability

0 run-time efficiency in computation and memory usage for systems which
create, process, and display vista terrains

0 support of both high-resolution/resource-intensive and lower-resolution/-
less-resource-intensive (e.g. public outreach) applications

0 support of both single-wedge (i.e. all vertices visible from the left image
of a single stereo pair) and merged multi-wedge terrains

0 ease of generation from existing stereo vision data

0 ease of integration with systems which handle terrain (e.g. SAP, SUM-
MITT, RSVP)

3 Relation to ASD
ASD is an SGI Performer scheme for representing texture-mapped triangle
meshes with multiple LOD. ASD is an API and not a file format, however
Jack Morrison proposed a format suitable for storing ASD data in [l], and ASD
data can also be written to files in Performer Binary format (PFB).

2

ViSTa is designed to be relatively easy to generate by systems which use
ASD for the following reasons:

0 systems like SUMMITT and RSVP already use ASD

0 the ASD API is documented reasonably well in [3]

0 the capabilities of ASD are a reasonably good superset of the required
capabilities for ViSTa

However, it may be inconvenient to efficiently load a vista terrain into an
ASD-based system. Some features of ASD are not required for ViSTa and are
specifically omitted in order to reduce storage size and processing requirements.
Differences between ViSTa and ASD include the following:

0 ViSTa does not store any LOD difference (morphing) information

ViSTa does not store information about surface normals or vertex colors

0 ViSTa does not include vertex attribute fields that are separate from vertex
coordinate fields

ViSTa only stores information about triangle strips, not individual trian-
gles (and the representation of triangle strips in ViSTa is not the same as
in ASD)

ViSTa requires that all triangles in a strip have the same texture map

e ViSTa allows isolated points in addition to triangles

ViSTa introduces the concept of triangle strip and point cloud patches and
requires that no two triangle strips within a single triangle strip patch and
no two points in a point cloud patch have different texture maps

0 ViSTa does not allow the use of automatic texture coordinate generation
- texture map coordinates must be explicitly specified for all vertices

4 Some Details Are Implementation-Dependent
Some details are left as implementation-dependent; these will be explicitly called
out below. Each ViSTa implementation is defined by a separate document
which specifies how each of the implementation-dependent details are to be
handled. A ViSTa implementation may be associated closely with a specific
system that produces and/or displays ViSTa data, but this is not required. It is
permissible for a producer or displayer of ViSTa data to support multiple ViSTa
implementations.

Each specific implementation is assigned a 4-byte implementation identifier
(which is called out in the documentation for that implementation). A system
which creates a ViSTa file must specify the implementation it is using by writing
the corresponding implementation identifier in the header section of the file (see
Section 10.1). Systems which display vista terrains must check this field and
interpret the data according to the indicated implementation, or display an error
message if they do not support the implementation.

3

5 Coordinate Frame and Units
All spatial geometric data in a vista terrain are specified in units of meters.

All vertices in a vista terrain are specified in the same coordinate system.
The specification of this coordinate system is implementation-dependent, but in
all cases must be Cartesian and right-handed. A fixed space is reserved in every
ViSTa file for implementation-dependent specification of coordinate system (this
space may be unused in some implementations, e.g. if the coordinate system in
that implementation is implicit).

Since 32-bit floating point values are used to represent all geometric data
in ViSTa (see Section 8.1), there is a trade-off between the geometric extent
of a vista terrain and the representable resolution. For example, to maintain
lmm representable resolution, the maximum extent of a vista terrain can not be
more than about 32km. For this reason, a ViSTa implementation may optionally
specify limits on the maximum representable geometric extent, though in many
applications this is unnecessary because the terrain extents are already limited
by design.

It is also possible for ViSTa implementations to permit large datasets to be
split into multiple separate vista terrains, each including high-resolution locale
data in an implementation-dependent format in their Coordinatesystem fields
(see Section 10.4).

6 Levels of Detail
At least one, and possibly more, ordered LOD are specified in a single ViSTa
file. Multiple LODs within a single ViSTa file are presented in increasing order
from least-detailed to most-detailed. Each LOD is implicitly assigned a non-
negative integer index according to its position in the file. The first LOD in the
file is assigned index 0, and subsequent LODs are assigned sequential indices.

Unless specifically directed otherwise, vista terrains produced by one system
for interchange with another system must include the most detailed representa-
tion of the terrain that the originating system can provide as the most detailed
(i.e. last) ViSTa LOD. Additional LOD with progressively less detail should
also be included if available and appropriate. If the originating system has good
reason to choose the resolution of these less-detailed LOD specifically then it
should do that. Otherwise, guidelines for generating the less-detailed LOD are
that LOD (i + 1) should have about twice as many vertices as LOD i, and LOD
0 should have on the order of 100 to 1000 vertices.

For compact representation, systems which generate vista terrains should
make a best-effort to re-use vertices from less-detailed LOD in more-detailed
LOD. Specifically, let the set of vertices of LOD i be Vi, and let the set of
vertices of LOD i + 1 be %+I. Then V,+l is separable into two disjoint sets:
V,+l = U V,.;?, where C V , and V,.;? n V, = 0. LOD i and i + 1
should be constructed to maximize the size of Vg;'.

The concept of LOD in ViSTa is restricted to the geometry of the terrain.
Specifically, the LOD information in a vista terrain does not have any relation
to the texture map(s) associated with the terrain. Each LOD in a vista terrain
must reference exactly the same set of texture map images as every other LOD
in the terrain.

However, systems which visualize vista terrains may implement some form
of texture LOD switching on their own.

4

7 Texture Mapping and The Relation of Terrain
Geometry to Raw Data

Every patch (set of triangles or set of isolated points) in a vista terrain has
a single associated texture map image. As described below in Section 10.3,
texture maps are identified in an implementation-dependent way as persistent
references to the texture image data.

Vista terrains may only refer to texture map images that are the rectified
versions of images acquired by the left camera of the stereo hardware (or filtered
and/or linearly scaled versions thereof).

Included with the specification of every vertex in a vista terrain is a pair of
normalized texture coordinates (s, t) , s E [0 . . . (1 - l/N)], t E [0 . . . (1 - l/M)],
where the associated texture map is N pixels wide and M pixels tall. The
origin of the normalized texture coordinate system is the center of the pixel a t
the upper left corner of the texture image, and the orientation is such that s
increases to the right in the image and t increases down.

Because the texture coordinates are normalized, there are no restrictions on
the dimensions of the texture images. However, systems which visualize vista
terrains may re-scale the texture images as graphics hardware requires.

Unless specifically directed otherwise, vista terrains produced by one system
for interchange with another system must reference the highest-resolution ver-
sions of the associated texture map images, if multiple versions are available.
The specific location and mode of transfer (e.g. in a mission database) of the
texture map images is implementation-dependent.

7.1 Accuracy of Texture Coordinates
The accuracy of the texture coordinates associated with a terrain vertex is
important, as it may relate directly to the accuracy of selected and displayed
locations on the terrain surface in ViSTa visualization implementations.

Texture coordinates for a vertex are accurate if they define a point in the
texture image plane inside the pixel containing the geometric back-projection
point of the vertex, given the best-known camera calibration and camera pose
data2. This definition can also be viewed as an algorithm to generate texture
coordinates for an arbitrary vertex, provided that a texture image in which
the vertex is visible is already known. Additionally, such texture coordinates
are available as a trivial by-product of basic stereo reconstruction algorithms
which perform the forward mapping of image pixels to 3D vertices: if such an
algorithm maps pixel p = (i , j) of the rectified left image3 to 3D vertex v, and
the rectified left image is N pixels wide and M pixels tall, then the normalized
texture coordinates associated with v are (z /N, j / M) .

If a system generating a vista terrain cannot determine a rectified left image
in which a specific vertex is visible and/or cannot determine accurate texture
coordinates in such an image for that vertex, it must not include that vertex
in the terrain.

Each triangle and each isolated point in a vista terrain is associated with
exactly one texture map image. In the case of a single terrain containing geom-
etry synthesized from multiple stereo pairs, some triangles might not be visible
(as defined in Section 1.1) from the left image of any single stereo pair. Such
triangles must not be included in the vista terrain.

'I.e., the best known data at the time that the vista terrain was generated.
3With the pixel origin (0,O) in the upper left corner of the image, i increasing right, and j

increasing down.

5

8 Format Preliminaries
ViSTa is a binary format for reduced size, increased compressibility, and in-
creased computational efficiency. ViSTa structures are all defined as multiples
of 32-bit words in order to support memory alignment at word boundaries for
efficient manipulation on 32-bit architectures.

For storage and transmission purposes, a ViSTa file must be given a name
ending in “.vst”.

8.1 Definitions and Data Types
In this document, a f loat is an IEEE754 32-bit floating point number, and an
int is a 32-bit two’s compliment signed integer.

All f loat and int in a ViSTa file are stored using the byte order identified in
the VSTHeader field (Section 10.1). Unless otherwise specified, systems which
generate ViSTa files should use little-endian (LSB-first, Intel) byte order.

Character constants are written with single quotes as they are in the C
language (e.g. ’A’) and refer to 8-bit ASCII character codes. The syntax by te [n]
refers to an ordered array of n bytes, with the 0th byte first in the file and the
(n - 1)th byte last.

Fields which are marked reserved must be set to 0 by systems which generate
ViSTa files.

9 ViSTa Binary Layout
At the top level, a ViSTa file is an ordered sequence of f i e l d s which follows
this grammar:

ViSTa := VSTHeader
BoundingBox
TextureRef
Coordinatesystem
Vertex+
LOD+

LOD := LODHeader
BoundingBoxT
Patch+

Patch := PatchHeader
IndexArr ayLength
IndexArray”

IndexArray := Index+

As long as the maximum file size restriction of 231 - 1 bytes is observed,
a vista terrain may contain an unlimited number of TextureRef, Vertex, and
LOD, each LOD may contain an unlimited number of patches, each patch may
contain an unlimited number of index arrays, and each index array may contain
an unlimited number of indices.

Practically, systems which read ViSTa files may refuse to accept extremely
large files, even if those files are within the 231 - 1 byte limit.

A vista terrain must contain at least one TextureRef, one Vertex, and one
LOD, and it is valid for a vista terrain to contain only one TextureRef, one
Vertex, and one LOD.

6

9.1 Patches
A Patch is either a set of triangles (a triangle strip patch) or a set of isolated
points (a point cloud patch) in an LOD, all of which use the same texture map.
As described below in Section 10.7, data in the PatchHeader determine whether
the vertices referenced by a patch are to be interpreted as triangle strips or point
clouds. In either case, the vertex data for a Patch is specified as a contiguous
set of n arrays of Index fields, each of which references a specific Vertex field
from the array at the beginning of the file. The length of the i th Index array
in a patch is given by the ith IndexArrayLength field in that patch.

No triangle or point included in one patch in an LOD may be included in
any other patch in that LOD.

It is not required that all triangles/points which are textured from the same
texture image be members of a single patch within an LOD, i.e. multiple triangle
strip/point cloud patches within a single LOD may be associated with a single
texture image. However, for compact representation, unless explicitly directed
otherwise, systems which generate vista terrains should place all triangles in
an LOD which share the same texture map image into the same triangle strip
patch in that LOD, and similarly all isolated points in an LOD which share the
same texture map image should be placed in the same point cloud patch in
that LOD.

9.2
All TextureRef and Vertex fields in a ViSTa file, as well as all LOD in the
file, are assigned global non-negative integer indices. Indices are zero-based and
are assigned implicitly according to the corresponding object’s global position
in the file. Separate indices are used for each of the indexed object types. The
first instance of an object of a specific type is assigned index 0, and subsequent
instances of that type of object throughout the file are assigned sequential in-
dices.

Systems which generate ViSTa files should sort the array of Vertex in the
file so that a Vertex that is only referenced by LOD greater than i comes after
all Vertex fields that are referenced by all LOD less than or equal to i.

Index Assignment and Vertex Order

9.3 Triangle Strip Structure
The structure of the triangle strips in a triangle strip Patch is implied from the
order in which the vertices composing the strips are referenced. Each Index
array in the Patch defines a separate triangle strip. The first three Index fields
in an Index array (Index fields 0, 1, and 2 in the array) identify the vertices of
the 0th triangle in the strip in Counter-Clockwise (CCW) order. The length
of the strip, s,, the number of triangles it contains, equals the length of the
Index array minus two. The s, - 1 Index fields which follow the first three
of the strip define the remaining triangles in the strip: the vertex identified by
the Index at position i > 2, V,, in the Index array is combined with vertices
identified by the Index fields at positions i - 1 and i - 2, Vi-1 and V , - 2 , to form
a triangle with vertices V , - 2 , K-1, and V,, interpreted in CCW order if i is even
and ClockWise (CW) order if i is odd.

7

10 ViSTa Fields
10.1 VSTHeader

h the version of ViSTa described in this document

Type
float
float
float
float
float
float

Value
%,in (see below)
ymin (see below)
zmin (see below)
zmaZ (see below)
yma, (see below)
z,,, (see below)

8

Type
byte[2048]

10.4 Coordinatesystem
Type 1 Value

byte[4096] I Coordinate system specification (implementation-dependent)

As mentioned in Section 5, the Coordinatesystem field specifies the coor-
dinate frame used by all geometry in the vista terrain in an implementation-
dependent way. Some implementations may choose not to use this data, and
identify the coordinate system in some other way, according to their specific
documentation.

Value
An implementation-dependent persistent reference to the rec-
tified version of an image acquired by the left camera of the
stereo hardware (see below).

10.5 Vertex

Type
int

byte[8]
int

float

No float entry in a Vertex field may be an IEEE754 NaN or *Infinity.
The spatial coordinates are given in units of meters. The coordinate frame

is implementation-dependentl as describe in Section 5.
Systems which generate ViSTa files should sort the array of Vertex in the

file so that a Vertex that is only referenced by LOD greater than i comes after
all Vertex fields that are referenced by all LOD less than or equal to i.

Value
Total size of this LOD, including LODHeader (bytes)
Reserved for future use
Total number of distinct Vertex referenced in this LOD (2 1)
Eyepoint distance to terrain bounding box centroid (as specified di-
rectly after VSTHeader) threshold below which t o consider switch-

10.6 LODHeader

int
int

ing to the next higher-resolution LOD (> 0; see below)
Number of Patches listed in this LOD (2 1)
Highest Vertex index referenced in this LOD (2 0)

9

The LOD switch threshold may not be honored by systems which visualize
vista terrains. The switch threshold of the last LOD in the file is always ignored,
even if the file contains only one LOD. For a terrain with n 2 2 LOD, the
switch thresholds of LOD [0 . . . (n - 2)] must be non-negative and monotonically
decreasing.

Systems which generate vista terrains should set the LOD switch thresholds
to the best of their ability so that the terrain will look good when rendered. The
following algorithm may be used if the generating system has no better way to
compute the LOD switch thresholds (contributed by Jack Morrison [2]):

For each LOD i:

1. Compute wi, an estimate of the average “width” of a triangle in LOD i ,
according to the following formula

(average terrain bounding box side)
wi =

Jnumber of triangles in LOD i

Type
byte[8]

int
int

int

int

2 . Compute t i , the LOD switch threshold for LOD i, according to the follow-
ing formula, which makes ti the distance at which a triangle of “width”
wi subtends a viewing angle of lo:

0.5wi t . - -
tan 0 . 5 O a -

Or, use the approximation:
ti M 57wi

Value
Reserved for future use
0 if this is a triangle strip Patch, 1 if this is a point cloud Patch
ViSTa file index of the TextureRef that identifies the texture image
to use for geometry in this patch (2 0)
Number of Index arrays in the patch (2 1)
Total number of Index listed in the patch (2 3 for triangle strip
patches, 2 1 for point cloud patches)

See also Section 6.

Type
int

Value
The number of Index fields in the corresponding Index array (2 3
for Index arrays in triangle strip Patches; 2 1 for Index arrays in
point cloud Patches)

10

10.9 Index
Type I Value
int I An index into the array of Vertex (2 0)

See Section 9.2 for a description of indices.

11 Acknowledgments
Thanks to Jack Morrison for information that was helpful to the development
of this specification.

References
[l] Jack Morrison. ASD Mesh File Format PRELIMINARY. 6/1/01, via email.

[2] Jack Morrison. Private communication. 3/8/02.

[3] SGI. OpenGL Performer Progmmmer’s Guide, Chapter 17: Active Surface
Definition. 2001, SGI document number 007-1680-060. E’reely available in
electronic form from http://techpubs.sgi.com.

11

http://techpubs.sgi.com

