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Motivations

« Leverage advantages of Java programming language vs. C/C++

— Easier to use

— Fewer defects
« Automatic Memory Management

— Faster Development Time
— Available Libraries
— Strictly Object-Oriented

» Encourages better designs

— Write Once (Carefully), Run Everywhere (Conditionally)




Thrusts

* Two separate efforts

— RTSJ Test Suite

¢ For AFRL, In cooperation with The Boeing Co.
 Two goals

— Develop a set of requirements for Java platforms to be used for flight
applications

— Create a set of tests of verify that a platform meets those requirements

— Java Flight Software Prototyping

¢ Demonstrate the feasability of the RTSJ by developing a working attitude
control software module in Java,

— Based on real mission software architechture (DS1)
— Designed to meet real mission requirements

» Functionality

» Precision

» Performance

» Flight like platform




RTSJ Test Suite

* |Intended to exercise all required functionality of RTSJ
platform

— Threads

— Scheduling

— Memory Management
— Timing and Timers

— Asynchronous

— Dynamic Class Loading




RTSJ Memory Management

* Motivation

— In past flight missions, all memory allocation is done at initialization
time, and forbidden thereafter
» With robust memory management, this can be relaxed
» Easier and potentially more efficient
— Memory Management, (l.e. pointers) is one the major sources of
defects in flight software

« Java memory model largely protects developer from such errors
« Caveats

— Automated memory management induces latency into the system

* When picking a platform, garbage collection scheme(s) and memory areas
should be chosed and used wisely

— For now, may be harder to meet performance requirements




RTSJ Memory Management

 Test Types

— Object Allocation Performance
— CPU Throughput vs. Memory Area
— CollectionPerformance
— Collection Induced Latency
— Finalization Performance
« Alltests run in all (applicable) memory areas

— Stack

— HeapMemory

— LTMemory (Linear Time Memory)
— VTMemory

— ImmortalMemory




Environment

* Development

— Eclipse IDE

* Open Source, Freely Available http://www.eclipse.org

— Standard Sun JDK 1.2 compiler

* http://www.java.sun.com
* Runtime

— Intel Pentium 1l 400MHz w/ 128 MB RAM

— RTSJ Reference Implementation
* Timesys Real Time JVM
* http://www.timesys.com

— Timesys Linux GPL 3.0

— Note: This is not a deployable platform, it is for evaluation
purposes only




Results

- TBD




Flight Software Prototyping

* Goal - Demonstrate a working flight software system in Java as a
proof of concept

— Real-Time control

s Run closed loop with spacecraft simulation (DS1)
— Mission-critical performace

* 8 Hz control loop
— Flight-like platform

« CPU (PPC 750)

* Real-Time Linux
— VxWorks not a viable option for pure Java system

— Object-Oriented Design
« Keeping reuse in mind
* Maintain external interfaces




Architechture

Layered View

Flight Software Applications

Java Test Application

Attitude Control

Core Flight Software Modules

IPC

Java Timing Services Module

Device Drivers

Java Real-Time Spec complaint Virtual Machine

Operating System - Linux RT Kernel

CPU (PPC750)




Schedule

Begin ACS Design Work 4/1/02
Design Review 5/15/02
Real-time Java FSW prototype 9/1/02
« Other evaluation/analysis tools
9/1/02
Public (internal) Real-time Java prototype demonstration 9/20/02
Final report 9/20/02

EOY TIPR Package 9/20/02



Looking Ahead

« Make the lab aware that Java is an advantageous choice
for flight software development

« Look for (flight) missions which would benefit from using
Java for flight software implementation

* Develop library of reusable classes for mission-critical
software






