@MISS

JPL. Goddard Space Fligh

Java for Flight Software

Ricardo J. Hassan Il

Jet Propulsion Laboratory
California Institute of Technology
Software Engineering Technology Infusion Group

4th Quality Mission Software Workshop
Dana Point, CA, May 7-9 2002

Motivations

« Leverage advantages of Java programming language vs. C/C++

— Easier to use

— Fewer defects
« Automatic Memory Management

— Faster Development Time
— Available Libraries
— Strictly Object-Oriented

» Encourages better designs

— Write Once (Carefully), Run Everywhere (Conditionally)

Thrusts

* Two separate efforts

— RTSJ Test Suite

¢ For AFRL, In cooperation with The Boeing Co.
 Two goals

— Develop a set of requirements for Java platforms to be used for flight
applications

— Create a set of tests of verify that a platform meets those requirements

— Java Flight Software Prototyping

¢ Demonstrate the feasability of the RTSJ by developing a working attitude
control software module in Java,

— Based on real mission software architechture (DS1)
— Designed to meet real mission requirements

» Functionality

» Precision

» Performance

» Flight like platform

RTSJ Test Suite

* |Intended to exercise all required functionality of RTSJ
platform

— Threads

— Scheduling

— Memory Management
— Timing and Timers

— Asynchronous

— Dynamic Class Loading

RTSJ Memory Management

* Motivation

— In past flight missions, all memory allocation is done at initialization
time, and forbidden thereafter
» With robust memory management, this can be relaxed
» Easier and potentially more efficient
— Memory Management, (l.e. pointers) is one the major sources of
defects in flight software

« Java memory model largely protects developer from such errors
« Caveats

— Automated memory management induces latency into the system

* When picking a platform, garbage collection scheme(s) and memory areas
should be chosed and used wisely

— For now, may be harder to meet performance requirements

RTSJ Memory Management

 Test Types

— Object Allocation Performance
— CPU Throughput vs. Memory Area
— CollectionPerformance
— Collection Induced Latency
— Finalization Performance
« Alltests run in all (applicable) memory areas

— Stack

— HeapMemory

— LTMemory (Linear Time Memory)
— VTMemory

— ImmortalMemory

Environment

* Development

— Eclipse IDE

* Open Source, Freely Available http://www.eclipse.org

— Standard Sun JDK 1.2 compiler

* http://www.java.sun.com
* Runtime

— Intel Pentium 1l 400MHz w/ 128 MB RAM

— RTSJ Reference Implementation
* Timesys Real Time JVM
* http://www.timesys.com

— Timesys Linux GPL 3.0

— Note: This is not a deployable platform, it is for evaluation
purposes only

Results

- TBD

Flight Software Prototyping

* Goal - Demonstrate a working flight software system in Java as a
proof of concept

— Real-Time control

s Run closed loop with spacecraft simulation (DS1)
— Mission-critical performace

* 8 Hz control loop
— Flight-like platform

« CPU (PPC 750)

* Real-Time Linux
— VxWorks not a viable option for pure Java system

— Object-Oriented Design
« Keeping reuse in mind
* Maintain external interfaces

Architechture

Layered View

Flight Software Applications

Java Test Application

Attitude Control

Core Flight Software Modules

IPC

Java Timing Services Module

Device Drivers

Java Real-Time Spec complaint Virtual Machine

Operating System - Linux RT Kernel

CPU (PPC750)

Schedule

Begin ACS Design Work 4/1/02
Design Review 5/15/02
Real-time Java FSW prototype 9/1/02
« Other evaluation/analysis tools
9/1/02
Public (internal) Real-time Java prototype demonstration 9/20/02
Final report 9/20/02

EOY TIPR Package 9/20/02

Looking Ahead

« Make the lab aware that Java is an advantageous choice
for flight software development

« Look for (flight) missions which would benefit from using
Java for flight software implementation

* Develop library of reusable classes for mission-critical
software

