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Summary 

Arguments for or against a trend in the evolution of complexity are weakened by the lack 
of an unambiguous definition of complexity. “Physical complexity”, a measure based on 
automata theory and information theory, is a simple and intuitive measure of the amount 
of information that an organism stores, in its genome, about the environment it evolves 
in. It can be shown, both theoretically and experimentally, that physical complexity must 
increase in molecular evolution of asexual organisms in a single niche if the environment 
does not change. Responsible for this law of increasing complexity is natural selection, 
which acts as a natural Maxwell Demon in simple evolving systems. This law can be 
violated in co-evolving systems as well as at high mutation rates, in sexual populations, 
and in time-dependent landscapes. However, it turns out that these factors usually help, 
rather than hinder, the evolution of complexity. 
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Introduction 

Whether or not complexity increases in evolution is one of the central questions of 
evolutionary biology. Opinions about this subject vary, but generally belong to one of 
three camps. To the first it is obvious that complexity has increased, while the second 
claims there is not enough evidence to argue for or against an increase, and the third 
denies that “progress characterizes the history of life as a whole, or even represents an 
orienting force in evolution at all””’. Often, these camps disagree not only about the 
existence of a trend, but also on what type of complexity measure to use, and whether 
maximum or average complexity is pertinent. Most agree however that, by and large, 
nobody knows precisely what is meant by the word “complexity” when referring to a 
biological or anism. Indeed, while complexity measures abound (many of them invented 

can be understood to refer either to form and function, or to the sequence that codes for it. 
Functional (or structural) complexity is generally what we mean when we consider 
animals, but this seems to be the hardest measure to define. M ~ S h e a ( ~ ’  has studied several 
measures of structural and functional complexity, based on number of cell types, different 
limb-pair types, and even the fractal dimension of sutures in ammonoids, and found some 
evidence for a trend in these indicators, but nothing as conclusive as one might have 
anticipated. Also, while a trend can often be observed in the maximum, it tends to erode 
in the mean. Finally, complexity is often erroneously equated with “evolutionary 
success,”(’) a misconception that has led to many controversies. 

by physicists 5) ) their relationship to biology is not always clear. In particular, complexity 

The argument against a universal increase in complexity usually involves either a 
reference to the inordinate success of prokaryotes (and the fact that they likely represent 
the largest percentage of biomass on earth), or else examples in which adaptation has 
given rise to organisms that appear to have more complex ancestors in their direct line of 
descent. Neither of these observations runs contrary to the law of increasing complexity 
we shall be considering. In fact, as we shall see below, they are in perfect harmony with 
it, as long as it is understood that complexity is a relative, rather than universal, concept. 

It is hard to imagine that a universal measure for structural or functional complexity can 
be devised, given that organisms differ so greatly in form and function. However, all 
these differences are sidestepped when we consider the nucleid acid sequences from 
whence all creatures come. Of course, we understand that the difficulty of biology lies 
precisely in the intricacy of this map from sequence to function. Nevertheless, it is very 
likely that a properly defined sequence complexity should mirror the complexity of the 
organism that the sequence gives rise to. If this is so (and at this juncture this is only a 
conjecture) then the problem of defining structural complexity can be demoted to the 
problem of defining sequence complexity, which is naturally much simpler because 
sequences are amenable to a mathematical characterization. Many of the complexity 
measures introduced in Ref.‘” are in fact sequence complexities. Most of them, however, 
do not appear satisfactory from an intuitive point of view. One of the measures most 
often put forward as a candidate of sequence complexity, the Kolmogorov complexity 
(see, e.g., Ref.‘”), turns out to be a measure of the regulari@, rather than complexity, of a 
sequence. This implies that a random sequence is accorded maximum Kolmogorov 
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complexity, clearly not anything we would be interested in as a biologist, because 
random sequences do not give rise to organisms. 

Recently, I have introduced the concept of “physical complexity” into the literature.(4) 
This Complexity measure is carefully defined from an automata-theoretic point of view 
(just as Kolmogorov complexity was), but it has a very simple relationship to information 
theory, and turns out to be very intuitive. Furthermore, it appears to correspond exactly to 
that which biologists think is increasing when “self-organizing systems organize 
themselves”. Rather than starting with the mathematical definition, I will instead describe 
the intuitive notion, and connect it with the mathematical definition later. The latter is 
important to clarify the circumstances under which physical complexity can be measured, 
and to outline the assumptions and errors going into such an estimate. Finally, I show that 
physical complexity must increase in molecular evolution under certain circumstances(5), 
due to the actions of natural selection in the guise of Maxwell’s Demon. This will be 
illustrated with experiments conducted with digital organisms. Because the circumstances 
under which the law holds exactly seem so restrictive as to rule out all realistic situations, 
I discuss how the law of increasing complexity is manifested in the wild, and point out 
the role of co-evolution. Even though the law can be broken (as we know that it must and 
has been) we expect it to be responsible for the general trend that has led us from pools of 
replicating molecules, through prokaryotes, to eukaryotes and multi-cellular organisms. 

P h ys ica I Co m p I exi t y 

The physical complexity of a sequence refers to the amount of information that is stored 
in that sequence about a particular environment. For a genome, this environment is the 
one in which it replicates and in which its host lives, a concept roughly equivalent to 
what we call a niche. The definition of physical complexity must be distinguished from 
mathematical (or algorithmic, or Kolmogorov) complexity, which is only concerned with 
the intrinsic regularity (or, in this case, irregularity) of a sequence. The regularity of a 
sequence is a reflection of the unchanging laws of mathematics, and not of the physical 
world in which such a sequence may mean something. Information, on the other hand, is 
always about something. Consequently, a sequence may embody information about one 
environment (niche) while being essentially random with respect to another. This makes 
the measure relative, or conditional on the environment, and it is precisely this feature 
that brings a number of important observations that are incompatible with a universal 
increase in complexity in line with a law of increasing physical complexity. 

“Randomness” is in some ways the “flip side” of information, and is called “entropy” in 
information theory(6). Entropy is a measure of how much there is to know potentially, or 
if applied to a sequence, a measure of how much information a sequence could hold, and 
thus quantifies our uncertainty about the genetic identity of a randomly selected 
individual from a pool. It is useful to think of sequence entropy as the length of a tape, 
while information is the length of tape containing recordings. Measurement (Le., 
recording) turns empty tape into filled tape; entropy into information. As we shall see, 
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this is what happens during adaptation, and it is the force that drives the increase of 
complexity. 

Information is a statistical form of correlation, and thus requires, mathematically and 
intuitively, a reference to the system that the information is about. The sequence on your 
information-filled tape allows you to make predictions about the state of the system the 
sequence is information about. This predictive capability implies that your sequence and 
the system have “something in common,’’ that they are correlated. Your sequence will 
most likely not make predictions about any other system (unless the systems are very 
similar). If you do not know which system your sequence refers to, then whatever is on it 
cannot be considered information. Instead, it is potential infbrmation (a.k.a. entropy). 
This is the fundamental difference between entropy and information, often 
misrepresented in the literature(7). 

Information-theoretic measures of complexity have been considered before, only to be 
discarded because of incorrect applications of the concept. Most often, entropy is used as 
a candidate for information-theoretic complexity. From the previous discussion, we 
realize that the entropy of a sequence is the amount of information it could possibly carry. 
Of course, this is just the length of the sequence. But it was recognized early on that 
sequence length is not a good predictor of organism complexity (the C-paradox), an 
observation that has discredited information-theoretic approaches to complexity. Physical 
complexity, a true measure of information, does not suffer from this handicap. 

Nonmathematical, intuitive descriptions of complexity often make use of a concept very 
much akin to the one presented here. Most often, this is described as “genes embody 
knowledge about their niche” (Deutsch@)) or, as put eloquently by Wilson: “(Organisms) 
encoded the predictable occurrence of nature’s storms in the letters of their genes(’).” This 
is precisely what physical complexity measures, since physical complexity is information 
about the environment, which is used to make predictions about it. Being able to predict 
the environment allows an organism to exploit it for differential survival. Thus physical 
complexity translates into fitness for the organism. 

Let us now proceed to the mathematical definition of physical complexity. Such a 
definition is important because it immediately suggests how complexity can be measured 
in real adapting populations. I will refer to previous 
immediately relevant for the present non-technical discussion. 

for technical points not 

Technically, physical complexity is defined as the “shared Kolmogorov complexity” 
between the sequence under consideration, and a description of the environment in which 
that sequence is to be interpreted(4). The details of this definition are not of relevance to 
us here, in particular because this definition is not practical, since it does not allow the 
unambiguous determination of sequence complexity from available data. However, it is 
worth mentioning that it is an instance of “effective complexity,” a concept 
independently developed by Gell-Mann and Lloyd“”. When physical complexity is 
averaged over an ensemble of sequences, on the other hand, it does become practical, 
because average “mutual” (or “shared”) Kolmogorov complexity is, in the limit of 
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“perfect coding”, simply equal to the amount of information the ensemble has about the 
environment to which it adapts. Perfect coding, in information theory, refers to the limit 
in which information is coded without loss or waste into a sequence. If this limit is 
achieved, information is perfectly compressed. Needless to say, this limit is rarely (if 
ever) achieved in nature, and we will be considering the consequences of imperfect 
coding (in the form of “epistasis”) below. 

At this juncture, it is sufficient to think of the physical complexity of a sequence as the 
amount of information that is coded in an adapting population of such sequences, about 
the environment to which it is adapting. This information is given by the difference 
between the entropy of the population in the absence of selection, and the entropy of the 
population given the environment, that is, given the selective forces that the environment 
engenders. In the section below, I give a technical exposition of the complexity measure. 
Readers who are satisfied with the intuitive description can skip this section without loss. 

Measuring Complexity 

Because entropies of populations can be measured, the average physical complexity is a 
practical measure. The entropy of an ensemble (Le., a population) of sequences X,  in 
which sequences si occur with probabilitiesp;, is denoted by the symbol H(X) and 
calculated as 

The sum in (1) goes over all the different genotypes i in ensemble X.  Whether or not 
selection acts on sequences of the ensemble is crucial for the entropy. When selection 
does not act, all sequences are equally probable in ensemble X (because in the absence of 
selection no sequence has an advantage over another). In this case, the probabilities pi 
are each equal to the inverse population size, and the entropy takes on its maximal value 

N 

ffmaX(x) = - ~ ( l / N ) l o g ( l l N ) = l o g N  . (2) 
i= 1 

In an infinite population, the number of all possible genotypes is given by the size of the 
monomer alphabet, D, to the power of the length of the sequence, L,  Le., 

If we agree to take logarithms to the base of the alphabet size, then the unconditional 
entropy of a population of sequences (that is, the entropy in the absence of selection) is 
just equal to the sequence length: 
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This result is intuitively simple: the amount of information that can potentially be stored 
in a sequence of length L is just equal to the sequence length. 

In the presence of selection, the probabilities to find particular genotypes i in the 
population are highly non-uniform: most sequences do not appear (because either they 
simply never occur, or because their fitness in the particular environment vanishes), while 
a few sequences are overrepresented. As described above, the amount of information that 
a population X stores about the environment E in which it evolves is then given by the 
difference: 

I ( X  : E )  = H,,,, - H ( X  I E )  = L + z p ,  logp, . ( 5 )  
I =  I 

Here, I have introduced the standard notation I ( A  : B )  for the entropy shared between A 
and B (Le., the information that A has about B), and the symbol H ( A  1 B)  for the 
conditional entropy of A given B. Note that while X in the above formulae represents an 
ensemble of sequences, E stands for one particular environment, not an ensemble of 
environments'. 

The probabilities p ,  that go into the calculation of the conditional entropy in ( 5 )  are in 
fact conditional probabilities, because the probability to find genotype i in environment 
E is not equal to the probability to find the same sequence in, say, environment E'. These 
probabilities can in principle be estimated by simply counting the abundance of each 
genotype i in the population, n,, so that 

where N is the population size. Unfortunately, the error committed by approximating the 
probabilities by the relative abundance gives rise to a sizable error in the entropy of 
Eq.( l), so large in fact that the estimated entropy is only meaningful for essentially 
infinite population sizes('"l*). Because we need the entropy Eq.(l) in order to estimate 
the physical complexity, we approximate it instead by summing up the entropy at every 
site along the sequence. This is done by aligning all sequences in the population, and 
obtaining the substitution probabilities at each site. In this manner, we can obtain thepev- 
site entropy 

W j )  = - c P, ( j )  1% P, ( A  (6) 
r=G,C, A , 7  

for s i te j  by compiling the probabilities to find nucleotides i at positionj. The entropy 
Eq.( 1) is then approximated by summing over all sitesj in the sequence, i.e., 

Because E is not an ensemble but a particular instance, I ( X  : E )  is strictly speaking a 
difference of entropies rather than information in the sense of Shannon(@, but I will use 
the term information anyway. 
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/ = I  

so that an approximation for the physical complexity of a population of sequences of 
length L is: 

with H ( X )  given by Eq. (7) above. 

Technically, this is only a good approximation if there are no correlations between sites 
in a sequence. Such correlations manifest themselves by epistatic interactions (epistasis) 
between mutations. It is well known that such epistasis exists (see Ref.(13) for a review), 
in particular in populations that are not well equilibrated. Fortunately, as described in the 
appendix of Ref.‘”, it is possible to correct for this using information about the strength 
of directional epistasis in the gene under consideration. In the following, we are going to 
assume that epistatic effects are sufficiently weak that the corrections can be ignored2. 

The Natural Maxwell Demon 

Darwinian evolution is often described as a mechanism that increases the fitness of a 
population. Such a portrayal is problematic because the fitness of a population can 
depend on many parameters and is difficult to measure. Here, I show that Darwinian 
evolution increases the amount of information a population harbors about its niche (and 
therefore, its complexity). The mechanism by which evolution achieves this is best 
illustrated with the metaphor of Maxwell’s Demon, a hypothetical creature invented by 
James Maxwell(’4) to exemplify a possible threat to the second law of thermodynamics. 
This law guarantees that all isolated systems evolve from order towards disorder, that is, 
from a state of low entropy towards higher entropy. Incidentally, Darwinian evolution 
was long thought to violate precisely this theorem, since it appeared to produce more 
ordered states from less ordered ones, and protected the ordered ones from the decay 
ordained by the second law. However, evolving populations are not isolated (as stipulated 
in the conditions under which the second law holds), but rather are in contact with the sun 
that provides the power to keep them at low entropy. 

* Epistasis is more problematic in asexual organisms (and at low mutation rates) because 
asexuals are at maximal linkage disequilibrium, and therefore strong epistasis in a gene 
that could be coded in a much shorter fashion can prevent this compression from 
happening (perhaps because it would take too many mutations to arrive to a state at 
which the gene could be compressed). Recombination can be thought of as a way to 
improve coding efficiency, as it breaks up linkage disequilibrium. In any case, 
misestimates of complexity due to epistasis can be corrected for by the formula in the 
Appendix of Ref.‘”. 
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FIG. 1. Maxwell’s Demon at work 

Maxwell’s Demon, on the contrary, seemed to be able to create ordered states without 
expenditure of energy. Consider the two halves of a vessel in the image in Fig. 1, which 
is a period depiction of the Demon at work. Initially, the halves are at the same 
temperature and pressure, a condition known as “thermodynamic equilibrium” in the 
lingo of physics. Imagine that there is a trap door separating the two halves, cunningly 
operated by the Demon. Equipped with a device that can measure the velocity of 
molecules headed for the door, he can make “intelligent” decisions about whether or not 
to open the door for the molecule in question. Should he open the door only for the fast 
molecules, say, and keep it closed for the slow ones, we can imagine that he can indeed 
create a disequilibrium between the two halves, such that the half with the slower 
molecules is in a more ordered state, in violation of the second law. While it was shown 
later that the operations of the demon do require energy after all(151, it does represent a 
convenient metaphor to illustrate the dynamics of natural selection. 

In the case of Maxwell’s Demon, measurements allowed the Demon to reduce the 
entropy of one half of the vessel. If we substitute information-theoretic uncertainty for the 
thermodynamical entropy, we can view evolution as a process that reduces the 
randomness (or uncertainty) inherent in a non-adapted genome by making judicious use 
of measurements performed on the environment, the niche. These measurements are not 
of the ordinary kind, though. Imagine each mutation, instead, as a candidate measurement 
(much like the molecule flying toward the trap door). A perfect natural Maxwell Demon 
then evaluates each mutation with respect to the immediate benefit for the population, 
and either rejects it (if it did not provide a fitness advantage), or accepts it (if it did). 
Note, however, that natural selection does not operate this perfectly: According to 
standard population genetics, beneficial mutations are fixed within the population with a 
probability of twice the selective advantage,(16) while neutral mutations also have a 
probability of “passing through the trap door”. For finite population sizes, even 
deleterious mutations have a probability of becoming fixed (see below). 

8 



If the natural Maxwell Demon, Le., natural selection, would operate perfectly, the 
complexity of a population could never decrease. As we have seen, the real Demon is 
imperfect, his measurements are imprecise and his actions probabilistic. Nevertheless, 
under normal conditions this dynamics must lead to an information increase on average. 
There are some situations, however, in which the Demon’s handiwork crumbles 
altogether. We shall examine each of these important exceptions in detail below. Let us 
however first observe the Demon at work, in a population of digital organisms adapting 
to an artificial world, inside a computer. 

Evolution of Complexity in Digital Organisms 

Because evolution is an exceedingly slow process, it is difficult to witness the emergence 
of novelty and the concomitant increase in complexity in conventional experimental 
populations of animals, plants, or even bacteria. This obstacle disappears if we have 
access to a form of life with a much shorter generation time. Digital organisms are just 
such a form of life: they are computer programs that self-replicate, mutate, and compete 
for r e s o u r ~ e s ( ’ ~ - ~ ~ ) .  Because digital organisms must copy their entire genome to survive 
within the computer’s memory, and compete for space and computer time with other 
programs to which they are related by descent, experiments with populations of digital 
organisms are to be contrasted with more conventional numerical simulations of the 
evolutionary process. These organisms, because they are defined by the sequence of 
instructions that constitute their genome, are not simulated. They are physically present in 
the computer’s memory, and physically live there. The world to which these creatures 
adapt, on the other hand, is simulated, which allows the digital experimenter unparalleled 
precision in the planning, execution and analysis of his experiments. 

In creating this virtual world, we do not specify a target sequence that represents the 
pinnacle of success. Instead, rewards (in the form of bonus execution time for the 
programs that reap them) are specified for phenotypes only, and thus natural selection 
acts on those. Because the underlying genetic space (the space of computer programs 
written in this particular language) is so high-dimensional, a large number of genotypes 
usually map to any particular phenotype, making the identification of a global genotypic 
optimum practically impossible. Phenotypes in this computational world are 
computational in nature, as we shall see presently. 

In order to survive in their world, digital organisms must replicate fast, and use the 
available resources efficiently. The efficient use of resources concerns chiefly the 
utilization of the primary “energy source” for digital organisms: CPU (central processing 
unit) time. Without CPU time, no digital organism can survive, since they need to copy 
themselves to survive, and without the code being executed, no copying takes place. Fig. 
2 below shows a sketch of the world that is created inside of a standard computer by 
running the Avida software(”), which is used for all the experiments described here. 

9 



A 

I 

I’ 

, , 
I 

Genome Registers 

FIG. 2 (A) Each organism is executed on its own virtual CPU, which consists of an 
instruction pointer, registers (blue), two stacks (green), as well as input/output buffers 
(yellow). The genome of each organism is circular, like those of most bacteria and some 
biochemical viruses. (B) Population of digital organisms living in a two-dimensional 
artificial world with periodic boundary conditions, coloured according to their genotype. 
Because newborn programs are placed next to their progenitors by the Avida program, 
clones of identical organisms spread in roughly circular fashion. 

Using random numbers that the organisms can read into their CPU with an appropriate 
instruction, programs can perform computations. Clearly, only very particular sequences 
of instructions perform meaningful computations on input numbers. In this sense, we can 
view such a sequence as the equivalent of a nucleotide sequence coding for an enzyme 
that catalyzes a reaction, involving two input chemicals, producing the energy-rich 
“output” chemical. In the evolutionary experiments described below, the rewarded 
computations are logical operations (such as AND, OR, NOR, etc.) performed on binary 
input strings. During adaptation, many of these “computational reactions” are evolved by 
the digital organisms, and used in a coordinated manner to accelerate their reproduction. 
In that sense, it can be said that these computational genes play the role of a 
“computational metabolism”, quite analogous to the enzyme-based biochemical 
metabolisms. The “monomers” from which these programs are constructed (the 
instruction set) is custom-built for the CPU described above. For these experiments(’), the 
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alphabet has 28 possible instructions, one of which is a logical primitive: NAND (the 
“not-and” operation). 

Consider the behaviour of fitness over time (depicted here is the replication rate of the 
fastest replicator in a population of 3,600 adapting programs whose sequence length is 
kept fixed at 100, and seeded with a single simple replicator) in Fig. 3. Time is here 
measured in arbitrary units called “updates”, where one update is the time it takes to 
execute about 30 instructions for each of the 3,600 programs in the population. One 
generation corresponds to between 10- 100 updates in such populations. Note the sudden 
increase in fitness around update 70,000. At this point in time, a mutation must have 
created a new genotype much superior to all others. Following our discussion, we expect 
this increase in fitness to be associated with an increase in information, so that this 
genotype is a good candidate to inspect for an increase in complexity. 

10‘ 
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FIG. 3 Replication rate of fastest replicator in a population of 3,600 adapting digital 
organisms. 

A plot of the approximate complexity (calculated according to Eq. (8)) can be seen in 
Fig. 4, where it is apparent that the complexity steadily increases, except for a period at 
the beginning and shortly after each transition. Both observations can easily be explained. 
During the initial growth of the population, most instructions appear fixed in the 
population because mutations have not had sufficient time to randomize the “non-coding 
instructions”. Also, evolution may struggle with a genome (hand-written by the 
experimenters) that is extremely ill-suited to the environment, but also difficult to “re- 
code.” It may simply be “badly compressed”, and evolution takes a while to find a better 
way to represent the same information. After each transition, the estimated complexity 
overshoots its equilibrium value due to the “hitchhiking” effect: neutral instructions 
hitchhiking on beneficial ones appear fixed, until mutations can randomize them again. 
This is particularly clear in the transition around 70,000 updates in Fig. 4, to which we 
now turn our attention. 
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FIG. 4 Approximate complexity according to Eq. (8) for a population adapting to a 
complex world. The red-dashed lines indicate the times chosen as “pre” and “post”- 
transition, at which the genotypes analyzed in Fig. 5 were extracted. 

Because of the hitchhiking effect mentioned earlier, the amount of information gained in 
the transition highlighted in Fig. 4 is not measured very accurately, simply because 
equilibration (required for an accurate estimate) takes longer than the time until the next 
transition. To get a more accurate estimate of the per-site entropy Eq. (6), we can extract 
dominating genotypes at just before and after the transition. In order to determine 
whether an instruction is entropy or information, we create all one-point mutants of the 
organisms and obtain their fitness in isolation. In a sense, this is equivalent to building 
virtual, fully equilibrated populations. If a mutation does not change the fitness or 
increases it, it is deemed viable, while all deleterious mutations are classified together 
with the lethal ones, because they have a low probability of appearing in subsequent 
generations. After this has been done for each locus, the per-site entropy at locus x i  can 
be estimated as 

where Nviable is the number of neutral or beneficial substitutions at that locus. In equation 
(9), the logarithm is taken to the base of the alphabet size, thus ensuring that our measure 
for the “randomness” at each location is normalized to lie between zero and one. If we do 
this for two organisms before and after the transition, we obtain the per-site entropies of 
Figure 5.  It is interesting to observe the changes in substitution pattern between these two 
genomes. 

The most radical change seems to have taken place in the region between instructions 66 
and 73, where about seven instructions that were moderately variable (in the virtual 
population) seemed to have turned “cold”, i.e., they have turned vulnerable to mutations. 
This is precisely the Maxwell-Demon mechanism pointed out above: entropy is 
transformed into information. There are other places in the genome where “hot” 
instructions turned “cold” and vice versa. The net gain in information is about six 
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instructions, which is close to the number that we arrive at if we take into account 
corrections for epistasis(5). 

FIG. 5 Each instruction in the two genomes in (A) and (B) are coloured according to their 
per-site entropy (scale in the middle). An instruction that is fixed in the population has 
entropy close to zero (blue), implying that a mutation of that locus produces a non- 
functional organism. On the contrary, loci that can be mutated with impunity have 
entropy one (red). The genome (A) was extracted from the population after 2,99 1 
generations (the left of the two red-dashed lines in Fig. 4), while genome (B) was 
extracted just after the transition at 3,194 generations (right dashed line in Fig. 4). 

Causes for Complexity Declines 

In this section I discuss the mechanisms by which complexity can fail to increase, or even 
crash. The most obvious origin of a complexity catastrophe is a drastically changing 
environment. As discussed above, physical complexity is a quantity defined with 
reference to an environment. If the changes in the environment are fast and extreme, not 
only will the organism be maladapted to this new environment, but also its measurable 
physical complexity will have decreased commensurately. High mutation rates can also 
lead to a loss of complexity. We can imagine high rates of mutations within the 
Maxwell’s Demon metaphor as molecules flying towards the door separating the two 
halves of the vessel at a very high rate, too high for the Demon to control the door 
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accurately enough to prevent some molecules from escaping the vault he attempts to 
protect. In evolutionary theory, this process is known as the “hitchhiking” of deleterious 
mutations on beneficial ones. In small populations, high mutation rates are even more 
problematical, because the Demon becomes sloppy and information can leak through the 
trap door. In the extreme case (critically high mutation rates) the Demon can be 
paralyzed, leaving the door open (selection becomes inactive), a phenomenon known as 
the “error catastrophe” in the molecular evolution literature(24). 

As is well known, sexual recombination can also lead to an accumulation of deleterious 
mutations, which is a signature of the Demon’s malfunction. While asexual populations 
can purge deleterious mutations with certainty (as long as the mutation rate is not too 
high and the population size too small, as described above) populations of sexual 
organisms are at risk of gene loss at any mutation rate if deleterious mutations interact 
antagonistically(”). Finally, co-evolution between species occupying different niches is a 
special case of a changing environment (for each of the interacting species), and thus 
opens up the possibility of escaping the inexorable growth of complexity dictated by the 
Demon. In this case, however, there are good reasons to assume that, for the most part, 
co-evolution will aid, rather than hinder, the evolution of complexity, because co- 
evolution is a slow rather than drastic environmental change, creating new niches that 
provide new opportunities for adaptation. I discuss complexity growth in ecosystems 
briefly below. 

Evolution of Ecosystem Complexity 

With the present tools we cannot, strictly speaking, make any prediction about a trend in 
the complexity of entire ecosystems of interacting niches, since the concept of physical 
complexity only makes sense within an organism’s own niche. An increase in complexity 
can only be observed in any particular niche, for the amount of time that this niche exists 
unchanged. Furthermore, the complexity of an organism can never exceed the potential 
complexity of the niche. Because niches do change, and because many niches of differing 
potential information coexist at the same time, we cannot expect that a trend in one niche 
will persist forever, nor that the same trend will be observable in all currently existing 
niches. In one niche, for example, its inhabitants may have incorporated all of its 
potential information into their genome (such as some prokaryotes), while another may 
just have been invaded so that its inhabitants show rapid gene turnover. The coexistence 
of niches with different entropy (different potential complexity) explains the coexistence 
of organisms with differing complexity. 

Should we not expect an overall trend if evolution produces more and more diverse 
niches with more and more potential information? This question addresses the issue of 
co-evolution, and whether this process indeed produces niches with more and more 
entropy (which could then host, in turn, organisms with more and more complexity). This 
question is complicated by the fact that co-evolution necessarily produces changes in an 
organism’s niche, which can reduce an organism’s complexity. In general, a change in 
niche will almost always produce a decrease in physical complexity, because only in the 
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most rare circumstances will the change be “just so” that it converts an entropic sequence 
into an informational one. However, if the change in niche makes it richer (Le., produces 
features that are awaiting discovery), then following the initial decline in complexity the 
organism can enter a period of adaptation that can take it into realms of complexity 
hitherto unattainable, because the potential complexity of the niche has increased, an 
organism’s amount of information about a niche can never exceed the amount of 
potential information in it. 

Thus, we have to look at the process of co-evolution and its capacity to create more 
complicated environments as the possible unifying process that could give rise to an 
overall trend. Unfortunately, the mathematics of information in co-evolving 
environments appears as yet too daunting to make a prediction about whether this is the 
case or not. It seems plausible to me, but it is clear that counterexamples can be 
manufactured where co-evolution gives rise to catastrophic extinctions, which reduce the 
environment’s complexity, and necessarily the physical complexity of its inhabitants at 
the same time. In such a formalism, the “total complexity” of an ecosystem would have 
to be defined as the mutual entropy of all organisms, about each other and the world they 
live in, a formula that is difficult to write down, and a quantity even more difficult to 
measure. 

Conclusions 

In order to be able to speak about complexity, we must define it. In this review, I have 
presented a mathematical definition of sequence complexity that has a very intuitive 
interpretation for biological genomes, as the amount of information a population stores 
about the environment in which it lives. With this definition, we can address the issue of 
a trend in the evolution of complexity. By showing that natural selection in a niche is 
equivalent to the dynamics of Maxwell’s Demon, it possible to show that, within that 
niche, physical complexity must increase if the environment does not change. 

While the Maxwell-Demon mechanism can fail in just about all those ways in which we 
are accustomed to see natural selection fail, it is highly likely that the mechanism of 
interacting niches in an ecosystem will ultimately lead not only to a trend within each 
niche, but also in a trend in the overall (“total”) complexity of an ecosystem. Physical 
complexity tracks the performance of Maxwell’s Demon perfectly (it increases if the 
Demon functions accurately, and decreases if he fails). Still, this measure of complexity 
does not translate to adaptation. An organism well-adapted to a simple niche can have a 
lower physical complexity than an organism badly adapted to a complicated niche. Thus, 
adaptation reflects only the degree to which the potential complexity of the niche is 
reflected in the physical complexity of the organism, and certainly does not allow 
complexity comparisons across niches. 
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