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An application of the new optimization algorithm called Static/Dynamic 
Control (SDC) to design low-thrust escape and capture trajectories is pre- 
sented. SDC is a general optimization method that is distinct from both 
parameter optimization and the calculus of variations. Trajectories are in- 
tegrated with a multi-body force model and feature ~ ~~~~ solar electric propulsion 
with a speEifiCimpdG that is a function of the engine throttle. Test prob- 
lems include interplanetary scale trajectories that capture or escape at the 
Earth and Mars. Optimizing capture and escape trajectories with a multi- 
body force model results in a significant improvement in the mass delivered 
compared to  existing two-body formulations. A variety of optimal escape 
and capture trajectories types are identified and classified. Three-body 
(e.g. Sun and Earth gravitating) optimal escape and capture is compared 
to four-body (e.g. Sun, Earth, and Moon gravitating) optimal escape and 
capture. SDC is robust for this appiication and does not require a good 
initial guess. 

1. INTRODUCTION 

Low-thrust electric propulsion is increasingly being selected as the propulsion system of choice for future 
high AV interplanetary missions.[lI The higher efficiency of electric propulsion compared to traditional 
chemical propulsion results in larger payload delivered or shorter flight times. The successful Deep Space 1 
mission demonstrated the reliability of electric propulsion. 

Optimizing low-thrust trajectories and, in particular, trajectories that include escape and capture is 
inherently difficult. Low thrust engines typically operate for days, months or even years. The continuous 
operation associated with low thrust significantly increases the optimization complexity. Long continuous 
thrusting renders approximations and tools used for chemical propulsion trajectories inaccurate or useless. 
High fidelity modeling of escape and capture requires a multi-body force model. However, a multi-body 
force model will only further compound the optimization complexity. To fully optimize an escape or capture 
trajectory, the origin or destination of the trajectory must be taken into account. Typically this involves 
an interplanetary scale trajectory leg. However, optimizing a trajectory involving both an interplanetary 
leg and a planet centered spiral introduces two very different time and distance scales into mathematical 
formulation. Widely varying time and distance scales are known to create difficulty for optimization. 

Many researchers have sought to  avoid the aforementioned difficulties by using one or more simplifying 
assumptions. A common method is to  use a two-body approximation and/or a divide and conquer approach 
for escape and c a p t ~ r e . [ ~ > ~ ]  For example, an Earth to Mars capture trajectory can be roughly approximated 
as two separate problems. First, an optimal interplanetary trajectory from Earth to Mars is obtained such 
that the incoming V, at Mars is near zero. Second, a Mars centered spiral problem is solved. The spiral 
problem begins with two-body energy of zero and ends with the target capture orbit around Mars. Although 
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two-body formulations are much simpler to  solve, they do not take full advantage of the strong multi-body 
effects that occur near zero energy, and they can not optimize the trajectory end-to-end. The results in 
this paper demonstrate that the optimization of trajectories of this type should not be separated into two 
or more independent problems. There is a significant performance penalty for separating the problem near 
zero energy. 

The high fidelity optimization of low-thrust escape and capture with a multi-body force model is the 
main objective of this research. It is also an objective of this research to  optimize trajectories that involve 
both an interplanetary leg and planet centered spirals without dividing the trajectory up into subproblems 
(based on length and time scales) and optimizing each independently. The research presented in this paper 
is an extension of earlier research[*] into trajectories that are inherently three-body problems (planet, Sun, 
and spacecraft.) This research focus on trajectories that are inherently four-body problems (planet, Sun, 
Moon, and spacecraft). 

An important feature of the SDC approach is its ability to exploit multi-body phenomena. It is not 
necessary to  specify intermediate flyby bodies or multi-body interactions on input. SDC can incorporate 
Tfficient interactions on its own. This is in contrast to many existing optimization methods. SDC does not 
require a good initial trajectory guess to  begin the optimization. SDC’s ability to begin with poor guesses 
and locate favorable interactions results in the identification of non-obvious, yet highly efficient four-body 
escape and capture trajectories. 

2. APPROACH 

Existing methods for optimizing low-thrust trajectories are classified as either direct or indirect. Direct 
approaches parameterize the trajectory a d  sdve the parameterized problem using a gradiefit based nonlinear 
programming method, or a hueristic method such as simulated annealing. Direct methods typically remove 
the explicit time dependence in the optimal formulation by parameterizing the trajectory. Indirect approaches 
are based on the calculus of variations, resulting in a two point boundary value problem.i5I Indirect methods 
do not remove the explicit time dependence of the trajectory problem, rather it is soived as an optimal 
control problem. Calculus of variations methods are often limited to  a single body (Sun or planet) force 
model due to the sensitivity of the method. 

The optimization method used in this research is called Static/Dynamic Control or SDC.16] SDC is a 
new, general optimization algorithm which was derived to  address a general class of problems with the same 
structure as low-thrust optimization. SDC best fits into the direct method category. However, unlike other 
direct methods, the explicit time dependence of the optimization problem is not removed by parameterization. 
The SDC optimization algorithm is a form of optimal control. Unlike many other optimization approaches, 
SDC can be used with the highest fidelity space flight simulators available. SDC is a robust optimization 
method that can handle the large changes in length and time scales that occur in problems with both 
interplanetary legs and planet centered spirals. 

The trajectories analyzed include escape from a high Earth orbit to a rendezvous with Mars and escape 
from a high Mars orbit to capture into Earth orbit. Two-body capture and three-body capture (Moon not 
gravitating) are compared to four-body capture (Moon gravitating) performance. 

2.1 The General SDC Problem Structure 

SDC is a general optimization method designed to solve a class of mathematical problems. The SDC 
optimization algorithm is based in part on the Hamilton, Bellman, Jacobi dynamic programming equation.[7] 
Unlike traditional differential dynamic programming methods, SDC is constructed to  solve highly nonlinear 
and non-convex problems with a dual dynamic and parametric structure. Optimal solutions generated by 
SDC satisfy both necessary and sufficient conditions of optimality. 
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Three distinct variable classes are recognized by SDC. The first is the dynamic control vector which is a 
function of time. The dynamic control is analogous to control in optimal control theory. The  vector v( t )  is 
used to represent the dynamic control at time t .  The second variable class is the static control vector which 
can be thought of as the control in parameter optimization. The vector w is used to represent the static 
control. Both the static and dynamic control encompass design variables that are under direct control by 
the engineer. In addition to  the static and dynamic controls, SDC recognizes a time dependent state vector. 
The state vector encompasses variables not under the direct control of the engineer. The vector z ( t )  is used 
to represent the state a t  time t .  

The general objective or cost function of SDC can be written as the addition of a time-integrated cost 
and a sum of point-in-time costs: 

N 

J = lotN F(z( t ) ,  v( t ) ,  w, t)dt + G(z(t i ) ,  v(t i) ,  w ,  t i ,  i). 
i=l 

The goal of SDC is to  optimize J by choosing the optimal or “best” ~- dynamic control v ( t )  at  all time instants 
t E (t0,tN) simultaneously with thebptimal static control w. The objective J can be either minimized or 
maximized in value. The general functions F and G in Eq. (1) are selected to best represent the design 
and control objectives for a specific application. The times t, are assumed to lie between t o  and tN for 
i = 1 ,2 ,  ..., N - 1. The functions F and G are required to be twice continuously differentiable with respect 
to IC, v,  and w. The functions F and G do not need to be continuous in time t .  

In addition to the objective Eq. (l), SDC requires an ordinary differential equation which describes the 
time evolution of the state vector z, and a function that specifies the initial state z( t  = t o ) :  

The &te fiunction T is required to be twice continuous!y differentiable with respect t~ z, z’, and w. R=svever, 
LIIV SLCLLV i u i u i u n  1 uues not need to  be coniinuous in time t .  The initiai condition can be given and fixed, or 
it can be a function of the static control w. The function I7 is required to be once continuously differentiable 
with respect to w. 

1-1- f... -~~ m -I ~ ~ 

SDC optionally allows two types of constraints on the formulation Eqs. (1) and ( 2 ) .  The first type is 
ordinary constraints of the general form: 

L(z ( t ) ,  w(t), w ,  t )  2 0 andlor K ( z ( t ) ,  v ( t ) ,  w, t )  = 0,  (3) 

The linear or nonlinear vector functions L and K are selected to  represent constraints on the engineering 
problem. An example of a constraint of this type is a minimum allowed distance between the Sun and a 
spacecraft to avoid spacecraft overheating. 

The second type of constraint SDC allows are “control dynamic” constraints. Control dynamic con- 
straints represent any physical or practical engineering constraints on the time evolution of the dynamic 
control vector w(t). The control dynamic constraints have the general form: 

I f ( W , W , t , l )  for t = t o  to tl I 

I f(UN,W,t,N) f o r  t = t N - 1  to tN. I 
The vector functions f(ui, w, t ,  i) are selected to properly represent the limitations on the time evolution of 
v( t ) .  The number of periods N may be chosen arbitrarily. The functions f are parameterized by a parameter 
vector ui, the static parameter vector W ,  and time t .  The functions f can be used to  effectively limit or 
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constrain the SDC algorithm to consider only solutions v ( t )  which are of the form of Eq. (4). The time 
intervals ti to ti+l are called “periods.” The dynamic parameter vector ui is constant within each period i, 
i = 1 , 2 ,  ..., N .  For example, the simplest useful set of functions f is f (ui, w, t ,  i) = ui. The dynamic control 
vector v ( t )  may be optimized such that v ( t )  is constant over each period, allowing changes only at period 
interfaces ti. Alternatively, v ( t )  may be subject to a dynamic limitation that allows v ( t )  t o  vary within each 
period, either continuously or discontinuously. 

If SDC is used with control dynamic constraints, then the algorithm is called the period formulation of 
SDC. If no control dynamic constraint is used then the algorithm is called the fully continuous formulation 
of SDC. In this research, the period formulation of SDC was used to constrain the trajectory optimization 
to only allow changes in the thrust direction and magnitude at regular time intervals. The regular time 
intervals represent the practical limitations of spacecraft control resulting from communications and/or duty 
cycles. 

2.2 Application of SDC to Trajectory Optimization 

In this application, the state vector x ( t )  is defined to  be the spacecraft state at any given time t. The 
components of the state vector x ( t )  are defined as follows, 

x ( t )  = 

x coordinate of spacecraft 
y coordinate of spacecraft 
z coordinate of spacecraft 
x velocity of spacecraft 
y velocity of spacecraft 
z velccitjl c f spacecraft 
mass of the spacecraft. 

The Jxrqamic -J - centre! v(t\ J is dcfined to be the electric propulsion thrirst vector, 

1 x component of thrust  
y component of thrust  
z component of thrust .  

The components of the static control vector w are defined to be 

1 Date of Earth  launch 
total f l i g h t  t ime. 

w =  [ ;; ] = [ (7)  

The SDC algorithm is not limited to the definition Eqs. (5), (6), and (7). Additional control and state 
dimensions can be added. For example, the static control w could be augmented with design parameters 
like solar array size, launch V, components, or forced intermediate flyby dates. The state vector x could be 
augmented with a state representing the total spacecraft radiation dose. 

The equation used to describe the time evolution of the state is 

dx - = T ( x ,  v, w,  t )  = z7 t 
dt A 

3 
x 7 ( t )  

L 

x velocity of spacecraft 
y velocity of spacecraft 
z velocity of spacecraft 

x acceleration of spacecraft 
y acceleration of spacecraft 
z acceleration of spacecraft 

mass flow rate 
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The mass flow rate m is provided by a polynomial fit to  the performance of the NSTAR 30-cm ion thrusterls], 
a version of which was used on Deep Space 1. The specific impulse is not constant, but depends on the 
engine throttle level. 

The function r ( w )  used in this research provides the position and velocity of the spacecraft in some 
specified initial captured orbit at either Mars or Earth. 

Constraints of the form of Eq. (3) are used to constrain the thrust and reach intermediate and final 
target bodies. The maximum thrust is constrained by the performance of the thruster(s) and the power 
available from the solar array at a given heliocentric radius. The target final state used in this research is 
either an orbital energy, a circular orbit, or a massless rendezvous constraint. The form of the fixed final 
energy constraint used in this analysis is 

The energy Etarget is the final orbital energy with respect-to the target body. The relative velocity between 
the spacecraft and the target body is urez = Uspacecra f t  - U b o d y  where uspacecraft = { Q ( ~ N ) ,  q , ( t ~ ) ,  2 6 ( t N ) } .  

The parameter jLbody  iS the gravitational constant of the target. The variable TTel  = T s p a c e c r a f t  - ?‘body is the 
separation between the spacecraft and target body. When constraint Eq. (9) is enforced, the optimization 
will generate an optimal trajectory that achieves a specified orbital energy Etarget. A circular orbit is 
achieved by using three separate constraints of the form of Eq. (3). 

I Irrd 1 1  = I l r spacecra f t  - T b o d y  I I = R t a r g e t  l l u r e l l l =  urel . T r e l =  0. (10) 
rTP,l 

The first constraint requires the given circular orbit radius Rtarget. The second constraint requires the 
relative velocity magnitude between the spacecraft and body to be consistent with a circular orbit. The 
third constraint requires the relative velocity to be perpendicular to  the separation vector. The form of the 
massless rendezvous constraint (two-body approximation of capture) is 

2 1 : 3 ( t N )  = rbody 24:6 ( t N )  = w b o d y  (11) 

where the vector position of the target body T b o d y  and the vector velocity u b o d y  are given by the JPL DE405 
ephemeris. This constraint is used to compare the performance of optimal two-body capture to  optimal 
multi-body capture. The objective used for comparisons was to maximize the final spacecraft mass q ( t ~ ) .  

3. RESULTS 

3.1 Mars Escape Spiral to Earth Capture Spiral 

The Mars escape to Earth capture trajectory begins in orbit around Mars on April 15, 2005. The initial 
Mars orbit has eccentricity of .05, a semi-major axis of 45,000 km, and an inclination of 5 O  relative to the 
ecliptic. The spiral at Mars changes little between test cases. Some Mars spirals include a short coast, some 
do not, but all have the same number of revolutions to  escape. Figure 1 is a plot of a typical Mars escape 
spiral. The Mars escape is used as a plausible trajectory origin (Mars sample return), but was not the focus 
of this investigation. The focus is on the capture into the Earth-Moon system. The target orbit at Earth was 
either a captured orbit with a fixed periapsis of 100,000 km or an orbit with a fixed, negative final energy 
of -1.4 q. Figure 2 is a plot of a typical complete trajectory. The initial spacecraft mass in Mars orbit 
is 500 kg. The solar array power is 11 kw at  1 A.U. Two NSTAR 30-cm ion thrusters are available on the 
spacecraft. The flight time is varied between 295 and 390 days. 

Capture in the Earth-Moon system can be classified as a “four-body” problem because the list of signif- 
icant gravitating bodies must include the Moon in addition to  the Sun and Earth. Obviously, the four body 
problem generates a complex optimization space. SDC is uniquely suited to explore the optimal trajectories 
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x1Q6 Mars Escape Spiral to Earth Capture (Weak Lunar Assist) 
I 

-7 
1 8  

-5 -4 -3 -2 -1 Q 1 
X (km) io' 

Figure 1: An example of the Mars spiral portion of a typical Mars escape to Earth capture trajectory. 
The arrows along the trajectory indicate thrust acceleration direction. A lack of arrows indicates coasting. 

Mars Escape Spiral to Earth Capture Spiral, TOF = 320d 

a 

- 
2 Y 

t 

-0 

M, = 500 kg / 
P=113.80kg 
No significant lunar interaction 

-1 -0.5 0 0.5 1 1.5 
X (A.U.) 

Figure 2: An example of a complete Mars escape to Earth capture trajectory. 
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that exist in the four-body case. SDC does not require a good guess to  begin the optimization. It is this 
feature that is used to explore the complex optima space of four-body capture and escape. A large number 
of poor initial guesses and different initial conditions were generated to begin separate optimizations. The 
purpose of this procedure is to investigate (with as little bias as possible) the range of available, locally 
optimal trajectories. Hundreds of different optima.1 escape and capture trajectories were obtained in this 
way. A classification system was developed and all trajectories were classified as belonging to  one of several 
distinct minima types. Escape and capture exhibits a symmetry in that, capture minima have analogous 
escape minima. 

The relative performance of four-body optima can be compared to three-body optima. Three-body 
(Moon not gravitating) results used for comparison were obtained from reference [4]. Both three- and four- 
body solutions can be compared to two-body solutions. Two-body solutions are obtained by setting both 
the Earth and Moon mass to  zero and using constraint Eq. (11) for a two-body capture a t  Earth. 

Reference [4] found that there are at least two classes of optimal captures for flight time limited (< 385 
days) three-body capture. One minima type has a high final Earth orbit eccentricity ~ and the other minima 
type has a low finalT?bit eccentricity. -The-rdativesuperio%y of the minima types depends on the&llowed 
flight time. Minima of low-eccentricity type are characterized by continuous engine operation throughout the 
capture and spiral. Minima of the high eccentricity type are characterized by thrust arcs that are roughly 
centered on the periapsis. 

__ 

A series of optimal Mars escape spiral to Earth capture spiral trajectories (Moon gravitating) was 
generated using SDC. The goal of this investigation was to  study the usefulness of lunar flybys for capture 
at Earth using low-thrust. The different local minima were obtained by incrementing the total flight time, 
beginning with different initial trajectories, and targeting diRerent types of final captured orbits around 
Earth. Typical initial trajectories supplied to SDC escape Mars but do not capture at Earth. An example 
of an initial trajectory provided to SDC optimization is plotted in Figure 3. Four different optimal capture 
approaches were identified. The first does not use a significant lunar interaction, the second uses lunar 
interaction from inside the Moon’s orbit (there are two subcategories), the third uses a lunar interaction 
outside the Moon’s orbit, and the fourth type of capture is a hybrid of the second and third types. Optimal 
capture dates tend to  clump in several windows. The same windows occur independent of the capture types. 
These windows occur as a result of lunar phasing. The optimal trajectories in this investigation all begin 
with the same fixed orbit around Mars as the three-body cases described in reference [4]. 

Examples of the different types of optimal captures are provided in Figures 4 - 12. Figure 4 is an example 
of a trajectory with the Moon gravitating that does not have any close range interaction with the Moon 
(type 0) .  This trajectory is very similar in appearance to  the low eccentricity minima that are obtained 
when the Moon is not gravitating. 

Figure 5 is a plot of a trajectory that involves a lunar gravitational assist beginning outside the Moon’s 
orbit (type 1). Trajectories of this type are characterized by achieving two-body capture with respect to  the 
Earth during the lunar close approach. Figure 6 is a plot of the two-body energy for this trajectory that 
shows the impact of the lunar assist on the Earth centered orbital energy. 

Figure 7 is a plot of a typical optimal trajectory that involves a significant lunar interaction from 
inside the Moon’s orbit (type 2). The effect of this interaction is to  lose energy with respect to the Earth. 
Some trajectories of the inside type involve a single close approach of the Moon, others involve two close 
approaches. An example of the later is provided in Figure 8 in Earth-Moon rotating coordinates. Using 
Earth-Moon rotating coordinates clearly shows the two close approaches. Optimal trajectories of this type 
achieve a captured orbit far from the Moon, and then use the Moon to  reduce the orbital energy during 
the first revolution around the Earth. The initial trajectory that converged to the trajectory in Figure 8 
is plotted in Figure 3 .  In a few cases, SDC identified locally optimal trajectories that use a type 2 (inside 
lunar interaction) to  lose energy on the second revolution of the Earth. A trajectory of this type is plotted 
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105 
Example of Initial Guess Trajectory for TOF = 357.5 Days 

Earth-Centered Non-Rotating Coordinates 2ol . . . . - -  . 
15 

- IF- 
t. 

- 

\ 
Spaceman at end of trajectory 

~.,, ,,- 

Mo = 500 kg. 
M, = 386.63 kg 

P = 113.37 kg 

-2.5 -2 -1.5 -1 -0.5 0 0.5 

x (h) x loe 

Figure 3: An example of a four-body (Moon gravitating) initial guess trajectory. Only the end of the 
initial guess trajectory is plotted near the Earth-Moon system. The initial guess includes a simple spiral 
out from Mars, and a single interplanetary burn that brings the spacecraft to within about 1,000,000 km of 
Earth. This trajectory fails to capture at Earth. 

Mars Escape Spiral - Earth Capture End Game 
Earth-Sun Rotating Coordinates 

No Significant Lunar Interaction 

-8 -6 -4 -2 0 2 4 

X (km) lo5 

Figure 4: An example of a four-body (Moon gravitating) optimal capture and spiral trajectory that 
does not involve a significant lunar interaction. 
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Mars Escape spiral to Earth Capture Spiral (End game) 

n 
0 

m 

2 -0.5 

+ - 1 -  

- - 
-1.5- 

t 
i 

Energy drop due 
lo Lunar interaction 

L 
- 

Tarqet final enerqv - 

-2 

M0=500 kg 
P=83.58 kg 
Mars orbit: a=45,000 km 
c(a1 Mars)=0.05, i=5' 
Target E -1.4 ( M s y  
E(at Earth)=0.9232 
RJat Earth)=10,986 km 

-3 

-5 -4 -3 -2 -1 0 1  2 3  4 
X (W io5 

Figure 5: An example of a four-body (Moon gravitating) optimal capture and spiral trajectory that 
involves a lunar gravitational interaction outside the orbit of the Moon (type 2 capture) (Earth centered, 
non-rotating coordinates.) 

Earth Capture End Game (Mars spiral escape to Earth Spiral) 

2.51 
Capture is achieved using the Moon 

332 334 336 338 340 342 344 
Time (days past start) 

Figure 6: Two-body orbital energy with respect to the Earth for a four-body (Moon gravitating) optimal 
capture and spiral trajectory that involves a lunar gravity assist. 
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Mars Escape spiral to Earth Capture Spiral (End game) 
x los 

-1 

-2 

X capture day 307.1458 mass 415.450ikg 5l f 

Target E -1 92 (kmisy 
e(at Eatth)=0.790826 
R (at Earih)s?1,741 km 
2 Engine Gs 
Po= l l  kW 
AmOon=42,360 km 
TOF=345 days 

2 
- p 
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-6 -4 -2 0 - 2  4 
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Figure 7: An example of a four-body (Moon gravitating) optimal capture and spiral trajectory that 
involves a lunar interaction inside the orbit of the Moon (Earth centered, non-rotating coordinates.) 

in Figures 9 and 10. This allows the initial capture orbit to be much larger (extending outside the Moons 
orbit) to take advantage of solar tidal effects to reduce the Earth orbit energy. Notice in Figure 10 that the 
optimal trajectory involves a long coast inside the Moon in the general region of the Lunar L1 point. This 
is typical of many inner interaction trajectories. 

The last type of capture minima obtained is a hybrid of the inner and outer lunar interaction types in 
Figures 4 and 7. Capture is obtained by a distant lunar gravity assist, and then orbital energy is reduced 
by an inner interaction immediately following the assist. Figure 11 is a plot of a hybrid trajectory in Earth- 
Moon rotating coordinates. Figure 12 is a plot of the two-body energy with respect to the Earth. There is no 
clear point in the trajectory when the hybrid switches from the standard outer interaction to the standard 
inner interaction. Note the large reduction in energy that occurs due to the lunar interaction, even when 
the engines are not operating. The close approaches to the Moon are both quite large by gravitational assist 
standards, however the interactions are very long, in this case 10 days. 

Figure 13 is a plot of the final mass in Earth orbit verses the flight time for all four- and three-bodyr4] 
minima. There is a larger scatter in the final masses of various four-body minima. Most optimal four-body 
trajectories result in a larger final mass compared to three-body minima of similar flight times. However, the 
Moon does create several inferior minima. Optimizing the three-body problem first is useful for recognizing 
inferior minima. 

The hybrid minima is highlighted in Figure 13 because it is arguably the best type of capture. The outer 
interaction minima generate comparable final masses and flight times, but require very close approaches to 
the Moon that increase risk. Typical flyby altitudes for outer interaction minima are between 100 km to 
1,000 km. The best performing trajectories require the lowest altitudes. This is in contrast to the hybrid 
capture. Typical lunar close approaches distances are on the order of 40,000 to 50,000 km! Figure 14 is a 
plot of the efficiency of two-body orbital energy reduction after capture. The efficiency measure (Y-axis) is 
the propellant mass fraction divided by difference between capture energy (zero) and the final orbit energy. 
The propellant mass fraction is defined using the spacecraft mass at capture. The hybrid trajectory point 
is the lowest in Figure 14 indicating little propellant is required after capture to obtain the target energy. 
In general, outer Moon interaction minima perform better than Inner Moon interaction minima, which in 
turn outperform most three-body minima and four-body minima that do not approach the Moon (minor 
Moon interaction minima). Figure 14 also indicates that many four-body minima that do not involve a 
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2 -  

-3 

-1 0 1 2  3 4 5 6 7 8 
X (km) x io’ 

EarU-Mwn Rotaling Cwrdinates 
TOF = 357.5 days 
Me = 500 kg 

- M, = 408.62 kg 
P = 31.38 kg 
Target orbital E = -1.4 (kmlsf 

Caplureday331.0252 mass419.1534 kg 

Figure 8: An example of a four-body (Moon gravitating) optimal capture and spiral trajectory that 
involves a lunar gravitational interaction inside the orbit of the Moon - with two lunar close approaches 
(Earth centered, Earth-Moon rotating coordinates). 

-3 

lo,Mars Orbit-Earth Capture: Inner Lunar Flyby, Second Earth Rev. 
Eanh-Sun Rotating Coordinates I 

- 

I 
-6 -4 -2 0 2 4 

X (km) x lo5 

Figure 9: An example of a trajectory that uses an inner interaction with the Moon on the second Earth 
orbit after capture (Earth centered, Earth - Sun rotating coordinates.) 
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,,mars Orbit-Earth Capture: Inner Lunar Flyby, Second Earth Rev. 
I Earth-Moon Rotating Coordinates 
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- 
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-6 4 -2 0 2 4 
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Figure 10: An example of a trajectory that uses an inner interaction with the Moon on the second 
Earth orbit after capture (Earth centered, Earth - Moon rotating coordinates.) 

,,Mars Escape Spiral - Earth Capture End Game: Hybrid Capture 
Earth-Moon Rotating Coordinates 

I capture day309.3833 mass417.3161kg 

I 
I I  

-3 , 
-2 -1 0 1 2 3 4 5 

x (km) x IOS 

Figure 11: An example of a four-body (Moon gravitating) optimal capture and spiral trajectory that 
involves a “hybrid” lunar interaction (Earth-Moon rotating coordinates.) 
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Figure 12: Two-body orbital energy with respect to  the Earth for the hybrid Earth capture. 

close approach to  the Moon pay a performance price to avoid the Moon. This is evidenced by the fact that 
minor Moon interaction minima (downward pointing triangles) are often found above three-body minima 
(squares and upward pointing triangles) in Figure 14. Figure 14 indicates that four-body minima with major 
Moon interactions arrive during “capture windows” spaced by the lunar period of 28 days. The first capture 
window is between 300 and 310 days after Mars departure. Optimal trajectories that capture outside the 
clumps (between 300 to 310 days and 330 to 338 days) are trajectories that are three-body minima, avoid 
the Moon (minor Moon interaction minima), or aze inner interaction minima that typically interact with the 
Moon on the second or third revolution of Earth after capture. 

Figure 15 is a plot of the final eccentricity for all multi-body minima verses the time of flight from Earth 
capture to  the iinai orbit. Ali trajectories in Figure 15 are constrained to  a target final energy. The final 
eccentricity is optimized to maximize the delivered mass. Figure 15 indicates the eccentricity and flight 
time regimes that different optimal trajectory types tend to fall into. Outer interaction trajectories require 
short flight times after capture (around 10 days). Inner interaction trajectories have long flight times after 
capture (around 30 days) and usually end up with high eccentricity (around 0.75). Not unexpectedly, the 
hybrid sits in between the inner and outer interaction trajectories in both flight time and final eccentricity. 
Another feature of Figure 15 is that four-body solutions that do not come close to the Moon (downward 
pointing triangles) have longer flight times and more scatter than the corresponding three-body solutions 
(upward pointing triangles). This is consistent with the hypothesis that if the Moon is not approached 
closely (less than 100,000 km), then the Moon is actively avoided by the minima, and there is a performance 
cost relative to three-body solutions. When the Moon is avoided on the capture approach, the effect is an 
added acceleration roughly in the direction of Earth. Since the goal is to obtain a particular orbital energy 
with respect to the Earth, the acceleration due to  the Moon will hurt performance. 

Two-body capture can be optimized by treating the Earth and Moon as massless, and using the ren- 
dezvous Eq. (11). Figure 16 is a plot combining the two-, three-, and four-body local minima (ending the 
trajectories at capture). Figure 16 indicates that all multi-body minima outperform the corresponding two- 
body minima. The minimum feasible flight time to  capture for the two-body problem is nearly 20 days longer 
than the minimum three-body flight time. Table 1 provides the improvement of multi-body optimization 
capture mass verses two-body optimization capture mass. 
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Figure 13: Final mass in orbit verses total flight time is plotted for all four-body and three-body minima 
that are constrained to reach a final orbital energy of -1.4 $. 

Mars Escape spiral to Earth Capture Spiral: Capture Spiral Efficiency 
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Figure 14: A measure of the efficiency of the Earth spiral after capture. The propellant mass fraction 
is divided by the orbital energy reduction. For example, if the final target orbit has energy of -1.4 9, then 
the mass fraction of propellant used between the instant of capture (energy = 0) and when the final orbit is 
attained is divided by 1.4. The mass fraction is measured relative to  the spacecraft mass at the instant of 
capture. 
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Figure 15: A plot of each multi-body minima's final orbital eccentricity verses the time of flight between 
Earth capture and when the final Earth orbit is attained. 
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Figure 16: A plot of capture flight time to capture mass for all four-, three-, and two-body minima. 
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Flight 
Time to 
Capture 

333.80 
315.20 
291.82 
289.50 
281.61 

(days) 

Table 1 
Optimal Optimal Improvment Over 

Multi- b ody Two- body Two- body Capture 
Capture Capture 

Mass (kg) Mass (kg) 
422.44 406.71 15.70 kg 3.9% 
418.30 400.05 18.30 kg 4.6% 
407.82 357.28 50.54 kg 14.1% 
406.00 344.28 61.72 kg 17.9% 
390.14 INFEASIBLE 390.14 ka 00% 

3.2 Earth Escape Spiral to Mars rendezvous 

To study Earth escape, two series of optimal Earth escape spirals to Mars rendezvous trajectories were 
completed. The first series assumes the Earth is gravitating but the Moon is not (three-body problem). The 
second series assumes both the Earth and Moon are gravitating (four-body problem). A fair amount of time 
was spent to establish base cases and a method of comparison. The Earth escape portion of the trajectory 
is the focus of this research so a massless rendezvous at Mars is used as the universal terminal condition (i.e. 
no spiral at Mars). The initial mass (in Earth orbit) is 500 kg and two NSTAR engine G type thrusters are 
available. The power at 1 AU is 10 kW. This solar array is moderately limiting at  Mars. The flight time(s) 
and arrival date at Mars were chosen so that the propellant required for the interplanetary leg to  Mars is 
insensitive to the range of optimal Earth escape dates for the different types of optimal escape trajectories 
obtained. The base case flight time and arrival date were obtained by optimizing Earth to  Mars trajectories 
with launch Cz fixed at zero. By desigr,, the relative efficiency of the Earth esczpe portion of the trajectory 
is ranked by the final mass at Mars because the interplanetary leg is relatively insensitive to  the escape. The 
parameters investigated include the flight time; the initial Earth orbit eccentricity, argument of periapsis, 
and true anomaly; and the number of revolutions around the Earth in the initial guess. The semi-major axis 
of the initial orbit about Earth is held fixed at 85,000 km. 

This investigation revealed a richer variety of optimal multi-body escape than multi-body capture types. 
One goal of this investigation was to  find analogues for each optimal capture class found in the preceding 
section for Earth capture. SDC did converge escape analogues for all capture types described in Section 3.1. 
The following is a survey of the optimal escape types. 

3.2.1 Three-Body Escape 

For three-body escape (Moon not gravitating) there are at least two optimal escape types. One does not 
take significant advantage of the solar tidal forces while escaping (type 0) and the other type does (type 1). 
A relatively small final orbit around the Earth characterizes type 0. A large final orbit around the Earth 
characterizes type 1. Type 1 escapes are most likely analogues of long flight time, high eccentricity captures. 
Given more flight time, type 1 may evolve into a Earth V-infinity leveraging flyby. Specific ranges of the 
initial argument of the periapsis result in convergence to  type 0 escapes; other ranges result in convergence 
to  type 1 escapes. Type 1 escapes generally have slightly better performance than type 0. Figure 17 is a plot 
of final mass at Mars verses initial Earth orbit argument of periapsis for the Moon not gravitating (three- 
body escape). The horizontal banding of the data corresponds to  optima with roughly the same number of 
Earth revolutions to escape. Higher bands correspond to larger numbers of revolutions around the Earth in 
the optimal trajectory before escape. The vertical banding corresponds to the argument of periapsis step 
size used (30"). Notice that type 1 (solar tidal) escapes are superior and prevalent only for a range in the 
argument of the periapsis (90' to 270° in this case). Also, the more revolutions around the Earth in the 
initial guess, the more likely SDC converges to a type 1 escape. Most of the points have initial eccentricity 
of 0.5; a few have initial eccentricity of 0.1. The initial eccentricity does not have a large impact on the 
3-body escape performance, the number of revolutions around the Earth in the initial guess and the initial 
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Figure 17: Final mass at Mars verses initial Earth orbit argument of periapsis for the Moon not 
gravitating (3-body escape). 

argument of the periapsis are more important. 

3.2.2 Four-Body Escape 

There are a t  least 9 distinct types of optimal escape trajectories for the four-body problem. The first type 
does not involve a close approach of the Moon (type 0). This type is analogous to type 0 captures. Figure 18 
is an example of a type 0 escape in Earth-Moon rotating coordinates. Notice the early coast/thrust pattern, 
that increases the eccentricity. Trajectories that do not come close to the Moon and have a very large final 
Earth crbit with apogee well beyond the Moon’s orbit take advantage of sohi tichi fu i~es  to improve escape 
eEciency. Trajectories of this description are caiied type 8, or soiar tidai trajectories, to distinguish them 
from ordinary type 0 trajectories. 

Figures 19 and 20 are plots of a type 1 escape in Earth-Sun and Earth-Moon rotating coordinates 
respectively. Type 1 escapes are the analogue of type 1 captures (or inner interaction captures). Compare 
Figure 19 to Figure 7 and compare Figure 20 to  Figure 8. The main difference is the closest approach to 
the Moon occurs before apogee for escape and after apogee for capture (this makes sense considering the 
acceleration caused by lunar gravity). Figure 20 shows the coasting loop near the Moon that is characteristic 
of all type 1 escapes. Figure 21 is a plot of the two-body energy with respect to the Earth for another type 
1 escape. This particular trajectory involves a type 1 Moon flyby followed by a large final Earth orbit that 
takes advantage of the Suns tidal effect (identical to  a type 1 three-body escape). The energy gains due to 
the Moon and Sun are indicated on the plot. 

Type 2 escapes involve a single lunar gravity assist or LGA. Escape typically occurs near the lunar close 
approach. Figure 22 is a plot of a type 2 escape in Earth-Sun rotating coordinates. Notice the large increase 
in eccentricity in the optimal trajectory in order to  set up the flyby in Figure 22 (the initial eccentricity was 
zero). Type 2 escape trajectories are analogous to outer interaction or type 2 captures (see Figure 5 ) .  

Type 3 escapes involve a combination of separate type 1 and 2 lunar interactions. The two (or more) 
interactions must occur on separate revolutions to be type 3 (trajectories involving type 1 and type 2 
interactions in immediate succession are called “hybrid” for consistency with the capture nomenclature in 
the previous section). Figures 23 and 24 are plots of a type 3 escape in Earth-Sun and Earth-Moon rotating 
coordinates respectively. Figure 24 clearly shows that the characteristic coast loop of a type 1 flyby occurs 
2 full revolutions before the final type 2 flyby. 
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Figure 18: An example of a four-body type 0 escape: type 0 escapes are characterized by never ap- 
proaching the Moon closely (Le., less than 100,000 km). 
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Figure 19: An example of afour-body inner interaction escape (type 1). Type 1 escapes are characterized 
by approaching the Moon from inside the Moon’s orbit to gain orbital energy with respect to the Earth (Earth 
centered, Earth-Sun rotating coordinates.) 
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SDC: Earth Escape Spiral to Mars Rendezvous 
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Figure 20: An example of a four-body inner interaction escape. A coasting loop near the Moon is 
always present when a type 1 trajectory is viewed in Earth-Moon rotating coordinates. 

Typical Type 1 Lunar Flyby Energy Gain 

Figure 21: The orbital energy with respect to Earth as a function of time for a type 1 escape. Note the 
gain in energy during the first coast (days 30 - 36). This trajectory uses solar tidal effects during the second 
coast (days 48 - 87). 
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Eaflh-Sun rotating coordinates 

To Mars rendezvous 

Moon's orbit 

Figure 22: An example of a four-body outer interaction escape (type 2). A type 2 trajectory can be 
called a "Lunar Gravity Assist" or LGA (Earth centered, Earth-Sun rotating coordinates.) 

ro5 SDC: Optimal Earth Escape Spiral - Mars Rendezvous 

I Type 3 Escape: (combination of separate type 1 and 2 flybys) 

Figure 23: An example of a four-body combination escape (type 3 ) .  Type 3 escapes are characterized by 
consisting of an inner interaction type 1 Moon flyby, followed by a type 2 outer interaction or lunar gravity 
assist to escape (Earth centered, non-rotating coordinates.) 
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SDC: Optimal Earth Escape Spiral-Mars Rendezvous 
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Figure 24: An example of a four-body combination escape (type 3)  (Earth centered, Earth-Moon 
rotating coordinates.) 

Type 4 is the catch-all for exotic lunar interaction escapes. Typically, 3 or more flybys characterize type 
4 trajectories. One of the most compelling and efficient type 4 trajectories is plotted in Figures 25 through 
27 using non-rotating, Earih-Moon rotaiiiig, alld Mooil-Ealth lotdiirig wurdiuaies. This i ra jectay involves 
three close approaches to the Moon. Figure 26 shows that this trajectory consists of a type 1 flyby linked 
to  a type 2 flyby with an intermediate lunar flyby or loop. Figure 27 demonstrates a peculiar aspect of this 
trajectory: an observer standing on a non-rotating Moon would see the spacecraft dance back and forth over 
about 180 degrees of the sky. The shape of the trajectory in this plot suggests the name of “infinity assist.” 
The engine is off during most of the lunar flyby sequence. 

Type 5 escapes are exactly analogous to the hybrid capture trajectory. Like the hybrid capture, hybrid 
escapes appear very efficient - resulting in some of the highest final masses at Mars. Unlike hybrid capture 
minima, it is fairly common to converge to hybrid escape minima. Figures 28 and 29 are plots of a single 
type 5 (hybrid) escape trajectory in non-rotating and Earth-Moon rotating coordinates. Notice that the 
engine is off during most of the lunar flyby sequence. Figure 29 shows that the type 1 coasting loop trailing 
the Moon is followed immediately by a type 2 flyby. Compare Figure 29 for hybrid escape t o  the analogous 
hybrid capture trajectory plot in Figure 11. Figure 30 is a plot of the two-body energy with respect to the 
Earth for a hybrid (type 5) escape. There is a large increase in energy achieved during the lunar interaction. 
Hybrid trajectories do not require close flybys of the Moon to  achieve efficiency. In this example, the type 
1 close approach is 57,115 km, and the type 2 close approach is 29,238 km. Regular type 2 trajectories 
(ordinary LGA) typically have a much lower close approach radius. It is also interesting to  compare Figure 
20 (type 1 escape) to  Figure 29 (type 5 escape). These two figures clearly show the difference and similarity 
of type 1 and type 5 escape trajectories. 

Type 6 escapes involve two close approaches to  the Moon. An example of a type 6 trajectory is provided 
in Figure 31 in rotating coordinates. Trajectories of this type are characterized by a traditional lunar gravity 
assist set up by a lunar flyby about 10 days earlier. The appearance of the trajectory near the Moon in the 
rotating frame (see Figure 31) looks like the mathematical cardioid shape hence the name “cardioid escape.” 

21 



3 -  

2- 

1 -  - 
E 5 0- 

-1 - 

,/' 
scape day 57.6286 mass 488.7787kg 

Figure 25: An example of a four-body lunar trailing infinity escape (type 4). Type 4 escapes are 
characterized by three close approaches to the Moon that occur during a iong coasting phase (non-rotating 
coordinates .) 
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Figure 26: An example of a four-body lunar trailing infinity escape (type 4). Type 4 escapes are 
characterized by three close approaches to  the Moon that occur during a long coasting phase (Earth centered, 
Earth-Moon rotating coordinates.) 
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Figure 27: An example of a four-body lunar trailing infinity escape (type 4). In Moon centered, non- 
rotating coordinates, the trajectory has a characteristic infinity symbol shape, trailing the Moon. 
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Figure 28: An example of a four-body hybrid escape (type 5). Type 5 escapes are characterized by two 
close approaches to  the Moon. Hybrid escapes are the analogue of hybrid captures (non-rotating coordinates.) 
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Figure 29: An example of a four-body hybrid escape (type 5) (Earth-Moon rotating coordinates.) 

SDC: Optimal Earth Escape to Mars Rendezvous "The Hybrid" 

Figure 30: An example of the orbital energy with respect to Earth verses time for a hybrid escape (type 
5 ) .  Hybrid trajectories achieve a significant increase in energy during coasting near the Moon. 
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SDC: Optimal Earth Escape Spiral to Mars Rendezvous: Cardioid Escape 
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Figure 31: An example of a four-body cardiod escape (type 6). In Earth centered, Earth-Moon rotating 
coordinates, the trajectory near the Moon has the appearance of the mathematical cardiod shape. 

Four trajectories of this type resulted from different initial Earth orbit conditions 

Type 7 escapes involve two close approaches to  the Moon during a long coasting phase. An example of 
a type 7 trajectory is provided in Figures 32 and 33. Trajectories of this type are characterized by a single 
revolution around a lunar L2 halo orbit. This trajectory is very efficient, comparable to the hybrid class 
(type 5). This trajectory was named “lunar L2 halo” escape because of the halo orbit. Many trajectories of 
this type were obtained - it proved to  be easy to  construct an initial guess trajectory that will converge to  
this type of trajectory. 

Figure 34 is a plot of escape efficiency verses the number of days to escape for both three- and four-body 
minima. The escape efficiency is measured by the propellant mass fraction required to  escape divided by 
the increase in orbital energy required to escape. All initial orbits begin with an energy of -2.3447 so 
the mass fraction is divided by 2.3447. This definition of escape efficiency is the analouge of the capture 
efficiency plotted in Figure 14. The overall winner (lower is better) is a lunar Lz halo escape trajectory 
(type 7). The second best is a hybrid (type 5). Close behind is a lunar 03 assist (type 4). All three benefit 
from high initial Earth orbit eccentricities. Notice that the best four-body performers (and a wide variety 
of types) all escape somewhere in a very small escape date window (around 56 to  57 days). This time must 
be ideal for getting a lunar assist to go on to Mars. Not surprisingly, the type 0 three-body minima use as 
much time as possible to  escape (around 95 days.) Escape times in excess of 95 days begin to  significantly 
degrade the interplanetary leg performance. 

Comparing escape efficiency (Figure 34) to capture efficiency (Figure 14) provides several insights, Four- 
body escape efficiency is essentially the same as four-body capture efficiency as measured in Figures 34 and 
14. This result is consistent with the idea that optimal capture trajectories have analogous optimal escape 
trajectories. SDC did not locate capture analogues for all of the escape types. For example, no capture 
analogue was found for the lunar L2 halo escapes (type 7). This does not mean that type 7 captures do not 
exist, only that the region of influence of type 7 captures may be small or do not exist for incoming energy 
much greater than zero. Three-body escape is a little more efficient than the corresponding three-body 
capture. This difference probably reflects the difference in the phasing and geometry of the interplanetary 
trajectory, not an inherent difference between three-body capture and escape. 

Quantifying the effect of initial Earth orbit eccentricity on performance is important for designing to 
the Earth orbit used in this research. Figure 35 is a plot of final mass at Mars verses the initial Earth orbit 
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Figure 32: An example of a four-body lunar L2 halo escape (type 7). Type 7 escapes are highly efficient 
and are characterized by two approaches to  the Moon outside of the Moon’s orbit (non-rotating coordinates.) 
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Figure 33: An example of a four-body lunar Lz halo escape (type 7). Type 7 escapes are characterized 
by an escape through a Lunar La halo orbit (Earth-Moon L2 rotating coordinates.) 
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Earth Escape Spiral to Mars Rendezvous: Escape Efficiency 
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Figure 34: Escape efficiency verses the number of days to  escape for both three- and four-body minima. 
The escape efficiency is measured by the propellant mass fraction required to escape divided by the increase 
in orbital energy required to  escape. 

eccentricity. This plot indicates the advantage of increasing eccentricity for several escape types. There is no 
advantage for trajectories that do not use a strong lunar interaction (triangles) in fact, there may be a slight 
disadvantage when a trajectory is trying to  avoid the Moon. Type 7 (lunar L2 halo) trajectories outperform 
hybrid trajectories (type 5 )  for most of the eccentricity range (Q = 0 to 0.4), All optimal trajectories in this 
plot begin with the same energy with respect to Earth, and use a flight time of 372 days to reach Mars. 

4. CONCLUSION 

SDC is uniquely suited to explore the optimal trajectories that exist in the four-body case. SDC does 
not require a good guess to begin the optimization. It is this feature that can be used to  explore the complex 
optima space of four-body capture and escape. SDC converges readily even when trajectories have length 
scale changes of over lo4. Trajectories that involve planet centered spirals and interplanetary legs involve 
large changes in time and length scales. Linking planet centered spirals to interplanetary destinations or 
origins is essential for complete trajectory optimization. The two-body formulation of rendezvous is a poor 
approximation to the performance of multi-body capture. Optimizing a multi-body trajectory was shown to 
improve mass delivered by up to 18%. 

Many different locally optimal escape and capture trajectories exist for the Earth-Moon system. This 
research provides a classification system and relative performance measures for some of the different optimal 
trajectory types. The performance of each type of optimal trajectory was tested over a wide range of initial 
conditions. The classification system developed in this research takes into account the analogy between 
escape and capture. Optimal escape trajectory analogues were found for all optimal capture trajectories. 
However, SDC identified more types of escape trajectories than capture trajectories. It is postulated that 
capture analogues do exist for all escape trajectory types found by SDC. For example, a capture analogue 
of the lunar Lz halo escape (type 7) should exist. Since type 7 capture is very efficient, future work could 
use SDC to search for the capture analogue to  type 7 escape. 

To be sure that a given set of optimal four-body trajectories are using the fourth body (Moon) effec- 
tively, the corresponding three-body problem should be solved for comparison. Most four-body optimal 
trajectories significantly outperform three-body optimal trajectories with similar launch date and flight time 
characteristics. However, a few four-body (locally) optimal trajectories exist that have worse performance. 
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Figure 35: Final mass at Mars verses initial Earth orbit eccentricity. Lines connect the best performing 
optimal trajectory of each type for different initial orbit eccentricities. 
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