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Abstract 

In many deep space and interplanetary missions, it is widely recognized that the scheduling of many commands to 
operate a spacecraft can follow very regular patterns. In these instances, it is greatly desired to convert the 
knowledge of how commands are scheduled into algorithms in order to automate the development of command 
sequences. In doing so, it is possible to dramatically reduce the number of people and work-hours that are required 
to develop a sequence. The development of the "autogen" process for the Mars 2001 Odyssey spacecraft is one 
implementation of this concept. It combines robust scheduling algorithms with software that is compatible with pre- 
existing "uplink" software, and literally reduced the duration of some sequence generation processes from weeks to 
minutes. This paper outlines the "autogen" tools and processes and describes how they have been implemented for 
the various phases of the Mars 2001 Odyssey mission. 

What is autogen? 

The term "autogen" is applied in two different ways. 
First, "autogen," in its broadest sense, identifies a 
process that may be used to automatically generate 
sequences for a spacecraft and, second, it is a Solaris 
script that has been used to facilitate this process. By 
using the "autogen" script and process, a user can 
rapidly build sequences for a spacecraft that may be 
lengthy and complicated. 

The "autogent' process has been specifically developed 
to facilitate the generation of sequences where 
spacecraft commands and blocks are scheduled in a 
repeatable or well-understood fashion. Originally 
implemented for the Mars 2001 Odyssey spacecraft, 
the "autogen" process can be used to build sequences 
for various missions and their mission phases, 
including interplanetary cruise, aerobraking, and 
science operations. 

Where did it come from? 

The "autogen" process and tools are a direct extension 
of efforts made in support of Jet Propulsion Laboratory 
(JPL) missions prior to the Mars 2001 Odyssey, 
including Mars Observer, Mars Global Surveyor 
(MGS), and the failed Mars '98 missions. In those and 
other missions, it was recognized that the scheduling of 
many commands for certain mission phases tended to 
follow regular patterns. Therefore, rather than 
requiring many people to spend several weeks 

manually building the commands for lengthy and well- 
understood command sequences, efforts were made to 
develop software that would automatically schedule the 
commands given certain input data. By taking the 
knowledge for how commands were to be scheduled 
and writing algorithms to replicate that knowledge, it 
was possible to dramatically reduce the number of 
people and work-hours required to develop a sequence. 

Strategies for implementing these automated sequence 
generators varied fiom project to project, but the 
overall concept remained the same. However, previous 
efforts generally utilized software that was not directly 
compatible with pre-existing software tools that 
converted these text-based and human-readable 
sequences into the binary products that were sent to the 
spacecraft; or the scheduling approach was clumsy in 
its implementation. The development of the "autogen" 
process was the next logical step and was developed on 
the shoulders of these earlier and sometimes-highly 
successful efforts. It combines robust scheduling 
algorithms with software that is compatible with the 
pre-existing "uplink" software. It literally reduced the 
duration of some sequence generation processes fkom 
weeks to minutes. 

What makes it work? 

The "autogen" process, as used for Mars Odyssey, 
included only two major components: APGEN and the 
"autogen" script. 
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First, APGEN, or Activity Plan Generator, is a 
software program that can be used for sequence and 
mission planning purposes. It is part of the suite of 
tools developed by the Deep Space Mission System 
(DSMS) at JPL and is a multi-mission tool, which 
means that it can be tailored to many different space 
missions without changing its ''core" software. 
APGEN was designed with a graphical user interface 
that facilitates the scheduling of activities on a timeline 
and includes the ability to automatically expand, 
decompose, and schedule activities. Because it is a 
multi-mission tool, it is required that an "adapter" write 
algorithms in the tool-specific language that APGEN 
utilizes to represent scheduled activities or commands, 
and how system resources or states are adjusted as a 
function of time and usage. 

Second, the 'lautogen" script is a mechanism that 
maximizes the JPL mission operations network 
environment. It performs very simple tasks, as 
follows: 
0 Gathers needed data files fiom data repositories on 

the mission operations network. 
0 Builds other needed data files for the APGEN 

scheduling algorithms based on inputs specified by 
the user. 
Sets up the environment to run APGEN, including 
scheduling instructions. 

0 

command line 

Yes 

I Note: 
All steps recorded in I-  the "autoeen" log 

* Runs APGEN, which schedules the activities and 
writes the sequences to files. 
Manipulates the resultant files, if needed. 
Initiates any automated sequence processors to 
prepare the sequence for uplink, if appropriate. 

Refer to Figure 1 for a flow chart describing this 
process. 

In essence, the "autogen" script simply sets up the 
environment for the APGEN software to perform the 
real work of building the sequence(s). Therefore, the 
"guts" of the "autogen'l process is in the development 
of the APGEN "adaptation," where all the rules for 
when and how commands are to be scheduled must be 
encoded. 

It should be recognized that there are several other 
software tools that APGEN utilizes to perform various 
functions. Similarly, the "autogen" script calls other 
scripts to perform its functions. For instance, APGEN 
relies upon another multi-mission software program 
developed by DSMS, called "seqreview", to reformat 
data files into a format that APGEN can understand; 
and "autogen" relies upon several other scripts to 
retrieve data files fiom various locations on the JPL 
operations network. 

Figure 1: "autogen" Flow Chart. 
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How was "autogen" used for Mars Odyssey? 

The "autogen" process has been used in a variety of 
different ways for the Mars 2001 Odyssey spacecraft. 
It has been used during it's cruise, aerobraking, and 
mapping phases; and in a more limited fashion to build 
sequences to support the Multiple Spacecraft Per 
Aperture (MSPA) activities and to build sequences to 
support the transition period between the aerobraking 
and the mapping phases. The types of activities that 
have been scheduled during each of these phases or 
activities will be discussed, along with a description of 
some of the challenges that were encountered at each 
step. 

Interplanetav Cruise 

The "cruise" phase of a mission is generally defmed as 
the period shortly after a spacecraft is launched from 
the Earth until before it reaches it's primary destination. 
These periods are generally quiescent, with short 
periods of intense activity that may include trajectory 
correction maneuvers (TCMs) and spacecraft and 
payload tests or calibrations. 

The Mars Odyssey approach to sequencing this phase 
was to generate a "background" sequence that included 
the regular commanding that would occur during some 
pre-defined, long period of time (28 days, in this case). 
This "background" sequence then provided the 
foundation upon which the other spacecraft activities 
were overlaid. In general, before a "background" 
sequence was designed, an effort was made to plan 
when the other, more intense activities were to occur in 
order to ensure that the "background" sequence was 
compatible. 

This approach to sequencing worked rather well, and 
the "autogen'l process readily supported it. During this 
phase, the "autogen" scheduling algorithms scheduled 
the following types of commands: 
0 Calls to a block that commanded the spacecraft to 

communicate with Earth during appropriate times. 
0 Commands to incrementally move the solar array 

to better track the Sun. 
0 Commands to perform daily, weekly, and monthly 

flight software diagnostics. 
0 Commands to perform daily star camera 

diagnostics. 
0 Ground directives to cause the sequence modeling 

software to generate a file that represented the 
conditions of the spacecraft at a given instant in 
time, called a "fmal conditions'' file, or FINCON. 

The development of the "autogen" algorithms during 
the cruise phase provided a healthy "learning curve." 

For instance, several times it was discovered that the 
algorithms that were written to describe when the 
ground antennas were listening to the spacecraft in a 
"two-way" Doppler mode were very lacking. Three 
cases arose that forced algorithm updates, as detailed 
here: 

The times when the Deep Space Network (DSN) 
antennas are scheduled to listen to a spacecraft are 
listed in what is called a Station Allocation File 
(SAF). The stations are generally "allocated" 
based upon when the spacecraft is visible to the 
station and depending on other scheduling 
constraints. However, at each antenna, there is an 
elevation specified below which the station's 
transmitter can not be turned on. Therefore, while 
the station is able to "hear" the spacecraft, it 
cannot "talk" to it. Roughly speaking, this mode is 
called "one-way", and it isn't until the transmitter 
is turned on and the spacecraft receives a signal 
from the station that the mode is called "two-way." 
The times for when the stations can "see8' the 
spacecraft and when its transmitter would be 
above its "transmitter on'' elevation limit are 
specified in what is called a station View Period 
file (VP). The "autogen" scheduling algorithms 
originally only took into account the SAF and not 
the VP file, thereby occasionally commanding the 
spacecraft to transmit science data during periods 
that were considered "one-way". This, in itself, is 
not a problem. Nevertheless, when a transition 
occurs ffom the "one-way" to the "two-way" 
Doppler mode, the station needs to again "lock up" 
on the spacecraft's signal. During this transition, 
any data that the spacecraft may be transmitting 
may be lost. It was desired to avoid sending high- 
priority data during these transition times, 
therefore the "autogen" scheduling algorithms had 
to be re-designed to take into account both data 
sets (the SAF and the VP file). 
When it is desired to allow a spacecraft to have 
long periods of time during which it can transmit 
to the Earth, it is usually necessary to have two or . 
more DSN stations allocated to "track" the 
spacecraft. As the first station goes out of view of 
the spacecraft, the second station, located 
elsewhere, can pick up its signal as the Earth 
rotates and the spacecraft comes into view. This 
"station handover" is often transparent to the 
spacecraft. However, when the "handover" occurs, 
the same issue, as described above, of needing to 
be above the transmitter limit, is still in effect, and 
therefore there are times during these "handovers" 
when the mode would go fkom Ywo-way" to "one- 
way". As before, it was undesirable to command 
the spacecraft to transmit high-priority data during 
the "one-way" mode, so it was necessary to once 
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again update the scheduling algorithms to 
command the spacecraft to transmit lower-priority 
data during those "handovers." 
When the axes of rotation of a DSN station are 
designed so that it rotates around an axis 
perpendicular to the surface of the earth (Le. an 
azimuth rotation) and then pitches up and down 
with respect to the horizon (Le. an elevation axis), 
the position of the antenna is not always easy to 
specify. For instance, when the elevation is 
specified as 90 degrees above the horizon, 
meaning that the antenna is pointed straight up, the 
azimuth position is undefined since the antenna 
can be in any azimuth position and still be pointed 
straight up. Because the antennas can only be 
articulated at some maximum rate, it is impractical 
to require a station to track a spacecraft up fiom 
the horizon and through the "straight up" position, 
perform a quick tum-around, and then track it back 
down the other side. Therefore, the DSN stations 
that are azimuWelevation antennas have what is 
called a ''keyhole'', or a keep-out zone, which is a 
maximum elevation above which it won? transmit 
to a spacecraft. See Figure 2. This keyhole is 
usually specified to be large enough to allow 
sufficient time for the antenna to rotate around in 
order to continue tracking the spacecraft down the 
second side. This causes another period of "one- 
way" communication in the middle of what would 
typically be a continuous "two-way" period. 
Generally speaking, for a spacecraft to be in such a 
position that it is possible for a station to track it 
through the keyhole is very rare, but it did occur to 
Odyssey during it's cruise phase. Therefore, the 
"autogen" algorithms had to be updated to once 
again schedule commands to have the spacecraft 
transmit lower-priority data during that time 
b e .  

0 

These three examples are outlined here for the 
intention of showing that there were very specific 
instances when the scheduling algorithms were 
insufficient for the purposes at hand and it was 
necessary to redesign them. Nevertheless, even though 

, Keyhole (exaggerated) 

Elevation Rotation & 
Azimuth Rotation 

Figure 2: Azimuth/Elevation Diagram with 
"Keyhole." 

the "autogen'l scheduling algorithms were a new 
development, they turned out to be quite robust. In 
fact, during Mars Odyssey's cruise phase, there were no 
instances when the background sequence needed to be 
modified to accommodate the other planned, less 
regular activities, such as the TCMs or other 
calibrations. In all cases, these other activities were 
simply "overlaid" on top of the pre-developed 
"background" sequences. 

During each sequence build, there was a need to send 
one-time spacecraft commands for general 
"housekeeping" or spacecraft configuration 
maintenance purposes. In these cases, rather than 
modify the scheduling algorithms for the "background" 
sequence, a short sequence was developed and then 
"merged" in. In the rare cases when it was actually 
necessary to modify the "background" sequence, the 
changes were generally very minor and were made to 
accommodate special circumstances, and almost never 
to correct some significant shortcoming of the 
scheduling algorithms. 

There was only one instance during the cruise phase 
when the spacecraft went into a %afe mode", thereby 
stopping all of the onboard sequences. Once the 
situation was resolved, the original "background" 
sequence was edited to simply remove all the 
commands before the new desired sequence restart 
time; and the sequence was again transmitted to the 
spacecraft. 

A erobraking 

The '(aerobraking" phase of the Mars Odyssey mission 
was defined as the period immediately after the 
spacecraft performed its Mars Orbital Insertion until 
the spacecraft was placed into its operational orbit. 
During this period, the spacecraft used the atmosphere 
of Mars to dissipate its orbital energy, thereby reducing 
its orbital period "for fiee" and saving fuel. This phase 
was characterized by highly unpredictable changes in 
the spacecraft's orbital period, which was a function of 
the variability in the density of the Martian atmosphere. 
With each orbit, the atmosphere would impart a change 
in the spacecraft's velocity. This "delta-V" was 
somewhat erratic and therefore made it difficult to 
predict what the orbital characteristics of the spacecraft 
would be very far in advance. 

At the beginning of the aerobraking phase, the Mars 
Odyssey navigation team was only able to predict a 
few orbits ahead to the accuracy desired because the 
orbit was so large; the spacecraft at this time had an 
orbital period of approximately 18 hours. During these 
large orbits, a sequence would be built with a span of 
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only one "primary" orbit and one additional "backup" 
orbit. The "backup" orbit concept was implemented to 
allow the spacecraft to continue aerobraking in the 
event that the spacecraft operators were unable to 
transmit the next sequence to the spacecraft for any 
reason. 

As the orbit contracted throughout the aerobraking 
phase, it was necessary for the navigation team to 
predict more and more orbits into the future in order to 
have enough time to prepare a sequence. In fact, at the 
end of the aerobraking phase, as the orbital period 
approached two hours, the navigation team was 
predicting more than 30 orbits into the future. The 
very first orbit in each of these predictions was a 
reconstruction of the most recent orbit for which there 
was reliable data that described the spacecraft's orbital 
characteristics. Immediately following were several 
orbits that were extrapolated but not used in the 
development of the sequence because they had "already 
occurred" but for which there had been insufficient 
time to reconstruct, whether for lack of data or due to 
schedule constraints. Following these were several 
orbits, also extrapolated, from which the sequences 
were built. At the end of the aerobraking phase, 
sequences were being built for six "primary" orbits and 
three additional "backup" orbits. 

The inability to predict the spacecraft's orbital 
parameters far into the future required that sequences 
be built and transmitted to the spacecraft very often, 
sometimes as often as every six hours and sometimes 
with as little sequence development time as three and 
one-half hours. Because of this highly constrained 
schedule, software called the "Automated Sequence 
Processor," or ASP, was used to automatically process 
the sequence. This processing included the generation 
of sequence review files, the construction of the uplink 
products, and the distribution of all of the appropriate 
files to the correct locations in preparation for 
transmitting the sequence to the spacecraft. 

To effectively utilize the ASP, the sequencing 
approach needed to be very straightforward. 
Therefore, the aerobraking sequences were designed 
with a heavy dependence on onboard blocks. For each 
,'drag pass", or period during which the spacecraft 
would pass through its periapsis, there was only one 
command that needed to be sent to the spacecraft. This 
command was actually a "block call" that initiated one 
or more of these onboard blocks. The block call had 
many parameters that controlled how it should issue 
commands to the spacecraft, including durations 
between commands, switches to enable or disable 
different parts of the block, and filenames that were 

utilized or otherwise managed by the block. There 
were only three major blocks that needed to be 
scheduled during the aerobraking phase of the mission, 
as follows: 
1) the "aero" block, which was the block utilized 

during each "drag pass", 
2) the "abm" block, which was utilized only when an 

aerobraking maneuver, or ABM, was needed to 
raise or lower the spacecraft's periapsis, and 

3) the "payload-cal" block, which was only used 
twice during the aerobraking phase to utilize one 
of the onboard instruments to take an image of 
Mars. 

The need to facilitate quick sequence builds was only 
part of the problem of sequencing during the 
aerobraking phase. As mentioned before, with each 
predicted orbit in the future there was an associated 
increase in the uncertainty of that orbit's timing. The 
spacecraft had an onboard software capability to 
autonomously determine the time of its periapsis 
passage. Using this "periapsis timing estimator", or 
PTE, the spacecraft was then able to compare this time 
with the expected time of the periapsis passage and 
thus calculate the cumulative timing offset from orbit 
to orbit. It was unable to predict into the hture, but it 
could generally correct for past deviations. 

It was desired to utilize this PTE capability to "shift" 
the sequences around to better center the spacecraft's 
activities at periapsis (or apoapsis, in the case of the 
ABMs). However, the spacecraft's command software 
requires that each command have a time specified at 
which it should be initiated. This made it impossible to 
directly have a flexible start time for these block calls. 
To overcome this problem, the concept of the "seq" 
blocks was introduced. 

The 9.eq" concept utilized a "parent" block that would 
be called in the place of the blocks mentioned above. 
These "seq" blocks had three primary functions: 
1) to identify the timing offset of the orbit as 

calculated by the PTE flight software object, 
2) to calculate the time at which the previously 

mentioned blocks should be kicked off as a 
function of this offset, and 

3) to initiate the blocks at the appropriate times. 

The navigation team defined the maximum cumulative 
uncertainty in the timing of the orbits throughout a 
sequence, and the "seq" blocks were scheduled this 
duration earlier than the "regular" blocks would have 
been scheduled. To illustrate this capability, see Figure 
3 and Table 1. 
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4. Time of scheduled "seq" block 

/ 

5.  Deviation as calculated by PTE 0 
0 

I 
I 0 

0 / 
/ / 

"seq" block initiated and calculates timing offset 

Figure 3: How The Y3eqrr Concept Is Utilized to Shift a Block Call. 

The use of this l'seq'' structure allowed the 
development of "autogen" scheduling algorithms that 
were quite robust. In addition, the APGEN software 
was utilized in a "batch" mode, disabling its graphical- 
user interface, and coupled with the capabilities of the 
ASP. This facilitated the rapid development of 
sequences during the aerobraking phase; with the 
issuance of one command line, a sequence was 
automatically built, modeled, converted to the uplink 
binary file, and distributed to the DSN in preparation 
for uplink in less than twenty minutes. 

The "autogen" tools scheduled the following types of 
commands: 

0 The I'seq'' blocks, in three varieties: the "aero-seq" 
block for the Vrag pass", the "abm-seq" block for 
the ABMs, and the "themi-seq" block for the 
science observations. 
A command to "kill" any previous sequence that 
may be operating. 
Ground directives to suppress the transmission of 
commands to the spacecraft during times when the 
antenna was not pointed towards Earth, as 
calculated from the scheduled blocks. 
Ground directives to cause the sequence modeling 
software to generate FINCONs. 

0 

0 

0 

The "autogen"/ASP combination turned out to be 
remarkably robust and there were only three command 

R Gladden - Jet Propulsion Laboratory SSCO2-IV-2 I/ Page 6 of 13 



builds (in over 200 builds!) throughout the entire 
aerobraking phase during which the "autogen" tools 
were called into question. In the end, each of these 
instances turned out to further validate the tool and 
concept and showed that it behaved exactly as it should 
have. The following outlines these instances: 
0 As shown before, the "autogen" scripts were 

designed to perform a variety of functions before it 
attempted to build a sequence, namely collecting 
and building some data files. If a user attempted 
to perform a "re-build" of a sequence in a 
subdirectory where some of the data files already 
existed, the "autogen" scripts were designed to not 
attempt to re-collect and re-generate the files, but 
to simply run the scheduling algorithms on the pre- 
existing files. This was an intentional design 
feature that allows a user to perform sequence re- 
builds very easily if only one or a few of the many 
input files have changed from previous sequence 
builds. During aerobraking, each sequence was 
built with one or more "primary" orbits and one or 
more "backup" orbits. Because the "backup" 
orbits were contingency orbits, when a new 
sequence was sent to the spacecraft the frst thing 
it would do was stop the pre-existing sequence 
before it had the chance to initiate any of the 
commands for the "backup1' orbits. In order to do 
this in a timely fashion, it was necessary to track 
when each of the block calls for the "aero-seq" 
blocks were scheduled. In addition, the "killing" 
of the pre-existing sequence was always intended 
to be scheduled at least a minute before the next 
"aero-seq" block call would occur. In cases where 
a sequence was re-generated, the "backing up" of 
the "kill" would increment earlier and earlier, 
which was an intended behavior. During one 
particular build, the user noticed this effect and 
became alarmed since they did not understand the 
behavior of the timing shifts. Therefore, in order 
to prevent this effect from occurring again, the 
sequence build procedure was modified to ensure 
that whenever a sequence needed to be re- 
generated, the user would start Yrom scratch" with 
an incremented sequence identification name, 
thereby avoiding the issue altogether. To the user, 
this issue initially appeared to be a problem with 
the "autogen" scheduling algorithms because the 
commands were being scheduled earlier than 
expected, but eventually it was concluded that the 
issue was a weakness in the sequence generation 
process. 
In order to provide flexibility to the "autogen" 
scheduling algorithms, many of the commands that 
are scheduled had parameters specified that would 
change how, when, or if they were scheduled. 
These parameters were read into APGEN, which 

0 

0 

then interpreted those parameters and scheduled 
the commands appropriately. During aerobraking, 
it was desired to re-evaluate on a weekly basis 
how "autogen" scheduled the block calls. 
Therefore, the concept of the "reset sheet" was 
implemented to allow a specific set of parameters 
to govern how the sequences were developed over 
the course of a week. Many of the parameters on 
this "reset sheet" were parameters that were simply 
passed to the blocks themselves. Other parameters 
were specific filenames that needed to be sent to 
the spacecraft for command purposes. In some 
cases, it was desired to allow several filenames to 
be listed for a particular parameter and then to 
have the "autogen" schedulers extract the correct 
filename based upon the orbit number and/or some 
other parameters. In this way, it was possible to 
specify many filenames for a single parameter that 
could be used over the course of a week without 
having to revise the "reset sheet". Constructing 
arrays that would facilitate this multiple parameter 
capability was designed as part of the Yeset sheet". 
In one instance, one of these arrays in the reset 
sheet had been incorrectly specified and the 
sequence build failed. The "autogen" algorithms 
had been designed to terminate the sequence build 
process in just such an eventuality, and it took 
some investigation to determine the root cause of 
the termination. The solution was simply to 
correct the array in the reset sheet. Once again, the 
scheduling algorithms were called into question, 
but it turned out that "autogen" was behaving 
correctly. 
As aerobraking progressed and the spacecraft's 
orbital period became shorter and shorter, 
occasionally it was discovered that the sequences 
from one orbit to the next nearly "overlapped" 
each other. To prevent against this eventuality, 
much up-front analysis was performed to ensure 
that the ''reset sheet" was correctly specified and 
would be valid throughout the entire "reset 
period," usually one week in duration. However, 
some of this analysis was done without taking into 
account the uncertainty in the timing of the orbits. 
The "autogen" scheduling algorithms would output 
a ground directive to write a FINCON at the 
expected end of the block call for each "drag" pass 
p h s  the total accumulated uncertainty of the 
orbital timing, as discussed above. For subsequent 
sequences, the times of these FINCONs were used 
to determine the start time of the sequences. For 
the shorter orbits when the sequences nearly 
overlapped each other, these FINCON directives 
were actually scheduled to occur ufkr the 
scheduled time for the next "aero-seq" block call. 
This condition was actually acceptable for a given 
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sequence. The problem lies in the development of 
the next sequence. When it came time to build the 
next sequence, the start time would be extracted 
fiom the previous FINCON, as expected. 
However, due to the "backing up" of the 
commands to "kill" the previous sequence in a 
timely fashion, as mentioned earlier, the first 
commands in the new sequence would not be 
output to the sequence file because their start times 
would be prior to the sequence start time. This 
condition was unacceptable, and it was decided to 
adjust how the FINCON directives were scheduled 
by "autogen" in order to remove the delay in their 
scheduled times based upon the accumulated 
uncertainty of the orbital timing. This solved the 
problem for most of the final sequences, but there 
were a few instances when the times of the 
FINCON directives had to be manually moved by 
the sequence engineer to avoid this problem. For 
this issue, even though a change to the scheduling 
algorithms was required, it was not related to how 
the spacecraft commands were scheduled, only in 
the FINCON ground directive, which facilitates 
ground modeling. 

The remarkable performance of the "autogen" strategy 
is even more impressive considering that this was a 
"first use" situation; the sequence build process had 
never previously been directly tied to the ASP. In 
addition, it is noteworthy that the "autogen" strategy 
was readily capable of supporting the highly complex 
nature of the sequence structure during this mission 
phase. With very little early testing and on a short 
turn-around basis, the "autogen" algorithms were 
developed, deployed, and fully utilized to support this 
major mission phase in a profoundly successful 
manner. 

Mapping 

The "mapping" phase of the Mars Odyssey mission 
was defined as the period after the aerobraking phase 
had completed and once the spacecraft had achieved its 
operational orbit and until the end of the prime 
mission. This phase tends to be very regular in its 
activities, but also very active. It is characterized by 
the same types of "housekeeping" activities as during 
the cruise phase, with the added complexity of orbital 
geometric events, such as Earth occultations and Solar 
eclipses, and with the demands of facilitating the 
mission's science objectives. 

The Mars Odyssey approach to sequencing this phase 
is very similar to the sequencing approach used during 
the cruise phase, and once again includes the use of a 
"background" sequence that performs the regular, 

engineering commanding of the mission for a long 
period of time (once again, 28 days). In addition, 
science activities are overlaid on this sequence and 
there are occasional periods when other engineering 
activities must be scheduled. 

The "autogen" approach works as well for the mapping 
phase as it did for the cruise phase. The scheduling 
algorithms schedule the following types of commands: 

Calls to a block that commands the spacecraft to 
communicate with Earth during appropriate times. 
Commands to perform daily, weekly, and monthly 
flight software diagnostics. 
Commands to perform daily star camera 
diagnostics. 
Calls to a block that cause the reaction wheels to 
be desaturated. 
Commands to change the rate at which data is 
transmitted to the Earth based upon the diameter of 
the DSN antenna that is allocated. 
Ground directives to suppress the transmission of 
commands to the spacecraft during times when it's 
antenna is not pointed towards Earth, when the 
spacecraft's low-gain antenna is selected as the 
primary receiver, and when Mars occults the 
spacecraft's view of Earth. 
Ground directives to cause the sequence modeling 
software to generate FINCONs. 

At the time of this writing, the mapping phase has been 
progressing smoothly. There have been no major 
problems with either the spacecraft or the "autogen" 
process or tools. 

MSPA and Relay Coordination 

During the aerobraking and the mapping phases of the 
Mars Odyssey mission, there have been times when the 
Mars Odyssey spacecraft and the Mars Global 
Surveyor needed to "share" the same DSN stations in 
order to perform their missions. The technique of 
having a single antenna "listen" to more than one 
spacecraft at a time, and transmit to one of them, is 
called "Multiple Spacecraft Per Aperture", or MSPA. 

While modeling a sequence for a spacecraft, a file is 
generated that contains "keywords" which are used by 
the DSN operators to ensure that the antenna tracks and 
transmits to the right spacecraft at the right time. Each 
spacecraft produces one set of these instructions for a 
period of time. Since each station is usually only 
allocated to track one spacecraft at a time, the sets of 
instructions that are sent to a single station fiom 
multiple spacecraft almost never overlap temporally, 
thereby avoiding any contradicting ''keywords". 
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Odyssey Allocation 

Station 1 Transmitter Available 

Station 2 

MGS Allocations 

I 

Station 2 

Figure 4: The MSPA Allocation Pattern for Mars Odyssey and Mars Global Surveyor. 

However, in the cases of MSPA passes, it is necessary 
to ensure that a given station is instructed to transmit to 
only one spacecraft at a time, even though the station is 
capable of receiving data from multiple spacecraft 
simultaneously. In order to do this, a ground directive 
must be produced for the additional spacecraft that 
"suppresses" the use of the station transmitter during 
that period. This ground directive is translated into the 
"keywords" that are provided to the DSN station, 
thereby ensuring that the antenna is instructed to 
transmit to only one spacecraft at a time. 

To appropriately schedule these "suppressions", heavy 
coordination must take place between the operations 
teams for the multiple spacecraft. Some decisions must 
be made as to how long the transmitter will be 
allocated to each spacecraft during the DSN pass. 
During the Mars Odyssey aerobraking phase, there was 
a regular pattern to how the station's transmitter time 
was allocated to each spacecraft. Refer to Figure 4 for 
a diagram outlining this pattern. 

As can be seen in the diagram, both stations were 
allocated to both spacecraft during the same period of 
time, with an overlap of several hours between station 
allocations. For Station 1, the station was allocated to 
Mars Odyssey with a request for the transmitter, while 
for MGS it was allocated with no request for the 
transmitter. For Station 2, the station was allocated 
with the transmitter requested for both spacecraft. 

Under normal circumstances, the "keyword" file that 
was generated for Mars Odyssey would have instructed 
the transmitter for Station 2 to begin transmitting to the 
spacecraft at the very beginning of its allocation. The 
same would have happened for MGS because its 
allocation for Station 2 also requested the transmitter. 

This condition would have caused contradictory 
"keywords" to be sent to the DSN station, erroneously 
instructing it to transmit to both spacecraft. Because 
there was a requirement to have continuous transmitter 
coverage for Mars Odyssey during its aerobraking 
phase, it would have been necessary to suppress Station 
2's transmitter for MGS throughout its allocation, 
thereby denying MGS any transmitter time at all in this 
scenario. 

The approaoh illustrated in Figure 4 allowed MGS to 
have at least some transmitter time where previously 
there would have been none. This was accomplished 
by utilizing the tail end of Station 1's allocation for 
Mars Odyssey, which would have previously gone 
unused, by suppressing Station 2's transmitter during 
the beginning portion of its allocation to Mars 
Odyssey, thereby delaying the "transmitter handover" 
until the end of Station 1's allocation. This "down 
time" for Station 2's transmitter was then free to be 
utilized by MGS. To ensure no overlap in the 
transmitter times for each spacecraft, the latter half of 
Station 2's allocation to MGS needed to be suppressed 
early enough to turn off the transmitter and allow time 
for the station to be reconfigured in time to transmit to 
Odyssey. 

It was originally expected that the use of this MSPA 
capability would occur quite often. Therefore, an 
"autogen" process was developed to perform the 

1) Read in the SAF and VP files for both spacecraft. 
2) Determine if the transmitter had been requested for 

each allocation. 
3) Determine if the same transmitter had been 

requested for both spacecraft. 

following tasks: 
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4) Schedule a transmitter suppression for the 
beginning of the overlapping transmitter request 
until such time as the "outgoing" allocation 
concluded for Mars Odyssey. 

5 )  Schedule a transmitter suppression from some 
period of time before the end of the previous 
suppression until the end of the overlapping 
transmitter request for MGS. 

6) Construct a distinct sequence file for each 
spacecraft containing the DSN transmitter 
suppression directives. 

In practice, it was only necessary to perform MSPAs 
three times throughout Odyssey's aerobraking phase 
and it would have been very simple to construct these 
DSN transmitter suppression directives manually. 
However, the development of the MSPA capability 
provided two major benefits, as follows: 
1) The ability to read in data sets for multiple 

spacecraft was a new capability. Previously, the 
"autogent' algorithms made no distinction between 
SAFs for multiple spacecraft, and would simply 
assume that all of the data applied to one 
spacecraft. 

2) The ability to write out multiple sequence files was 
also a new capability. Previously, the "autogen" 
algorithms would only cause APGEN to write out 
one sequence file for a pre-specified spacecraft. 

Both of these new capabilities will be extensively used 
in the near future to perform "relay" coordination 
between Mars Odyssey and the twin Mars Exploration 
Rovers, which will land on Mars near the beginning of 
2004. The rovers will transmit data to Odyssey, which 
will store the data for a short time and re-play it back to 
Earth at its earliest opportunity. These two capabilities 
will allow scheduling algorithms to be developed to 
automatically schedule the commands and activities 
that must occur on all three spacecraft to make this 
happen. In addition, it is expected that not only will 
these algorithms have to coordinate activities between 
these three spacecraft, but that coordination must also 
occur between other orbiting and landed spacecraft on 
Mars during that timeframe, such as MGS, Mars 
Express Orbiter, and Beagle 11. It is very clear that the 
development of these abilities to manage data sets for 
many spacecraft will provide long-ranging benefits in 
the future when there will be increased coordination 
between multiple projects and greater contention for 
ground resources, such as DSN allocation time. 

Transition fiom Aerobraking to Mapping 

Immediately following Mars Odyssey's aerobraking 
phase, there was a period of nearly two months called 
the "transition to mapping" period. During this period, 

the spacecraft was primed to perform its principal 
mission by deploying additional hardware and 
performing calibrations. There were no standard 
sequences that needed to be operational during this 
time, and the spacecraft was left in a fairly quiescent 
state, with the exception of the unique and specially 
planned activities that needed to occur. 

At the beginning of this transition period, the ground 
stations were allocated in such a way as to be 
continuously communicating with the spacecraft except 
when Mars occulted the Earth. In addition, the ground 
operators were scheduled to be available to operate the 
spacecraft twenty-four hours a day. During this 
"continuous coverage" period, it was very easy for the 
ground operators to interactively instruct the spacecraft 
to transmit high-priority data when the spacecraft was 
in Ywo-way" communication with the Earth, and to 
avoid transmitting this high-priority data at other times. 
When the continuous staffig and DSN allocation 
periods came to an end, the spacecraft would be left in 
a state where it would attempt to transmit the higher- 
priority data regardless of whether there is a ground 
station visible and allocated to receive the data. In this 
way, some high-priority data could have been lost. 

This condition was recognized near the end of the 
aerobraking phase, and it became desirable to put a 
very simple "background" sequence onboard the 
spacecraft that would instruphitke spacecraft to transmit 
the high-priority data only when appropriate. 
Therefore, an "autogen" process was rapidly deployed 
to schedule these changes. By adapting the scheduling 
algorithms from the previously mentioned phases, it 
was relatively straightforward to develop an automated 
process to build these "background" sequences. 

The resulting sequences were very simple and literally 
only contained commands to change the type of data 
that the spacecraft would transmit. Nevertheless, it 
was discovered that the "autogen" modeling did not 
schedule the commands correctly in every case when 
there were station "handovers." However, it was only 
about 2% of the scheduled commands that had to be 
manually adjusted before the sequence was ready to be 
transmitted to the spacecraft. 

Even though the "autogen'l-developed sequence wasn't 
perfect, it still dramatically reduced the amount of 
effort that would have been required to build these 
sequences manually. Therefore, this effort admirably 
illustrated how the "autogen" process was rapidly 
adapted to solve a potentially daunting command 
scheduling problem that would otherwise have required 
much manual effort. 
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What lessons were learned? 

The development of the "autogen" process for Mars 
Odyssey has provided an excellent case study to 
illustrate that properly developed scheduling 
algorithms can dramatically reduce sequence 
development time and effort. In addition, the 
foundation provided by the Mars Odyssey adaptations 
readily serves as the foundation for sequence 
development efforts for other spacecraft. For example, 
a brief demonstration for the Genesis spacecraft, also 
managed by the Jet Propulsion Laboratory, showed that 
the "autogen" process could be quickly adapted and 
fully functional for another mission in as little as 30 
work-hours. 

It is essential to clarify some of the considerations 
taken when developing the "autogen" process for Mars 
Odyssey that make this kind of flexibility possible, as 
follows: 
0 Keep the sequencing approach simple. If it was 

discovered that a series of commands was being 
repeated consistently, then the appropriate 
development of a block was a powerful tool in 
simplifying sequences and reducing the size of 
command loads. In addition, blocks, when 
designed and utilized intelligently, dramatically 
streamlined the scheduling of commands within 
sequences. Nevertheless, the proper balance had 
to be found between the complexity of the 
available blocks and intelligent sequencing. 

0 Parameterize everything. Every aspect of the 
scheduling algorithms that could have been 
parameterized was parameterized and made 
accessible to the user. In this way, the user 
retained control over how things were scheduled 
without being required to directly adjust the 
scheduling algorithms when small changes were 
needed. In practice, it was useful to encode 
several techniques for scheduling the same 
commands to provide additional flexibility. For 
instance, during the mapping phase for Mars 
Odyssey, the user had the ability to schedule DSN 
communications commands on a once-per-orbit 
basis, or schedule them whenever a DSN station is 
in view. In addition, the range of parameters for 
Mars Odyssey also included, among other things, 
the durations between certain commands and 
switches to schedule or not to schedule an activity. 
Having all these "knobs and dials" available to the 
user provided great flexibility when developing a 
sequence. 
Do your work up-fkont to analyze the scenarios. If 
the sequencing approach to a mission phase is 
analyzed thoroughly enough, it is conceivable that 
a sequence scheduler could be developed prior to 

0 

execution and never be modified again. However, 
in practice, many circumstances may require 
modifications to the sequence scheduling software. 
Nevertheless, early and significant efforts to detail 
how a mission phase should be sequenced may 
dramatically simplify the efforts required to 
actually build a sequence and reduce the amount of 
last-minute coding that is often required. 
The scheduling algorithms rarely produce a perfect 
sequence, particularly for long sequences. The 
more complex the sequence, the more likely that 
errors exist. If it discovered that there are minor 
errors with the sequence, there should be no reason 
why the automatically scheduled sequence 
shouldn't be manually edited to fix it. If the 
scheduler is systematically not scheduling the 
sequences correctly, then there should be no fear 
of updating the scheduling algorithms in order to 
avoid being required to make many manual edits 
to the sequence. 
The "autogen" approach has been designed 
exclusively to build sequences; it has not been 
designed to supplant any sequence checking 
efforts that must be performed on a sequence prior 
to being uplinked to a spacecraft. It has been 
discovered that when developing the scheduling 
algorithms for Mars Odyssey, only those models 
that are necessary for the scheduling of the 
commands are required to be accessible by the 
scheduling algorithms. It has proved 
advantageous to keep the functions of sequence 
generation land sequence checking separate and 
distinct. The function of the "autogen" schedulers 
is to builda sequence that meets the intentions-of 
the sequence developers, whereas the function of 
any sequence checking software is to ensure that 
the sequence is safe to be transmitted to the 
spacecraft. Linking the two functions could 
complicate configuration management efforts, 
compromise spacecraft safety, and reduce the 
flexibility needed to occasionally change the 
scheduling algorithms. 
Don't place the sequence schedulers under 
configuration management until things have 
stabilized. For Mars Odyssey, it was discovered 
that even early efforts to develop the sequence 
scheduling software were unable to anticipate 
some of the realities of actually operating the 
spacecraft. For instance, during Mars Odyssey's 
mapping phase, it was quickly discovered that the 
sheer size of a 28-day sequence was simply too 
large for the spacecraft's onboard sequence 
management software to handle. A short-term 
solution required that the 28-day sequence be cut 
into four pieces, each 7 days in duration. The 
long-term solution was the development of two 
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new spacecraft blocks that would dramatically 
reduce the number of commands that needed to be 
sent to the spacecraft to achieve the same effect, 
and the reduction of the length of many of the 
onboard block names. Had the schedulers been 
placed under configuration management early, it 
would have been more difficult to adjust them in a 
timely fashion to meet the changing needs of the 
spacecraft operators. 
The algorithms will do exactly what you tell them 
to do. Indeed, even though the "autogen" 
scheduling software has worked dramatically well, 
all instances where this process has failed has been 
the result of bad input files, bad input parameters, 
or algorithms that were not designed properly in 
the first place. 

Can you put this automated sequencing onboard the 
spacecraft? 

It is probably better to ask, "Should you put this 
automated sequencing onboard the spacecraft?" This 
document is not intended to be a discussion on the 
benefits of ground automation versus onboard 
autonomy; nevertheless, some discussion is warranted. 

Historically, the development of high-level spacecraft 
autonomy to control a spacecraft has proven to be 
expensive and questionably useful. However, onboard 
autonomy has been used in the past to great success to 
perform certain low-level activities, such as attitude 
and orbit control, power and thermal management, and 
payload monitoring. Nevertheless, onboard autonomy 
often has the following disadvantages: 
0 Onboard autonomy is often programmed as part of 

the flight software. Therefore, when updates to the 
algorithms are needed, a flight software "patch" or 
complete code replacement is necessary. These 
changes are generally high-risk activities. 

0 Comprehensive autonomy that will be fully 
capable of handling all or even most circumstances 
and eventualities is difficult to design. This makes 
the development of high-level autonomy 
prohibitively time-consuming and expensive. In 
addition, as the autonomy becomes more and more 
capable (i.e.: complex), the testing of that same 
autonomy becomes exponentially more difficult. 
Thorough testing of these algorithms is often time- 
consuming and expensive. 
It is very difficult to model on the ground apriori 
the behavior of onboard autonomy since, by its 
very nature, it utilizes its real-time environment to 
determine its next course of action. This translates 
directly into difficulty in generating predictions 
about the behavior of the spacecraft for users on 
the ground. In cases where ground interaction is 

*t 

j 

0 

required, such as with regards to coordinating 
ground events such as DSN passes, the 
identification of seemingly arbitrary science 
observation targets, etc.; this can be a major 
problem. 

Instead of utilizing onboard autonomy, the use of 
ground automation can often overcome many of these 
issues, as follows: 

Since ground automation can be developed using 
non-compiled and scripted algorithms, it is more 
accessible than onboard flight software, thereby 
allowing changes to be made more readily. In 
addition, the act of merely updating the algorithms 
does not put the space vehicle at risk. 
Ground automation is generally less 
comprehensive than onboard autonomy is often 
required to be, being programmed to handle most * \  . 
scenarios, rather than being encoded to handle all 
pre-conceived scenarios. In cases where the 
ground automation may be lacking, human 
intervention is still available to troubleshoot 
problems. Because the range of behaviors of 
ground automation is generally more limited, 
testing the algorithms becomes simpler than 
testing a similar onboard autonomy and can be 
independent of flight software testing. 
By generating command sequences using ground 
automation, sequences become largely 
deterministic, thereby making ground modeling 
more capable of predicting the spacecraft's 
behavior. As the sequences mum be developed< '. 
prior to transmission to the spacecraft, there is* 
room for human intervention to add to or modify 
the sequence. 

I 

Each strategy for controlling the spacecraft has its 
place. Onboard autonomy for controlling a spacecraft 
can be very useful for closed loop, bounded activities 
that are highly dependent on the spacecraft's 
environment and don't require ground interaction or 
modeling. Ground automation of command sequences 
are very useful when ground interaction is required, 
modeling is a necessity, and when the spacecraft's 
interaction with its environment is well understood and 
relatively predictable. In addition, ground automation 
generally has a much lower cost for development and 
maintenance and more readily provides for ground-in- 
the-loop activities. A good spacecraft design will 
incorporate both command strategies in a well- 
balanced, intelligent manner to improve spacecraft 
operability, reduce development and operating costs, 
and reduce mission risk. 
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So is "autogen" useful? 

ABM 
APGEN 
ASP 
Autogen 
Block 

DSMS 
DSN 
FINCON 
GUI 
JPL 
MGS 
MSPA 
PTE 
SAF 
Sequences 

TCM 
VP 

F> r 

Since it was first deployed over a year prior to the time 
of this writing, the "autogen" process and tools have 
built 7 cruise sequences, over 200 aerobraking 
sequences, 6 transition-to-mapping sequences, and, to 
this writing, 13 mapping sequences (and counting). In 
all this time, there have been no major failures of the 
tool or process, but there has been a dramatic reduction 
in the effort that has been required to build these 
sequences. In years past, sequence system engineers 

Aerobraking Maneuver 
Activity Plan Generator 
Automated Sequence Processor 
Automatic sequence generation process and/or script 
A sequence that may be reusable and may include input parameters to change the way it issues 
commands; similar to subroutines. 
Deep Space Mission System 
Deep Space Network 
Final Conditions (file) I"I . 
Graphical User Interface I X  .I 

1 )  

Jet Propulsion Laboratory 
Mars Global Surveyor 
Multiple Spacecraft per Aperture 
Periapsis Timing Estimator 
Station Allocation File 
Files that contain a series of commands, each with a specified time, that will be sent to the 
spacecraft. 
Trajectory Correction Maneuver 
View Period (file) 

spent many days calculating when commands should 
be scheduled and manually constructing these 
sequences. With the use of the "autogen" process, 
these efforts are largely relegated to the past, with the 
time of the sequence system engineers being better 
spent verifying the intent and safety of the sequence. It 
is anticipated that future missions will utilize the 
"autogen" process or its descendents to continue to 
automate the sequence development process, thus 
enabling safer, more cost effective missions. 
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What is “autogen ”9 . JPL 

The term “autogen” has two meanings: 
- A process to automatically generate command sequences for a spacecraft. 
- A Solaris script that facilitates this process. 

The “autogen” process is used to facilitate the generation of 
sequences when: 
- The commands or blocks within the sequence are scheduled in a repeatable or 

- The sequences can become quite lengthy. 
well-understood fashion. 

Currently used to build “background sequences” for the mapping 
phase of the Mars 2001 Odyssey mission and has been utilized 
during cruise and aerobraking. 
Robust enough to be expanded to support other missions and 
applications. 
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Where did it come from? 

Direct extension of efforts made by other JPL missions: 

On those and other missions, it was recognized that the scheduling 
- Mars Observer, Mars Global Surveyor, and Mars ‘98. 

of many commands for certain mission phases tended to follow 
regular patterns. 
- By understanding how commands needed to be scheduled, it was possible to 

- However, software tended to not be directly compatible with pre-existing 

- Implementation was often “kludgy” and difficult to update. 

write algorithms that would automatically schedule them. 

sequence processing software. 

The “autogen” development was the next logical step and is fully 
compatible with pre-existing “uplink” software. 
- Literally reduced the duration of some sequence generation processes fiom 

weeks to minutes. 
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What makes it work? 

The “autogen” process, as used for Mars Odyssey, includes only 
two major components: 
- APGEN was developed by the Deep Space Mission System (DSMS) at JPL and 

is a multi-mission software tool designed for mission planning purposes. 
- Facilitates the scheduling of activities on a timeline and includes the ability to 

automatically expand, decompose, and schedule activities. 
Scheduling algorithms encoded in the APGEN programming language to represent 
activities or commands, and how system resources or states are adjusted as a function 
of time and usage. 

) These are the real “guts” of the “autogen” process. 
- The “autogen” script is a simple mechanism for maximizing the JPL mission 

operations network environment. 
Generates and gathers needed data files from the network. 
Operates APGEN and manipulates resulting sequence files. 
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How was Ccautogenss used for Mars Odyssey? JPL 

The “autogen” process has been used in a variety of different ways 
for the Mars 2001 Odyssey spacecraft. 

Interplanetary Cruise 
Aerobraking 
Mapping 
Other Applications (MSPA and Transition to Mapping) 

Leveraged off of Odyssey’s 
- Onboard “blocks”: a re-usable 

Practically a “subroutine”. 
the spacecraft. 

sequencing capabilities, including: 
series of commands that are pre-loaded onboard 

Can have input parameters to control how the commands are output. 
Often used to dramatically reduce the size of a command sequence. 

- “Virtual engines”: the ability of the onboard flight computer to run multiple 
processes (sequences) in parallel. 

Allows more than one activity to occur simultaneously. 
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Interplanetary Cruise 

The “cruise” phase of a mission is generally defined as the period 
shortly after a spacecraft is launched from the Earth until before it 
reaches it’s primary destination. 
- Generally quiescent with short periods of intense activity that may include 

trajectory correction maneuvers (TCMs) and spacecraft and payload tests or 
Cali brat ions. 

The approach to sequencing this phase was to generate a long-term 
(28=days, in this case) “background” sequence that included regular .. commanding. 
- Provided the “foundation” upon which all other commanding was “overlaid.” 
- Included commands to instruct the spacecraft to communicate with Earth, to 

move the solar array, and to perform software and instrument diagnostics. 
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Cruise Lessons Learned 

Only 3 scheduling anomalies were encountered throughout the 
cruise phase: 
- All were related to telecom modeling of the Deep Space Network and were 

centered on Doppler mode transitions: 
DSN transmitter on and off limits 

- DSN station handovers 
DSN azimutWelevation keyholes 

Updating the scheduling algorithms provided a good learning curve 
and solid concept validation. 
Aside fiom changes caused by these issues, the scheduling 
algorithms performed very admirably, and all other activities were 
simply overlaid over the “background” sequence. 
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Aerobraking Sequence Development History JPL 

Mars Odyssey Aerobraking Drag Pass 
Sequence Development History 

19:oo:oo 

16:45:00 

14:30:00 

12: 15:00 

10:00:00 

7:45:00 

5: 30: 00 

3:15:00 

1:OO:OO 
10/25/01 1 1 /04/0 1 11/14/01 1 1/24/01 12/04/01 12/14/01 12/24/01 01/03/02 01 I1 3/02 
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Aerobraking Sequence Development Facts JPL 

Just under half of all orbits had a sequence build associated with it: 
- Total Orbits: 338 / Total Drag Sequences: 166 

The maximum scheduled sequence development time jumped when 
the Navigation Team couldn't reconstruct the "latest" orbit and went 
with "older" data: 
- Represents the time between the delivery of their orbital predictions until the 

- This was the true measure of how much time was allowed to actually build the 

Average: 6:56:28 / Mean: 6:25:00 / Maximum: 11:55:00 / Minimum: 3:35:00 
- The duration between first periapses in each sequence was the measure of how 

latest time that the sequence could be uplinked to the spacecraft. 

sequence: 

often sequences were built: 
. Average: 1 1 :07:24 / Mean: 10:3 1 : 10 / Maximum: 18:32:27 / Minimum: 6:06:29 

As the orbital period decreased, sequence build frequency increased. 
- The frequency decreased when the Navigation Team backed off one more orbit 

OR when the number of orbits in a sequence incremented. 
R. Gladden 13 



Aerobraking Sequencing Strategy JPL 

To support this rapid sequence development schedule, we leveraged 
off of the “autogen” strategy to build the sequence and utilized the 
“Automated Sequence Processor,” as used by JPL’s Mission 
Management Organization (MMO), to do the following: 
- Generate the sequence. 
- Model and verify the sequence. 
- Produce sequence review files. 
- Construct the uplink files. 
- Distribute the review products and the plid files to the appropriate locations. 

Used “blocks” nearly exclusively during this mission phase. 

Onboard capability to estimate the actual, experienced time of the 
spacecraft’s closest approach to the planet (periapsis) was heavily 
utilized in late aerobraking. 

- “Seq” block concept was introduced - more on this in a second. 

- Periapsis Timing Estimator (PTE) 
R. Gladden 14 
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Aerobraking Lessons Learned JPL 

The “autogen”/ASP combination was remarkably robust. Only 3 
command anomalies were encountered (in over 200 builds!): 
- All were caused by inexperienced user errors: 

Improper sequence rebuild caused unexpected sequence timing offsets. 
Improperly specified input array caused sequence build failure. 
Sequence boundary overlaps caused sequence build failure. 

Performance of “autogen” strategy during aerobraking is even more 
impressive considering that this was a “first use” situation: 
- The sequence build process had never previously been tied to the ASP. 
- Highly complex nature of the sequence structure caused no problems. 
- Very little early testing and short turn-around development was effective. 

The “autogen” algorithms were developed, deployed, and fully 
utilized to support this major mission phase in a profoundly 
successful manner. 
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Mapping Operations 

The “mapping” phase of this mission is defined as the period after 
the aerobraking phase had completed and once the spacecraft had 
achieved its operational orbit until the end of the prime mission. 
- Characterized by the same types of “housekeeping” activities as during the 

cruise phase, with the added complexity of orbital geometric events, such as 
Earth occultations and Solar eclipses, and with the demands of facilitating the 
mission’s science objectives. 

28-day “background” sequence was once again utilized. 
- The same types of commands are scheduled during mapping as during cruise. 
- Science activities are overlaid on the sequence. 
- There are occasional periods when other engineering activities must be 

scheduled, and these are generally overlaid on the “background” sequence, as 
well. 
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Mapping Lessons Learned 

At the time of this writing, the mapping phase has been progressing 
smoothly. There have been no major problems with either the 
spacecraft or the “autogen” process or tools. 
Only 1 anomaly has caused difficulties: 
- Problem is not related to “autogen” -- the duration required for a DSN antenna 

to “lock on” to the spacecraft’s signal has been erratic. 
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Other Applications 

The “autogen” strategy has been utilized to generate more simple 
sequences in support of other needs: 
- Multiple Spacecraft per Aperture (MSPA): 

- This utilizes a single antenna to “listen” to more than one spacecraft at a time (e.g. 
MGS and Odyssey). 
Stations must be instructed to “talk” to ONLY one; this is what was sequenced. 

Quick turnaround for an unanticipated need. 
- “autogen” built sequences to manage onboard data transmission strategies. 

- “Transition fiom Aerobraking to Mapping” Sequence Development: 

These minor efforts provided two new and important capabilities: 
- The ability to read data sets for multiple spacecraft. 
- The ability to write out multiple sequence files. 

These two new capabilities will be heavily utilized to support relay coordination in 
the 2004 time frame when there will be multiple spacecraft at Mars. 
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What lessons were learned? 

If available, intelligent "block" development is critical: 
- "Blocks" can be a powerful tool to simplify and streamline sequencing efforts. 
- A good balance must be found between block- and sequence complexity. 

Parameterize everything. 
- Allows the user to retain control over how things are scheduled without being 

required to directly adjust the scheduling algorithms when small changes are 
needed. 

- Encoding several techniques for scheduling the same commands can provide 

- Having all these "knobs and dials" available to the user can provide great 
additional flexibility. 

flexibility when developing a sequence. 
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What lessons were learned? (2) JPL 

Do your work up-front to analyze the scenarios. 
- Understand when and how the automated sequence generator will be used. 
- In practice, many circumstances may require modifications to the sequence 

scheduling software during operations. 
- Nevertheless, early and significant efforts to detail how a mission phase should 

be sequenced may dramatically simplify the efforts required to actually build a 
sequence and reduce the amount of last-minute coding that is often required. 

Scheduling algorithms don’t have to work perfectly, particularly for 
long and/or complex sequences. 
- When minor errors exist in the sequence, there should be time allowed in the 

- If the algorithms are systematically mis-scheduling, updates should not be 
schedule to manually fix them prior to transmission to the spacecraft. 

prohibitively difficult. 

R. Gladden 21 



What lessons were learned? (3) 

Use the scheduler exclusively to build sequences: 
- It should not be designed to supplant other sequence checking software. 
- Only those models that are necessary for the proper scheduling of the 

commands are required to be accessible by the scheduling algorithms. 
- Linking the two functions (sequence builder vs. sequence modeler and checker) 

could have adverse affects: 
Complicate configuration management efforts. 

- Compromise spacecraft safety. 
Reduce the flexibility needed to occasionally change the scheduling algorithms. 

Don't place the sequence schedulers under configuration 
management until things have stabilized. 
- Scheduler changes should be expected and anticipated. 
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What lessons were learned? (4) JPL 

The algorithms will do exactly what you tell them to do. 
- Understand them! so that when changes are needed, they can be made easily. 
- The user’s inputs, whether as input to the design of the scheduling algorithms 

themselves, or as input to the scheduler when building a sequence, have always 
been the culprit when the process has failed. 
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JPL Can you put this automated sequencing 
onboard the spacecraft? 

Better to ask: “Should you?” 
- This presentation is not intended to be a discussion on the benefits of ground 

automation versus onboard autonomy. 

Historically, the development of high-level spacecraft autonomy to 
control a spacecraft has proven to be expensive and questionably 
useful. 
However, onboard autonomy has been used in the past to great 
success to perform certain low-level activities: 
- Attitude and orbit control 
- Power and thermal management 
- Payload monitoring. 
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JPL Can you put this automated sequencing 
onboard the spacecraft? (2) 

Onboard autonomy often has the following disadvantages: 
- Onboard autonomy is often programmed as part of the flight software. 

- Flight software "patches" or complete code replacement is necessary to change it. 
This is generally a high-risk activity. 

This makes the development of high-level autonomy prohibitively time-consuming 
and expensive, both to build and to test. 

By its very nature, it utilizes the spacecraft's real-time environment to determine its 
next course of action. 
This translates directly into difficulty in generating predictions about the behavior of 
the spacecraft for users on the ground. 

- Where ground interaction is required this can be a major'problem: 

- Comprehensive autonomy is difficult to design. 

- Predicting the behavior of the autonomy on the ground is difficult. 

) Coordinating ground events related to DSN passes. 
) The identification of seemingly arbitrary science observation targets. 
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JPL Can you put this automated sequencing 
onboard the spacecraft? (3) 

The use of ground automation can often overcome many of these . issues: 
- Ground automation can be developed using non-compiled and scripted 

algorithms: 
More accessible and more easily updateable than onboard flight software. 
Updating does not put the space vehicle at risk. 

- Ground automation is generally less comprehensive than onboard autonomy is 
often required to be: 

Human intervention is available to troubleshoot problems. 
Testing is more simple because the range of behaviors of ground automation is 
generally more limited. 
Testing can be independent of flight software testing. 

- By generating command sequences using ground automation, sequences 
become largely deterministic: 

- Ground modeling becomes more capable of predicting the spacecraft's behavior. 
There is room for human intervention to add to or to modifl the sequence. 
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JPL Can you put this automated sequencing 
onboard the spacecraft? (4) 

Each strategy for controlling the spacecraft has its place: 
- Onboard autonomy can be very usefbl for: 

Closed loop, bounded activities. 
Activities that are highly dependent on the spacecraft’s environment. 
Activities that don’t require ground interaction or modeling. 

- Activities that require ground interaction. 
Activities that need to be modeled apriori. 

Activities when the spacecraft’s interaction with its environment is well understood 
and relatively predictable. 

- Ground automation can be very usefbl for scheduling: 

- Ground automation generally has a much lower cost for development and 
maintenance and more readily provides for ground-in-the-loop activities. 

- A good spacecraft design will incorporate both command strategies in a well- 
balanced, intelligent manner to improve spacecraft operability, reduce 
development and operating costs, and reduce mission risk. 
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So is "autogen" useful? 

Yes! 
- Since it was first deployed in early 2001, the "autogen" process and tools have 

built: 
7 cruise sequences. 
Over 200 aerobraking sequences. 
6 transition-to-mapping sequences. 

- Over 13 mapping sequences (and counting). 
- There have been no major failures of the tool or process, but there has been a 

In years past, sequence system engineers spent many days calculating when 
commands should be scheduled and manually constructing these sequences. 
With the use of the "autogen" process, these efforts are largely relegated to the past, 
with the time of the sequence system engineers being better spent verifying the intent 
and safety of the sequence. 
It is anticipated that fbture missions will utilize the "autogen" process or its 
descendents to continue to automate the sequence development process, thus 
enabling safer, more cost effective missions. 

dramatic reduction in the effort that has been required to build these sequences. 
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Acronym List, Glossary, and Thanks 

APGEN < 
ASP < 
Autogen < 
Block < 

dddddddd 
DSMS < 
DSN < 
JPL < 
MGS < 
MSPA < 
PTE < 
Sequence < 

ddddddd 
TCM < 

Activity Plan Generator 
Automated Sequence Processor 
Automatic sequence generation process and/or script 
A sequence that may be reusable and may include input parameters to 
change the way it issues commands; similar to subroutines. 
Deep Space Mission System 
Deep Space Network 
Jet Propulsion Laboratory 
Mars Global Surveyor 
Multiple Spacecraft per Aperture 
Periapsis Timing Estimator 
Files that contain series of commands, each with a specified time of 
initiation, that will be sent to the spacecraft. 
Trajectory Correction Maneuver 

Many thanks to Dan Finnerty, Pieter Kallemeyn, Jeff Lewis, Pierre Maldague, Dennis Page, Wayne Sidney, Reid Thomas, Bruce 
Waggoner, and Steve Wissler -- all of whom helped make "autogen" what it is. 
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