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Interplanetary missions which use low-thrust, high specific impulse propulsion can further 
capitalise on the capabilities of the propulsion system by using it to effect escape from the 
launch body or capture at a target body. For multi-revolution escape or capture, where 
optimisation becomes increasingly laborious the larger the number of revolutions, we investi- 
gate simple control laws which not only offer reasonable estimates of the propellant-optimal 
performance, but also provide initial guesses for optimisation. We find that quite different 
control laws can often yield similar performance. The utility of these control laws as initial 
guesses for optimisation is also assessed. 

Introduction 

The problem of low-thrust escape from an initially 
circular orbit around a body with a l/r2 gravity field 
has been studied by numerous researchers in the last 
few decades. In the late 1950s, Lawden1p2 found that 
in the case of continuous, constant thrust accelera- 
tion, thrust in the tangential direction yields nearly 
the minimum characteristic velocity (and hence min- 
imum propellant consumption and minimum escape 
time, assuming constant propellant mass flow rate). 

In this paper we study the same problem, but with 
constant thrust and eccentric initial orbits, ultimately 
focusing on the geostationary transfer orbit (GTO). 
Using numerical integration of the equations of mo- 
tion, we first determine the performance of tangential 
thrust over a wide range of initial eccentricities and 
periapse altitudes. Then, for the case of a nominal 
GTO initial orbit, we present four control laws for 
the thrust direction that out-perform the tangential- 
thrust law. The four laws have different functional 
forms which were selected from over fifteen functional 
forms that were studied in detail, each having its own 
set of parameters to adjust. The laws were selected 
based on their performance and on their perceived 
potential to serve in optimisation as initial guesses 
that might not only speed-up the optimisation pro- 
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cess, but also lead to  different local minima. We opti- 
mise each of these initial guesses, as well as the initial 
guess of tangential thrust, to achieve the minimum 
escape time. The optimisation software is based on 
the static/dynamic control (SDC) a lg~r i thm.~-~  SDC 
best fits into the direct method category, although, 
unlike other direct methods, the explicit time depen- 
dence of the optimisation problem is not removed by 
parametrisation. We compare the number of itera- 
tions needed for convergence and the optimal solu- 
tions obtained from each initial guess. 

In all numerical computations, the following pa- 
rameters are assumed: The thrust is 465mN, the 
specific impulse is 3100s, the initial spacecraft mass 
is 1500kg, the radius of the central body (Earth) is 
6378.14km1 the gravitational parameter of the Earth 
is 398600.48504296km3/s2 , and thrust commences at 
periapsis. The nominal GTO has a 200km periapsis 
altitude and an eccentricity of 0.7306. Shadowing is 
not considered. 

Tangential Thrust Initial Guess 

We examine the time needed to escape from initial 
Earth orbits of varying eccentricity, but of initial peri- 
apsis altitude fixed at 200km. For eccentricities near 
that of GTO, the escape time is found to oscillate sig- 
nificantly with initial eccentricity. This oscillation is 
depicted in Fig. 1, where the equations of motion are 
integrated using two approaches. The first approach 
uses the Runge-Kutta integrator of MATLAB, with 
the equations of motion expressed in polar coordi- 
nates and the thrust direction aligned with the veloc- 
ity at each instant - that is, a continuously varying 
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thrust direction. The second approach, which is also 
employed in the optimisation software, uses Cartesian 
coordinates to express the equations of motion, divid- 
ing the trajectory into a large number of management 
periods during each of which the thrust direction is 
inertially fixed. For tangential thrust, the inertial di- 
rection is that of the velocity vector at the start of 
the management period. The slight phase and up- 
ward shifts of the curve computed with the second 
approach are partly due to the higher integration ac- 
curacy used, and partly due to the stepped nature of 
the thrust direction. 

The oscillation belies the effect of phasing. The 
local minima in escape time are all seen to occur for 
those initial orbits where the osculating eccentricity 
of the spiral trajectory almost reaches zero shortly be- 
fore escape, subsequently increasing roughly linearly 
with time to unity. In effect, L‘escape occurs from 
apoapsis,” that is, at the point when the spacecraft 
has nearly reached the last apoapsis before escape, 
enough thrust is available to circularise the orbit, ef- 
fectively turning apoapsis to periapsis and continuing 
with a positive and increasing flight path angle up to 
escape. Whether the correct timing is obtained to 
effect these conditions depends on the initial orbit, 
since the thrust and gravitational parameters are as- 
sumed h e d .  

The amplitude of the oscillations is greater, the 
greater the eccentricity. The local minima and max- 
ima may be thought of as providing an envelope for 
the escape times. Fig. 2 shows these envelopes for 
various initial periapsis altitudes and initial eccentric- 
ities varying from zero to about 0.85. As expected, 
the oscillations are of zero amplitude at zero eccen- 
tricity, and grow steadily with increasing eccentricity. 
The envelopes were produced with the Runge-Kutta 
integrator. 

The nominal GTO orbit was deliberately chosen 
to provide an escape time near a local maximum for 
the tangential thrust control law (using the stepped- 
thrust integrator). With this orbit and thrust law, 
we try to tax the optimisation process as much as 
possible, in a sense obtaining an upper bound on the 
difficulty of the optimisation. 

Having established the nominal initial orbit, we 
may instead adjust the thrust control law to obtain 
the correct phasing for escape from apoapsis. We now 
present four control laws which accomplish this. 

Control Laws 

In developing the control laws, two basic ap- 
proaches are taken. The first is a simple trial and 
error approach, where the thrust angle is assumed 

to be of a certain functional form, with parameters 
in the functions serving as secondary controls that 
determine the precise thrust angle. The second ap- 
proach, which might be termed a “guided trial and 
error approach,” involves maximising weighted aver- 
ages of the rates of change of the osculating orbital 
elements. The exact weightings, or functional forms 
of the weightings, then become the secondary con- 
trols. This approach has been taken in the past, for 
example, by Kluever6 and GeferL7 Thrust along the 
velocity vector, which maximises the rate of increase 
of orbital energy (or, equivalently, semimajor axis), 
is the simplest example of this approach. 

The thrust direction is specified in terms of the 
thrust angle, a, which is measured from the circum- 
ferential direction, positive away from the gravita- 
tional centre (as for the flight path angle, 7). Three 
of the more successful trial-and-error functional forms 
for a, with numerical parameters tailored for the 
nominal GTO, are given by 

(3) 

where 0 E (-T, T] is the osculating true anomaly, T is 
the radius, v is the velocity, and p is the gravitational 
parameter of the central body. It is evident that these 
three equations provide variations from the tangential 
thrust law, a = y. In the last equation, for example, 
y(@++) represents a simple phase shift which gives the 
thrust angle as the flight path angle not at the cur- 
rent position, but on the osculating conic at a true 
anomaly advanced by 4 from the current osculating 
true anomaly. The tailoring of the numerical param- 
eters was based on escape time computed with the 
same integrator used by the optimisation program. 

An examination of the escape spiral for each of the 
control laws given by Eqs. 1-3 reveals that the escape 
from apoapsis characteristic is present in each case. 
With this observation in mind, we develop a thrust 
law based on maximising the rate of decrease of the 
impulsive AV needed to escape from the osculating 
apoapsis radius. The thrust angle giving the maximal 
rate of decrease is found using the variational equa- 
tions for the semi-major axis, a, and the eccentricity, 
e, along with elementary conic relations. A weighting 
factor, c,, is included for added flexibility. The value 
c,  = 1 gives the maximal rate. An adjustment away 
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Fig. 1 Oscillation in escape time using tangential thrust for various initial Earth orbits, with thrust starting 
at periapsis. 
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Fig. 2 Upper and lower bounds in escape time using tangential thrust for various initial Earth orbits, with 
thrust starting at periapsis. 
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from unity will typically be needed to give the min- 
imum escape time. The thrust angle, then, is given 
by: 

af56 = Y - - - atan(c,ct, cno) (4) 
7r 

2 
where 

(1 + e)& 
+ 

\ ,  1 - e  I 

with r, representing the osculating apoapsis radius, 
T, = a(1 + e). The notation I#J = atan(y,z) is short- 
hand for (Rsin4 = y, Rcos + = .). For the nominal 
GTO, the weighting coefficient is set to cw = 2.8 to 
obtain a favourable escape time. 

To again illustrate the phasing issue, the four con- 
trol laws of Eqs. 1-4, and the tangential thrust law 
(designated a f l ) ,  are applied to orbits near the nomi- 
nal GTO. The escape times, using the stepped-thrust 
integrator, are shown graphically in Fig. 3. Except 
for afl, the other thrust laws are close to their mini- 
mum escape time when the nominal GTO (eccentric- 
ity 0.7306) is the initial orbit. The thrust angles are 
shown graphically in Fig. 4 for the initial and k a l  
portions of the spiral trajectory. 

Optimisation 

Starting in the nominal GTO, the SDC optimiser 
is used to minimise the escape time, with five differ- 
ent initial guesses which are obtained by integrating 
the four control laws of Eqs. 14  and the tangential 
thrust law. Approximately 60 management periods, 
during each of which the thrust direction is held iner- 
tially fixed, are used per revolution. The optimisation 
involves 18729 independent variables. 

Data for the initial guesses and corresponding op- 
timised solutions are compared in Table 1, which 
shows the number of revolutions and time required 
for escape, the difference in escape time between 
the initial guess and optimal solution, and the num- 
ber of iterations needed for convergence. It is evi- 
dent from the table that there are two distinct lo- 
cal minima in escape time, that from the tangen- 
tial thrust law, a f l ,  and that from each of the other 
initial guess control laws. The first and lower min- 
imum has about 93; revolutions, while the second 
and slightly higher minimum has about 941 revolu- 
tions. The difference in the fourth decimal place of 

the escape time for the afll-based optimum when 
compared with the subsequently-listed solutions in 
Table 1 is attributable to slight differences in the 
precision to which the convergence criteria are met, 
rather than to the presence of a different local mini- 
mum. The number of iterations for the af56 solution 
is considerably less than the number needed by the 
other initial guesses leading to the same optimum be- 
cause of the experience gained in selecting parameters 
that control the optimisation. The computation time 
needed for the optimisation of the af56 initial guess 
was about 8.4 hours on a SunBlade 1000 workstation. 

Both of the optimal solutions retain from the initial 
guesses the number of integral revolutions required 
for escape. In the atl case, the optimisation reduced 
the number of revolutions by almost a half, and also 
obtained the escape from apoapsis condition (absent 
from the initial guess), as seen in the optimal flight- 
path-angle and thrust-angle profiles depicted in Fig. 
5. The optimal thrust direction is seen to lie close to 
the velocity vector except near the maxima and min- 
ima in flight-path angle. From the thrust-angle pro- 
file we see that as the spiral progresses, the apoapsis 
direction does not change significantly except on the 
last revolution. Thus, the last apoapsis would be ex- 
pected to fall at about 92.5 revolutions, but because 
enough thrust is available, the apoapsis is pushed for- 
ward and the flight-path angle remains very close to  
zero for about 3 revolution, the nadir occurring about 

revolution after the 92.5-revolution mark (see Fig. 
5). (Were the nadir exactly at zero, then the apoapsis 
and periapsis points would have coalesced into one, 
this being the basis for the term “escape from apoap- 
sis.”) From its last nadir, the flight-path angle rises 
increasingly fast with polar angle up to escape, that 
is, d2y/d02 is greater than zero. From the last nadir 
about half a revolution remains before escape. Thus, 
escape occurs about revolutions after crossing the 
approximate direction of all but the last apoapses. 
The spiral trajectory is depicted in Fig. 7, with the 
departure direction seen to be about a revolution 
past the initial periapsis. 

The second locally optimal solution, whose flight- 
path-angle and thrust-angle profiles are shown in Fig. 
6, also has the escape from apoapsis condition, al- 
though it occurs almost exactly one revolution later 
than in the first optimal solution. The optimisa- 
tion did not significantly alter the number of revo- 
lutions of the initial guesses leading to the second 
optimum. Furthermore, the initial guesses also ex- 
hibited the escape from apoapsis condition. Indeed, 
it would appear that the optimisation strove to retain 
this characteristic. Rather than reducing flight time 
by a gradual reduction in the revolutions to escape, 
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Fig. 3 Variation in escape time for various thrust profles and various initial orbits near the nominal GTO. 
Integrations performed with the stepped-thrust integrator. 

Table 1 Comparison of empirical and time-optimised escape from the nominal GTO 
Init. Guess Init. Guess Opt. Esc. Init. Guess Esc. Opt. Esc. Diff. Iterations 
Control Law Revs. Revs. Time (days) Time (days) (days) 

fff 1 93.683 93.296 134.6423 131.1838 3.4585 4685 
fffll 94.284 94.258 132.0265 131.4582 0.5683 2771 
fff46 94.284 94.258 132.3053 131.4584 0.8469 3740 
fff.50 94.258 94.258 132.4205 131.4584 0.9621 3974 
fff56 94.226 94.258 132.2921 131.4584 0.8337 1631” 

DSignificantly lower than for other control laws because of experience gained in selecting parameters 
that control the optimisation. 

which would have necessitated giving up escape from 
apoapsis, the optimiser chose to adjust significantly 
the thrust profile over the first few revolutions so as 
to minimise the time spent in the initial phases of 
the spiral, compared to the initial guess. This indi- 
cates that the presence of the escape from apoapsis 
condition is highly desirable. Given the fact that the 
two optima differ by about one full revolution, it is 
further noteworthy that the difference in flight time 
is only 0.2746 days, or 0.6248 times the orbital pe- 
riod of the initial GTO orbit. The spiral trajectory 
of the second optimum is shown in Fig. 8, graphically 
demonstrating that the escape direction is similar to 
that of the first optimum (Fig. 7). 

Conclusions 

Widely differing thrust histories can provide 
comparable, good performance in the problem of 

minimum-time, multi-revolution, constant-thrust es- 
cape or capture. Emprically-derived control laws 
have few parameters, or even just one, that can be ad- 
justed to give close-to-optimal performance and pro- 
vide good initial guesses for optimisation. For escape 
from eccentric initial orbits, the optimisation process 
favours the presence of an “escape from apoapsis” 
condition, wherein enough thrust is available to cir- 
cularise the orbit when the final apoapsis is reached, 
escaping shortly thereafter. 

For the specific case of escape from geostationary 
transfer orbit, two local minima in flight time were 
found, differing only slightly in escape time, but the 
longer one taking almost exactly one full revolution 
more to escape and exhibiting a markedly different 
thrust angle. In evaluating different initial guesses, 
rather than selecting the guess with the minimum 
escape time, it may be more important to select the 
one with the smallest number of full revolutions in 
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Fig. 4 Thrust profiles and flight-path angles of five different initial guesses for escape from GTO. The dashed 
curve for the flight-path angle is invisible in some cases due to superimposition on the solid curve. 

6 
American Institute of Aeronautics and Astronautics 



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

20 20.5 21 21.5 22 22.5 23 23.5 24 24.5 

5 50- I I I I I I I I 
a 

-50 I I I I I I I I I 

80 80.5 81 81.5 82 82.5 83 83.5 84 84.5 

I I 

-50 I I I I I I I I 

90 90.5 91 91.5 92 92.5 93 93.5 94 94.5 
Revs 

Fig. 5 Thrust profile for time-optimised escape from GTO, using SDC with an initial guess of tangential 
thrust (crfl). This is the lower of two local optima. 
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Fig. 6 Thrust profile for time-optimised escape from GTO, using SDC with an initial guess of af&. This is 
the higher of two local optima, attained also with the initial guesses a f n ,  (Yf50, and (Yf56. 

8 
American Institute of Aeronautics and Astronautics 



2- 

0 -  

-2 - 

10 

a -  

6 -  

F 4 -  
Y 
v 

> 
2- 

0 -  

-2 

... -.. ..... '.. 

- 

- 

I I I I I -  I , I 

-a -6 -4 -2 0 2 4 6 
x (km) x lo5 

Fig. 7 Spiral trajectory for time-optimised escape from GTO, using SDC with an initial guess of tangential 
thrust ((~fl). This is the lower of two local optima. 

x io5 

X Escape day 131.4584 Mass 1326.27 kg 

I I I I I I I I I 

-a -6 -4 -2 0 2 4 6 a 
x (km) lo5 
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is the higher of two local optima, attained also with the initial guesses af l l ,  (Yf50, and (Yf56. 
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order to find with optimisation the lowest of possibly 
many local minima. However, the further away from 
the optimum the escape time of the initial guess, the 
longer the optimisation is likely to take. 

It would be worth further investigating the opti- 
misation time needed by other low-revolution initial 
guesses. Furthermore, while it would be of academic 
interest to find local minima with larger number of 
revolutions, it would certainly be useful to find the 
lower limit on the number of revolutions required to 
escape. It would also be of interest to investigate the 
applicability of the escape from apoapsis condition 
to other spiral escape problems, such as fixed-time, 
minimum-propellant transfers, where the thrust need 
not be continuous. 
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